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CONVEX IDEALS AND POSITIVE MULTIPLICATIVE
FORMS IN PARTIALLY ORDERED ALGEBRAS

GEORGE MALTESE!
Introduction.

Recently K. E. Aubert [1] has proved that the real ordered group alge-
bra of a locally compact Abelian group contains one and only one convex
regular maximal ideal. This fact is closely related to the uniqueness of
the Haar measure. In the first part of this paper we shall give a corre-
spondence between convex regular maximal ideals and positive multi-
plicative forms in real partially ordered Banach algebras (Theorem 1).
As immediate consequences of this correspondence we derive the result
of K. E. Aubert and a modified form of the Gelfand-Mazur theorem
(Corollary 1).

In the second part of this paper we prove the existence of a positive
multiplicative form on abstract (not necessarily topological) partially
ordered algebras (Theorem 6). This theorem yields a proof for the exis-
tence of a positive multiplicative measure on certain generalized convolu-
tion algebras.

We wish to express sincere thanks to C. Ionescu Tulcea of Yale Uni-
versity and H. Giinzler of the University of Gottingen for their construc-
tive criticism and valuable remarks concerning this work. Special thanks
are due to K. E. Aubert of the University of Oslo who read the manu-
script and suggested many improvements.

1. Convex ideals in Banach algebras.

Let B be a commutative Banach algebra over the real numbers and
let B,<B be a subset having the following properties:

1) If fe B, and g € B, then f+g€ B,.
2) If fe B, then «f € B, for any real number « 0.
3) If fe B, then f2€ B,.

The set B, endows B with a partial ordering > if we define f>¢ to
mean that f—g € B,. We shall call any set B, having the above proper-
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ties 1), 2), and 3) a positive wedge. In the sequel we shall need the con-
cepts of convex ideals and positive multiplicative forms.

DEriNITION. An ideal I < B is called convex if fe I, ge I and f<h<g
for h € B implies that h e I.

DErINITION. A complex-valued continuous linear functional ¢ defined
on B will be called a multiplicative form if (fg)=p(f)p(g) for all f,g € B.
Such a form ¢ will be called a positive form if ¢ takes only real values
on B, and if ¢(f)=0 for fe B,.

DeriniTiON. The positive wedge B, will be said to generate B if for
every f € B there exist f,,f, € B, such that f=f,—f,.

THEOREM 1. Let B be a real commutative Banach algebra and let B.
be a positive wedge in B. The kernel ¢=1(0)=M, of any positive multi-
plicative form ¢ ts a convex regular maximal ideal. If M is a convex
regular maximal ideal, there exists a positive multiplicative form ¢ such
that ¢~1(0)=M.

Proor. If ¢ is a positive multiplicative form on B then the proof
that M is a convex regular maximal ideal is immediate from basic Banach
algebra theory (see, for instance, L. Loomis [9, p. 69]). Suppose now
that M is any convex regular maximal ideal in B. By the Gelfand-
Mazur theorem (see S. Mazur [11], I. Gelfand [5], L. Tornheim [12]) the
quotient space B/M is either the real number field or the complex
number field. Let ¢ be a homomorphism of B into the complex numbers
having M as its kernel. We shall show that ¢(B,)<[0,).

First we remark that @(B,) is a positive wedge in the complex plane.
In fact if ¢(f),¢(g) € p(B,) then there exist elements h,h'e M and
k,k' € B, so that f=k+h and g=%"+h'. Hence ¢(f)+¢(g)=@k+k") +
ph+h)=plk+Ek") e pB,). The proofs of properties 2) and 3) of a
positive wedge are similar. Using the fact that M is convex we now
show that

a) If o(f) € p(B,) and —g¢(f) € p(B,), then ¢(f)=0.

In fact if + ¢(f) € p(B,) there exist then h,h’ € M and k,k' € B, such
that f=h+k and —f=h'+%'. Therefore f—h=0 and —f—h’20 which
implies that fe M, that is, ¢(f)=0.

