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ON THE RATE OF GROWTH OF THE
PARTIAL MAXIMA OF A SEQUENCE OF INDEPENDENT
IDENTICALLY DISTRIBUTED RANDOM VARIABLES

OLE BARNDORFF-NIELSEN
1. Introduction.
Let X,,X,,...,X,,... be a sequence of independent, identically dis-

tributed random variables defined on a probability field (2,27, P) and
let F' denote their (common) distribution function so that

(1.1) F(x) = P({X, 2a})
for all ze (—o0,00) and n=1,2,....
Our main result (Theorem 1) is the following. Let {1,} be a non-

decreasing sequence of real numbers, such that the sequence {(F(4,))"}
is nonincreasing. Then

P <{ max X, =< A, for infinitely many n}) = { (1)
1sk=n

if -
3 F@G)"

n=3

loglogn { < o

= o0,

The result is established by means of a generalization of the convergence
part of the Borel-Cantelli lemmas.

Let 4,,4,,...,4,,... be an arbitrary sequence of events (measurable
subsets of 2). Because of its intuitive appeal, we shall use the notation
{4, 1i.0.} for limsup4,, that is,

C:s

(1.2) {4, i.0.} = limsup4, = N U 4,,
k=1

n==k

i.0. being an abbreviation for “infinitely often”. Furthermore, we denote
the complement of an event 4 by A¢.

Finally, let
(1.3) Xy = max X, n=12...,

1sksn
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let 4,,45,...,4,, ... be a nondecreasing sequence of real numbers and let
(1.4) En = {X(n)gln}, n = 1,2,... .

The following two theorems describe to some extent the rate of growth
of X, as n — co.

TuEOREM 1. If the sequence (F(4,))", n=1,2, ..., is nonincreasing, then

., loglogn < o©
n = oo’

(15)  P({B,i0.)}) = {(1) it g(F(An))

Remarks. It follows in particular that if for some & and some #,

log]
(1.6) F(a,) = 1—(1+8)—228"  for n > n,
then
. 0 if >0
(1.7) P({B,i0.)) = {1 it s<o0.

The proof of Theorem 1 is given in Section 3. In the course of the proof
we shall use a generalization of the convergence part of the Borel-
Cantelli lemmas. This generalization is discussed in Section 2. The
theorem (in the divergence case) is not true without the condition that
(F(4,))* be nonincreasing, as will be shown by an example in Section 4.

THEOREM 2.

(1.8) P({E,ci0.}) = (1) if i(l—F(ln))

< o0

REmARKS. This is an elementary and known result, see [3, p. 51]. It
follows immediately from the Borel-Cantelli lemmas (stated as Lemmas
1 and 2 in Section 2) and the fact that

(1.9) P({E,ci.0.}) = P({X,>2,i.0.}).

I welcome this opportunity to thank my friend H. Brens for intro-
ducing me to the problem considered here.

2. Generalization of the Borel-Cantelli lemmas.
The celebrated Borel-Cantelli lemmas state that

LemmA 1. For any sequence A, A4,,...,4,,... of events satisfying
(2.1) S P4,) < o,
n=1

we have
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(2.2) P({A,i0.}) =0.
Lemma 2. For any sequence Ay, A,,...,A,,... of independent events
satisfying
(2.3) S P,) = o,
we have "
(2.4) P({4,i0}) =1.

For a proof of Lemmas 1 and 2, see e.g. [4, p. 228]. Lemma 1 may be
generalized to

Lemma 1*. For any sequence Ay, A,, ..., 4,, ... of events satisfying

(2.5) P4,)~>0 as n—>o
and o
(2.8) > P(A,n4,,° < o,
n=1
we have
(2.7) P({4,i0.}) = 0.
Proor. Since
(2.8) P({4,°i.0.)) = lim (U A,,c) > lim P(4,°) = 1

we have, in consequence of (2.6) and lemma 1,
(2.9) P({4,io0.}) = P({4,n4,,¢i.0}) =0.

