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A GENERALIZATION OF A COMBINATORIAL THEOREM
OF SPARRE ANDERSEN
ABOUT SUMS OF RANDOM VARIABLES

ACHI BRANDT
1. Introduction.

We consider a finite or infinite sequence X,;,X,,... of real valued
random variables. The random variables X,,...,X, are said to be
symmetrically dependent if

n
Pr [n {Xigxi}] = Pr[X;S2;,1=12,...,n]
i=1

is a symmetric function of x,,...,xz,. If an event C is invariant under
permutation of the variables z,,...,x, we say that the event is sym-
metric with respect to X,,...,X,. For n=1,2,3,..., we introduce the

following random variables:

S, =X;+...+X,, 8§,=0.
L, = max[Sy, S8y, ...,8,], Ry=0.
N,(y) = the number of sums S, ..., S, which are greater than y.
L,(y); for y20 we define L,(y) as the first index k, 0k <n, for
which S,z R, -y, and for y <0, L,(y) is defined to be the
last index k, 0 <k <n, for which S,>R, +7y.

The main result of this note is

Turorem 1.1. If X,,...,X, are symmetrically dependent random va-
riables, and C is an event which is symmetric with respect to X,,...,X,,
then

(1.1) Pr[N,(y)=k,C] = Pr[L,(y)=kC], k=0,1,...,n, —co<y<oo.

The case y =0 is a known theorem of E. Sparre Andersen, who proved
it by induction (see [4, Theorem 1]). Other proofs for y=0 have been
given by F. Spitzer [5] and W. Feller [2]. Our method is entirely com-
binatorial, and related to the methods in [5] and [2].

The combinatorial tool required to prove Theorem 1.1 is developed
in Section 2. Since this tool (ordered mixture) may have some interest
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in itself, we give the theorems in Sec. 2 in more general form than neces-
sary for our purposes. In Section 3 we prove Theorem 1.1. In Section 4
certain corollaries, dealing with the order statistics of the sums S;,8,, .. .,
are obtained. These are related to the works of Wendel [6] and Pol-
laczec [3].

The author is indebted to H. Kesten for valuable suggestions.

2. Ordered Mixture.

DeriniTION. Let 4 be a finite set of finite sequences,
A = {(%;1,%,9, - - %) 1= 1,2,...,m}.

A sequence y=(yy,...,¥y,) is called an ordered mixture (o.m.) of A4 if
there is a 1-1 correspondence

(i’J) o V= 1’(7’7.7) )
j=1,...,m,t=1,...,m,v=1,...,n so that % i =Y, and v(@,j+1)>
v(1,j) for j=1,2,...,m;—1; that is, the members of y are exactly all the
x; ;, and the order of the members of each sequence of A4 is preserved
in y.

For example, the sequence (1,4,5,2,7,6,8,3) is an o.m. of the set
{(1,2,3), (4,5,6), (7,8)}.

Tueorem 2.1. Let (E,,....,E,) be a disjoint sequence of sets of real
numbers, and suppose A is any sequence of real sequences

A = (51,52,- . .,Em), 5,’: = (xil,xiz,. . .,xini > 1 é 7: é m .

Then there is at most one o.m. of A, say y=(yy, .. -.,Yy), for which
(3, J)
Sync b, v(i,j) = 1,2,...,n.
m=1
Proor. The proof is easily accomplished by induction with respect to
>7n; (m being fixed throughout the induction; n; may be zero). The
case Y m,;=1 is trivial. We assume now that the theorem holds for
>n;=n—1 and shall prove the case Yn;,=n. Put

2 me =S.

1=1 j=1
If an o.m. (y,, . . .,¥,) with the above property does exist, then 3 ,y,=15,
which implies S € E; and y, € &, for some k with 1 <k <m. Thus there
are two possibilities: Either S ¢ UTE;, in which case no o.m. exists at
all; or S € E;, in which case we must have y,=x, ,., and then by the
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induction assumption there is at most one admissible arrangement of
Y15+ - -3Yn-1- This completes the proof.