We show now that @(B,) cannot contain a real number —p <0. (The
simple argument which follows is due to O. Hustad, Oslo, and replaces
a more complicated proof by the author.) In fact if —p e ¢(B,) it fol-
lows respectively from properties 2) and 3) of a positive wedge that
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—p? e @(B,) and p? € ¢(B,), and this contradicts a). This together with
a) shows that ¢(B,) is a wedge with an angle <= situated in the complex
plane as indicated in Fig. 1.

It is clear that by choosing 7
the complex number 4 within

@(B,) but close to the edge of

@(B,) which forms the smaller

angle with the negative real axis

we obtain A%2¢ @(B,) unless .
@(B,)<S[0,00). The assertion OW R
@(B,)<=[0,00) follows therefore .
from a) and so the theorem is ) 4
proved. Fig. 1.

N

We note that if B, generates B, then ¢ is obviously real-valued and
hence as an immediate consequence of Theorem 1 we have the following
special case of the Gelfand-Mazur result:

CoroLLARY 1 (Gelfand-Mazur). If the positive wedge B, generates B,
then for any convex regular maximal ideal M, the quotient space B|M 1is
order isomorphic to the real number field.

CoroLLARY 2. Let A be any (not necessarily topological, nor commu-
tative) algebra over the real numbers and let A, be a positive wedge in 4.
If @ is a linear multiplicative mapping of A into the complex numbers,
and if ¢~1(0) is a convexr ideal, then @p(A,)<=[0,00).

2. Applications.

Let G be a locally compact Abelian group with Haar measure m.
The set of all real-valued, m-integrable functions on G form an ordered
ring Lz' with respect to the convolution product, pointwise addition
and pointwise ordering (almost everywhere). The positive wedge B, < L'
is defined by '

B, = {feLg' | f 2 0 almost everywhere} .

K. E. Aubert [1] has shown that Lp! contains a unique convex regular
maximal ideal, namely; the kernel of the Haar measure. The uniqueness
of this convex regular maximal ideal is due to the fact that the Haar
measure is unique as a positive multiplicative form on Lz'. The proof
which we shall give of this theorem is based on Theorem 1 and differs
from that of K. E. Aubert. In particular it does not depend on the
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duality theory of locally compact Abelian groups, which is essentially
used in K. E. Aubert’s proof. As a result of this simplification we are
able to prove a related result for certain generalized convolution algebras
{Z,m,,m,(f,g) - f*g} (for definitions and properties of such objects see
C. Ionescu Tulcea and A. Simon [6], G. Maltese [10]).

TuaroreM 2 (K. E. Aubert). The only (proper) convex reqular maximal
ideal in Lyg! is the kernel of the Haar measure. In other words, if u is an
order preserving ring homomorphism of Lg! onto an ordered field F then
F s order isomorphic to the reals and p is the Haar measure of the group G.

Proor. Let (0)+ My be a convex regular maximal ideal in Lg' and
let @ be a positive multiplicative form which corresponds to M, as in
Theorem 1. The form ¢ is real-valued (and unique) since the wedge B,
generates Lz!. Define a complex-valued functional ¢ on Lyl +iLgt= Lt
(the group algebra of all complex-valued m-integrable functions) by the

relation o(f+1i9) = o(f)+iplg), f.geLgt.

It is immediate that @ is a continuous, multiplicative, linear functional
on Lzg'. But such a functional has the well-known representation
(L. Loomis [9, p. 136]):

#E) = [F5)7(6) dm(s),  Fe Ly,

for some continuous character y of the group G. Hence we have

< o(f) = ¢(f ff s)dm(s) for all feB,.

From this we conclude that y(s)=0 everywhere on G and hence y(s)=1.
Finally we have

breza | {1 amw =0} = (reLet | o9 =0} = 9750) = My

to conclude the proof of the theorem.
Using essentially the same methods we can prove also the following
theorem.

THEOREM 3. Every convex regular maximal ideal M g in the real genera-
lized convolution algebra Lzt ={Z,m (real),m,(f,g) — f*g} can be expressed

by the relation My = {feLg' | (f(s)x(s) dm(s) = 0}

for some wumique non-negative character y (see C. Ionescu Tulcea and
A. Simon [6, p. 1765]) for the definition of a character of a generalized
convolution algebra).
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3. Partially ordered algebras.