Although we shall not use it in the sequel we mention here that the
last result is included as a special case in

LEMMA 1**. For any sequence A1, A,,...,4,, ... of events satisfying
(2.10) P(A4,)~0 as N — oo
and, for some sequence vy,v,, . ..,v,,... of positive integers,
(2.11) 5 pP4,n4d,,°) < =
we have "
(2.12) P({A4,io0})=0.

Proor. To every k, k=1,2,..., let us define a sequence of integers
Ui1sPpgs « « s 0pms - - - 88 follows:

k for n=1

(2.13) ben = Geyn-1t Vi,  fOr m>1.

Math. Scand. 9 — 25
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We have in consequence of (2.11) and Lemma 1
(2.14) P4,n4,,,i0) =0

and, in consequence of (2.11) and Lemma 1%, for every £,

(2.15) P( nlA%) < P( lim supAilm> ~o.
n= n—>o0o

Hence

(2.16) P({4,i0}) = P(G N A,-,m) gﬁp (ﬁA%) ~0.

k=1 n=1 =1

3. Proof of Theorem 1.

LeMMA 3. Without loss of generality it may be assumed that the distri-
bution function F 1is continuous.

Proor. Let X *, X,* ..., X, * ... denote a sequence of independent,
identically distributed random variables defined on a probability field
(2*,o7*,P*) and having a distribution function F*, such that F* is
continuous and

(3.1) F*(,) = F(A,), mn=12,....

Let

(3.2) X(n)* = max Xk*, n=12...,
1sk<sn

and

(3.3) Bo* = (Xo*si). n=12....

The range space of the sequences {X,} and {X,*} is the product space
II,_,R,, where for each n, R, is a real line with points z,. Let P,
and P,* denote the probability measures induced on the Borel-field %
of [T R, by {X,} and {X,*}, respectively, i.e. for each Be %

(3.4) Py(B) = P({(X,,X,,...,X,,...)€B})
and
(3.5) Py*(B) = P*({(X,*,X,*,...,X,*...)€eB}).

Because of (3.1) we have Py*(B)= Py(B) for all B of the form
(3.6) B = {x; s/}

and hence, since P, and Py* are product measures (for a proof hereof
see e.g. [4, p. 230]) they must coincide on the minimal ¢-field containing
all such sets. Thus, in particular, we may conclude

(3.7) P({E,i.0.}) = P*{E,*i.0.}).
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Lemma 3 is an immediate consequence of this relation and the obvious
equality

(3.8) 3 (F*a,)" loglog"
n=3

had loglogn

Applying this result we can prove

LemMA 4. Without loss of gemerality it may be assumed that

(3.9) x, = FA,) =B, for n>2,
where
logl
(3.10) &, = exp ( 9% Og")
n
and
1 logl
(3.11) B, = exp< M)
2 m

REMARK. The present lemma (and its proof) is quite similar to the
lemma (and its proof) in Section 2 of [2].

Proovr. Suppose (in accordance with Lemma 3) that F is continuous
and that theorem 1 has been proved for sequences {1,} satisfying the
additional condition (3.9).

To any nondecreasing sequence {A,} for which {(F(1,))*} is non-
increasing, let us define a sequence {1,'} by

sup{A; F(A)=«,} if F@d,)<«,,
(3.12) A =1 A, if «,sF(A <ﬂn,
it FA) 2P} it Fh)>f, .

Then {1,'} is nondecreasing and on account of the assumed continuity
of F, {(F(4,"))"} is nonincreasing and

(3.13) x, < F(4,) = B,
for every n. Hence, setting
(3.14) = {Xw=i'}
we find
, . 0 . loglogn < oo
(3.15)  P({E, i0}) =, if }:(F(l ))"-**M - -

Next we note that the series

(3.16) > (F(A,))

n=3

loglogn
n
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diverges if A, >4, for infinitely many n, ny,n,....,n;, ... say, since in
that case (for =, > 81)

ng 1
@17 3 (F) = =z FR) S

n=81 * n=81T
2 (logn)-*(log(n; +1)—log8l) - o for k - oco.