A similar theorem with a similar proof is clearly valid for any group
instead of the real numbers.

DeriniTioN. The ordered mixture (¥, ...,¥%,) in Theorem 2.1 is cal-
led the ordered mixture of (&,,...,&,) with respect to (E,,...,E,). Or,
when abbreviated: (y,,...,y,) is the om. (E,,...,E,) of (&,...,&,).

THEOREM 2.2. Let (E,,...,E,) be a disjoint sequence of sets of real
numbers, and let X4, ...,X, be symmetrically dependent random variables.
Furthermore, let ny, . . . ,n,, be non-negative integers, with n,+ . .. +n,=N,,
N,,=n, Ny=0. Then, for the partial sums Sy,...,8, and the sequences

5’6 = (XNk—l+1’ XNk_l+2,...,.XNk), k = l,2,...,m,
we have

Pr [n {exactly n; partial sums are in El}]
= Pr[(&,....,&,) has an om. (E,...,E,)].

=1

Proor. Let Y* denote summation extending over all the n-tuples
{Jix | LSk=mn; 1<i<m}for which 15j;,<...<j; ,,Sn,1=1,2,...,m,
and whose members j;, are all distinct. Then

Pr [n {exactly n; partial sums are in Ei}]

=1

m ng
= 3*Pr [Q kr_]1 {Sji’,ceEi}]
= >*Pr[X,,...,X, is the om. (E,,...,E,) of

(X, 5 Xy g Xy (X Xy o

J,10 N, 2 J1,m, j2,1°

N6 FHND. SR .,X].Mm))]
= >*Pr[(§,...,&,) has an om. (E,,...,E,) in

which xy, ., appears in the j ;-th place]
= Pr[(&,...,&,) has an om. (E,,...,E,)].

.,X,-Mz), e

In the third equality we made use of the symmetrical dependence of
the random variables X;,...,X,.

Remark. All the above equalities remain valid if every event in
brackets [...] is intersected with an event C' which is symmetric with
respect to X,,...,X

ne
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In the following theorem (y,o0) and (—oo,y] denote the real intervals
y<x<oo and —oo<x =4y, respectively.

THEOREM 2.3. Let x=(xy,...,27) and y=(y, - - ., Yar) be two sequences
of real numbers. Then for every real number y, (x,y) has an o.m. ((y,),
(—oo,y]) which begins with x,, if and only if

Q+P =<y and P>y,

where .

Q:ma,x zyy, P=minzxﬂ.

1=ms=M 1 1slsL 1

Proor. Suppose (2,y) has an o.m. ((y,o), (—o0,y]) of the form

L1 ¢« - ’xil; Y1:Y2 - - - >yj1; xi1+15xi2+2s e ’xiz;
Yi+1Yi+20 - - - Yy
where 0<i;<t,<...,0=7,<j;<j2<.... By the definition of o.m. we

have ; ;
gxﬁ ? Y, Sy
and, for s, <k =j,,1, . i
leﬁ Y > 7,
1
which together imply, forx = 1,

k
Sx, > 0.
ot
Thus, if 3}x,= P, then necessarily 1<+¢,, and therefore iz, is a partial
sum of the o.m., which implies iz, =P >y.
Let Q=3%y,. For some «,j, ;<p=j,. Then, by the requirements
of o.m.,

o L
P+Q ézxﬂ"}'zyv = Y.
1 1

To prove the “if”” assertion of the theorem, we construct the o.m.
(21,295 - - -, 2pr4p) Starting at the right end, by the following procedure:
We put

m+r =% 0T Zyyp = Yym
according as L Iy

Sa,+ >y, fallsin (y,00)orin (—o0,y].
1 1

Assume we have already defined 2,,.,.1, 21100 - -+ «,2y4p, USINg 2,4,
Xpgy ooy & 8D Ypiq, Yoo - -5 Y- We then choose z,,,=x; if
iz, + 3™y, >y and 2,,,=Y,, otherwise. The sequence z,,...,zy,; 80
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built is clearly an o.m. of (x,y), but we have to prove that we can indeed
proceed with the above construction until we get z, =x;.