In this section we shall study abstract partially ordered algebras.
Making use of a basic result due to R. Kadison [7] we prove the existence
of a non-zero, real-valued, positive, multiplicative, linear functional on
such partially ordered algebras. As an immediate corollary of this
result, which may be of independent interest, we obtain an existence
proof for a positive multiplicative measure on certain generalized con-
volution algebras.

Let V be a vector space over the real number field and let V', be a
subset of V satisfying the following properties.

V1) If f,ge V. then f+ge V..
V2) If fe V, then of € V for any real number « = 0.
V3) If feV, and —fe ¥V, then f=0.

As usual we shall call ¥, the positive cone of V and the elements of V
will be called the positive elements. In the sequel we shall always sup-
pose that the partially ordered vector space V has an order unit 1, that is;

V4) There exists an element 1 € ¥V, 140, with the property that for
every f e V there is a real number i,> 0 such that —A,1<f<A,1.

It follows from the above properties that the cone V., generates V
(in fact we may take f;=4,1 and f,=4,1—f.)

Denote by V* the algebraic dual of ¥V (N. Bourbaki [3, p. 49]). In V*
we define a set K* called the (normalized) dual cone as follows:

K*={xeV* | z(f)20for feV,, x(1)=1}.

An element x € K* is called a positive normalized linear functional (we
use throughout essentially the terminology of R. Kadison [7]). An ex-
tension theorem due to R. Kadison [7, Corollary 2.1, pp. 5-6] shows that
K* is non-void. The set K* is obviously geometrically convex, that is;
if ,ye K* and f€[0,1] then fx+(1—pf)y is also an element of K*.
The set K* is also compact for the topology induced by the locally
convex topology o(V*,V) (see N. Bourbaki [3, p. 50 and p. 60]).

We suppose now that there exists a multiplication ‘“*” in V with the
following properties:

V5) V is a commutative algebra under ““*”.

V6) For each fe V,, f+0, there exists a number x,>0 such that
Ixf> .

Vi) If feV,and ge V, then frge V.
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We shall give now several results concerning ¥ and V*. They lead to
the proof of the existence of a non-identically zero, positive multiplicative
element in V*,

ProrosiTioN 1. For every fe V., f+0 there exists x;€ K* such that
for all g € V we have x{(g*f)=xg)x;(1*f).

Proor. Define a mapping 8 on K* by the equations
(S2)(g) = =(g*f)[=(1*f), xzeK* geV.

Since 1*f> a1l for some «,>0, we have x(1*f)>«,>0 for any x € K*,
so that the mapping S is well-defined. We can easily show that S maps
K* into K*. In fact if ge V, then g*xfe V,_ and 2(g*xf) >0, so that
(Sz)(g) 2 0. The mapping S is also seen to be continuous in the o(V*, V)
topology. We have therefore a continuous mapping, S, of the convex,
compact (for o(V*, V)) set, K*, into itself. By the Schauder-Tychonoff
fixed point theorem (N. Dunford and J. Schwartz [4, p. 456]) there
exists x; € K* such that Sx;=x;. In other words we have

xg*f) = 2p(g)x,(1xf)

for all g e V. Hence the proposition is proved.

ReMARK. For future applications of Proposition 1 let us note that if
we define the set M;={ge V | x/(g9)=0}, then f*x M,= M,. (For any set
McV and fe V we define f* M ={f*xg | g M}.)

DEerFINITION. A linear space I <V is called an order ideal if f € I when-
ever —h<f<h for some hel.

Let I be an order ideal in V, V/I the quotient space, and ¢ the canon-
ical mapping of V onto V/I; we shall sometimes write ¢(f)=f. Let V,
be the positive cone in ¥V and V,=¢(V,). Then V, satisfies conditions
V1), V2), V3), V4). The order unit in V/I is 1. In the sequel we shall
make strong use of the following fundamental result due to R. Kadison
[7, pp. 3-6]:

THEOREM 4. If V is a partially ordered vector space over the reals with
order unit 1, the quotient space V[M for any maximal order ideal M 1is
order isomorphic to the real line (considered as an ordered vector space).
There exists a one-to-one correspondence between maximal order ideals M
and positive normalized linear functionals x given by M ={ge V | x(g)=0}.