Also, let us observe that

ot loglogn
(3.18) S () e
n=3y n
Consequently the series (3.16) and
® loglogn
(3.19) Z ( / ) g" g

converge and diverge simultaneously. In the case of convergence we
have E,< E,’ for all except finitely many » and hence

(3.20) P{E, io0.}) = P({E,  i0.}) = 0;

in the case of divergence, in view of (3.19) and Lemma 1*, we find
(3.21) P({E,i.0.}) 2 P({E,i0.}n{k, i0.}) = P({E, i0.}) =

as claimed.

ProoFr oF THEOREM 1. According to Lemma 4, we may assume that
F(4,) (for n>2) is of the form

log]
Ogog”) with }<y,<2.

(4:22)  FG,) = exp (-7

Under this assumption, convergence of (3.17) entails convergence of

(3.23) S P(BLE,.) = 3 (F)" (1=Fliy )

and this in conjunction with Lemma 1* shows the validity of the con-
vergence part of Theorem 1.
Let

n
(3.24) : m, = [e“’g"] for n=23;....

We conclude the proof of Theorem 1 by showing that divergence of (3.16)
entails

(3.25) P({E,, i0.)) = 1.
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The device we shall apply is similar to one used by Erdos in his proof
of the general form of the law of the iterated logarithm (cf. Section 3
in [1]).
For any sequence 4;,¢y,... i, ... of positive integers such that
i, =0o(logn) we have
m m )

(3.26) Mon vin = Mn | .

n

n —> oo,

This relation will be used several times in the sequel.
1f (3.16) diverges, then so does

(3.27) S P(B,,) = 3 (Flh)™
since ) i
loglogn & Man-l loglog
29 3 (R B 3" (m )
n=mgy n=2r=my
= z (F Am"))mn 'n T ]Oglogmnﬂ
and e
(3.29) RRAL loglogm,, ., =1 as = —>co.

Hence, in view of (3.22), to any d, 0<d <1, and any positive integer n,.
there exists positive integers n, and n, such that ny<n, <n, and

ng
(3.30) o< Y PEB,) < 26.

n—ni+l

An immediate application of Kolmogorov’s zero-one law (see e.g. [4,
p. 229]) shows that P({E,, i.0.}) equals either 0 or 1. Hence, to com-
plete the proof it clearly suffices to prove the existence of a constant
¢>0, such that for all sufficiently large n,

na

(3.31) P( U bl> zc

r=ny-1

where n; and n, correspond to a value of d to be determined later.
Now we have
o

(3.32) ( U s, ) 5 P(L,,,Ln N z, )

n=ny+1 n—=nytl r=n+l

ng
3
Ill“ E n U Er)
n= nul r-n+l
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and therefore it suffices to prove the existence of a constant d,, 0 <dy<1,
and a constant 6, 0<6< 1, such that for =46, n, <n=<n,, and all suf-
ficiently large n,

(3.33) P(Emn o U E) < 0P(E

) *
r=n+1

Indeed, (3.30), (3.32) and (3.33) imply

na
(3.34) P( U Emn) > (1-0)4, .
n=ny+1
Let us put
(3.35) a, = 5[loglogn]
and
(3.36) b, = 2[logn loglogn] .
Then
N3
(3.37) P(E’mnn U Em) = 8,4+ 8,48, + 8,
r=n+l
where
(3.38) S, =P&,nE,. ),
n+an
(3.39) S = P(By, 0By, 00 U Em'),
r=n+2
n+by

(3.40) S, =P (Em,,ﬂ U E'mr),

r=n+an+1

ng

(3.41) 8, = P(Emn n U E,,,,).

r=n+bp+1

Setting for convenience
(3.42) Pn = F(ln)
we obtain in the first place

1 —_
(3.43) 8, = P(#,,) gprit™™ < P(E,,) exp(———wloglogmn,l>

Mn+1 "
< P(E

Je~t

my

for all sufficiently large n,, since from (3.26) we have

My iq—M
(3.44) 2 "loglogm,,, >1 as m->oo.
n+1

Secondly, we find
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n+ay
(345) 8, < P(B,) S P ({zmm < max X, < am,:)

r=n+2 Mp<v=Mp+1

IIA

P(B,,) ay (™ = g ™)

= P(Emn) Ay, (mn-f—l—mn) ((pmn+an_(pmn+1) ’

where
loglogm,, ., loglogm,, ,,,
(3.46) 97mn+an—'<}7mn+1 = ymn+1v,”_1/;:-‘ - m’”"’nwm
< 2logl ( L1 )
< 2 loglogm. -
it mn+1 mn+an
since
Vi 2 Pnian
implies
(3.47) Vminsa, 108108 My 10, Z Vi, lOglogmy, .y -
It follows from (3.26) that
Moy s — M.
(3.48) a,—tm "m0 as m->co.
My +ay,

Thus, for all sufficiently large n, we have

(3.49) 8, < P(E,)2a, (1 - m"“) Pnt1 ™ My oalogm,
n+

Myta 1
< P(E 1—e#
< P(B,,) -
Thirdly, we find
n+by,
(3.50) Sy = P(E,,) 3 gp™ < PBp,) by gt
r=nt+an+1l "
where
Mp+a,~Mn 1 My an‘m
(3.51) ‘Pmn:az < exp ( -3 _+_:__”loglogmn+an> i
From (3.27) we see that
(3.52) Mntan~ Mon loglogm,, ., ~ a, ~ 5loglogn .
My +a,
Hence, for all sufficiently large n,
1—¢t
(3.53) S < P(E,, )b,e %" < P(E,,) i

Finally, we obtain
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na
(3.54) 8, < P(B,,) > o™ < P(E,)en, 26,
r=n+bp+1 ®

where

(3.55) P < ©XP (2 M loglogm,w,n).

n+by

It is easy to see that

m, n

loglogm,, ., ~ exp ( —————) logn -0 as n—>oo.

(3.56) “log(n+by)

My tp n

The numbers ¢," are consequently bounded from above by some
constant ¢, and "

(3.57) 8y £ P(E,,)2¢.
To summarize, from (3.37), (3.43), (3.49), (3.53) and (3.57) we have

ng
(3.58) P(Emnn U Em,) < (Jet+3+2¢00) P(E,,) .
r=n+1
Hence, if we choose
3.59) 5ogy = L1
(3. =% =9, "2
and
34t
(3.60) o= +4€

then (3.34) will be satisfied for all sufficiently large n,.

4. Comments on Theorem 1.

In this section we give an example which shows, that divergence of
(3.16) does not necessarily imply
(4.1) P({E,i0.}) =1.

Thus the condition in Theorem 1 that (F(ln))" be nonincreasing is not
extraneous to the conclusion of the theorem. On the other hand it is
not difficult to see that convergence of (3.16) always implies

(4.2) P({E,i0.})=0.

Indeed, in view of (3.18) and Lemma 3 we may assume F(4,)=«,, V=,
and under this assumption convergence of (3.16) entails

(4.3) S P(E,NE, 1) < o

n=1

and hence (4.2) (by Lemma 1%).
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Let the random variables X, be uniformly distributed on the interval
[0,1], let

(4.4) n, =2 for k=12...

and define the sequence {4,} by

logk
(4.5) Ay = exp(—?-(ig—) for m, = n < ny.q.
(0
Then F(4,)=4,, ¥n, and
(4.6) P({En i.o.}) = P({Enk i.o.}) =0
since
(4.7) EP(EM) = Zlnk”k < oo,
k=1 k=1
Nevertheless, the series
hog logl
(4.8) D i
n=3 n

diverges. To prove this we first note that

P11 loglogn P41 . ‘ g1 . !
49) S A" 28" > joglogm, f Tm 4t > log2-k [ "
neny n 0 t A t

We find by partial integration

Nk+1 k41
At Aok ) kg At
(4.10) —logi,, f Dk gy = Tk TR f 2 di
Joot N Ny1q 13
ni ng
RR+1
> &uﬁ"(lﬁ‘?’,&) _ L | e gy
e My My g1
or
k41 ¢
(4.11) f —;li dt = 34, (1—ny logh, )" .
ng
It follows that
M-l logl 3log2 1
(4‘12) z Ann “Og ogn > g . —
neni 4  k(1+2logk)

and hence (4.8) diverges.
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