ProrositioN 2. For every fe V., f+0, define the following sets:
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M, ={geV | x{g)=0},
Ny = {g*f—aflxf)g | ge V},
Ay = {heV | hy<h<h, for hy,hye N} .

Then the following statements are valid: 1) M, is a maximal order ideal.
2) NycA,=s M. 3) A; is an order ideal. 4) For every ke V., we have
kxA,< A,

Proor. 1) This is a consequence of the R. Kadison result (Theorem 4).
2) This is obvious by definition (to show that A,< M, we use Proposi-
tion 1). 3) Let & € A, and suppose that —h <k <h for some ke V. There
exists h, € N, such that A<h, and hence —h,< —h<k<h<h, so that
ke A, (It is immediate that 4, is a vector space). 4) Using the fact
that the multiplication “*”’ is commutative we show first that k*xN,= N,
for ke V,. For this purpose let gxf—x{1*f)g € N;. Then

Iex[g*f —a,(1xf)g] = (g*k)*f—2[(1%f)g*k € Ny,

hence k*N,<= N, Finally if h € A; then h; <h<h, for some h;,h,€ N,.
Hence k*h,<k*h<k+*h, and since kxh,,k*h,€ N, we conclude that
kxh € A, so that the proposition is completely proved.

Now let $ be the set of all order ideals H which have the property
that for all ke V,, kxH<H. By Zorn’s lemma the family § has a
maximal element I.

THEOREM 5. The maximal element I of the family O is a maximal order
ideal.

Proor. Suppose that the quotient space V/I is not of dimension one,
that is; I is not a maximal order ideal. We denote by ¢ the canonical
mapping V - V/I. The normalized dual cone K* in (V/I)* is defined
as follows:

K* = {Xe(V/D* | X(f)>0for feV,, X(i)=1}.

We recall here that K* is geometrically convex and compact (for the
topology o((V/I)*, (V/I))). Define a multiplication “+” in V/I as fol-
lows: .

frg =f*g.
The multiplication “*” is well-defined on V/I since kxI<I forall ke V,
implies that I is also an ideal in the algebra V. Now if we take ke V.,
we obtain

—~

k*l = k*l > akl = “kl'
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By Proposition 1 for f ev,, f +0, there exists X; e K* such that

Xjg+f) = X9 Xy(isf)

for all g e V/I. We may and do suppose that f/l is not an identity no
matter how the scaler A0 is chosen. This is possible since we have
assumed that V/I has dimension strictly greater than one. Define now
the sets

Nj = {gif-Xyi+f)g | gV},

4; = {h | hy<h<h, for hyh, e N;j}.
From Proposition 2 we conclude that 4; is an order ideal and that
L*AfCAf for every ke V,. We remark now that we have

Vooeldp=21, I+e44)), V+oel(4).

In fact if p=%(4;)=1, then 4;= {0}, hence N;= 7= {0} so that g*f= Xi(1* “f)g
for all g € V/I. This implies that g f/l =g where 1= Xf (i f ), that is;
f/l is an identity for V/I contradicting our choice of f. On the other
hand if ¢4 (47)=V, then ¢~} (M;)=V, and hence X;=0, which is im-
possible. The inclusions ¥V 2¢-1(4;)21 being obvious, the assertion is
proved.

We now show that ¢~1(4;) is an order ideal. For this purpose let
g € V and suppose that —h <g<h for some & € p~*(4;). Then —h< g <h,
so g€ A, and hence g € ®~1(4;). Therefore we conclude that ¢-(4;) is
indeed an order ideal. Next we assert that

kxp=Y(4)) < ¢~(4;) .
for every ke V,. To see this let he¢-(4;), then keAj and k=
kxh € A; which implies that k+h e ¢~(4;) and hence the assertion is
proved. But these statements contradict the assumption that I was a

maximal element of §. Therefore we conclude that V/I is one dimen-

sional, that is; I is a maximal order ideal.

THEOREM 6. There exists a nmon-identically zero linear functional m
defined on V such that m(g)=0 for g € V., and m(f*g)=m(f)m(g) for all
fgeV.

Proor. By the cited result (Theorem 4) of R. Kadison [7] there is a
positive normalized linear functional z corresponding to the maximal
order ideal I of Theorem 5, so that
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I={feV | a(f)=0}.

Foranyge V,ke V, we have g—x(g)1 € I and k*xg—x(g)1*k € I. From
these two facts it follows that

x(krg) — o(g)a(1%k) = 0.
Since this is true for all k e V,, taking k=1 we conclude

z(lxg) = 2(g)2(1*1) .
We now let m=x(1*1)z to obtain

m(k*g) = x(l*x1)a(k+g) = x(1*x1)ax(g)x(1xk)
= 2(1*1)x(g)x(1*1)a(k) = m(g)m(k) .

Since the cone V., generates V the conclusion of the theorem is valid.

4. Applications and examples.

Let Z be a compact Hausdorff space and let C(Z) denote the vector
space of continuous complex-valued functions f defined on Z. For each
z € Z let m, be a positive Radon measure defined on the cartesian prod-
uct Z x Z. For every f,g € C(Z) denote by f*g the function

2 [[f@)gw) dmiz.y) .

ZxZ

We shall suppose that the following conditions (AI) and (AII) of gener-
alized convolution algebras hold:

(AI) The operation (f,g) — f*g is a mapping of C(Z) x C(Z) into C(Z).
(AII) The multiplication (f,g) — f*g defines on the vector space C(Z)
the structure of a commutative algebra.

(See for instance, G. Maltese [10], C. Ionescu Tulcea and A. Simon [6,
conditions (3.1) and (3.2)]). In addition we shall assume that the con-
volution “*’’ satisfies the following positivity condition:

(P) If f is a real-valued function in C(Z) and f=%0, f= 0, then 1xf(2)>0
for all z€ Z.

The space Cr(Z) (the real-valued) functions in C(Z)) is a partially
ordered space over the real numbers with the ordering given by the
definition f>g if f(z)>g(z) for all z€ Z. The partially ordered vector
space C'p(Z) has an order unit, namely; the function 1. With this defini-
tion of order and with convolution as multiplication, it is immediately
seen that Cx(Z) satisfies conditions V1)-V7) of Section 3. Hence we
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may apply Theorem 6 to find a positive linear functional m defined on
Cr(Z) such that

(1) m(f*g) = m(fym(g)  for all f,geCg(Z).

m is called a positive multtplicative measure on Z. (For a discussion con-
cerning generalized convolution algebras and positive multiplicative
measures see also the reviews of R. Godement [Math. Reviews 12 (1951),

pp. 188-189].) We may therefore restate our existence result in the
following form:

THEOREM 7. There exists a non-identically zero, positive, multiplicative
measure defined on every compact Hausdorff space Z which satisfies the
above conditions.

REMARKS. It is clear that equation (1) is also satisfied for complex-
valued functions. If a positive multiplicative measure m satisfies equa-
tion (1) then m =0 if and only if m(1)=0. Infactif m(1)=0and f e Cy(Z),
then there exists A,>0 such that —4,1<f<A;1 and this implies that
m(f)=0.

Using certain results of M. Krein and M. Rutman [8] and imposing
supplementary conditions, Yu. Berezanski and S. Krein [2] have given
proofs for the existence and uniqueness of m.

We mention briefly a non-trivial example of a system which satisfies
conditions V1)-V7). Let Z=[—1, +1], V=Cg(Z) and let V. be the set
of positive (pointwise ordering) functions in V. For fe V choose i,=
IIfll=sup{|f(2)| | z€Z}. The multiplication “*” is defined by

+1
Frg@) = [Tt (1= (1= 22)) 4 (et = (1= 2P (1= 28)] (1= )3 g 0) .
el
Finally for fe V., f£0 we let
+1
ap= | (L= f(2) dt.
al

Hence V and V. satisfy all the properties V1)-V7).

For more details concerning this example and other examples of
systems satisfying V1)-V7) we refer to the paper of Yu. Berezanski
and S. Krein [2].
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