There are no difficulties to define 2,,,; as long as both m >0 and [> 0.
If m=0, the choice 2, =, agrees with the requirements, since
Stx,2 P>y. Thus, to complete the proof, we only have to show that it
is impossible to reach a point where =0, m >0, i.e. the case z,,,=x;,
kz1. Such a situation indeed leads to a contradiction: Let P=3%z,.
For some 7=k =1 we have x,=z,,,, which would imply 31y, + 3%z >y,
in contradiction to the assumption @+ P <y. This completes the proof
of Theorem 2.3.

The proof of the following theorem is essentially the same as that of
the last one.

THEOREM 2.4. In the above notation, (x,y) has an o.m. ((y,o), (—oo,y])
that begins with y,, if and only if
Q+P >y, Q=y.
3. Proof of Theorem 1.1.
The events [N,(y)=0] and [L,(y)=0] are identical, while [N ,,(y)=n]

is the image of the event [L,(y) =n] under the permutation X; - X, .,
i1=1,...,n. Thus we may restrict ourselves to the case 0 <k <mn.

Lemma 3.1. If X, ..., X, are symmetrically dependent random variables
with respect to which C is a symmetric event, then, for 0 <k <n,

Pr[N,(y)=k,C]
m l !
= Pr[ max Y X, +mind X, <y, minY X, > y, C] +

kt+1=smsn k+1 1gilsk 1 1=sl=sk 1

m l m
+Pr[ max » X,+minY X, >y, max EX,§y,O].

k+l1sm=n k+1 1=ilsk 1 k+l=m=n k+1

This lemma is a direct corollary of Theorems 2.2 (with the subsequent
remark), 2.3 and 2.4.

To prove Theorem 1.1, let us first consider the case y=0. By the

permutation X; - X, _, ;. ¢=1,2,...,k, we derive from Lemma 3.1 that
Pr[N,(y)=k,C] = Pr[{Q+P<y,P>y,C}u{Q+P>y,Q=y,C}],
where m

Q=0Q,= max Y X, ,

v
k+1smsn k+1

k
P = Pk =mian” = Sk_'Rk—l‘

1=isk 1
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Therefore, and from the fact that @+ P <y and P>y implies @ <0:
Pr[N,()=kC] =

= Pr[({@+P=y,P>y}u{@+P>7,Q=7,Q<0}u{@+P>y,Q<y,Q20})C]

= Pr[({Q+P=<y,P>7,Q<0}u{Q+P>»,Q<0,P>y}u{Q+P>y,0sQ=y}) (]
= Pr[({P>7,Q<0}u{P+Q>y,02Q=y}) C].

Consequently, when y =0, the theorem results from the following two
trivial lemmas:

Lemma 3.2. Let y20,0<k<n. Then @, <0 and P, >y if and only if
L, (y)=Fk and S, is the last maximum of the sequence Sy, 8, .. .,S,.

Lemma 3.3. Let y20,0<k<n. Then Q;+P,>v and 0@, <y if and
only if L,(y)=k and 8, is not the last maximum of Sy, 8S,, .. .,S,.

Note that @+ P,=max; ;-,S;—max,;<;, ;.

Similarly, for y <0 we have
PI‘[Nn(j/) =k>C]
= Prl{Q+P=y,P>y,Cyu{Q+P>y,@=y,0}]
=Pr[({Q+P=y,y<P<0}Uu{Q+P=y,P>y,P20}U{Q+P>y,Q=y}) (]
=Pr[({Q+P=y,y<P<0}u{Q+P=y,P20,Q<y}u{Q+P>y,Q<y,P20}) (]
= Pr[({Q+P§y,y<P<0} u{Pz O,Q§y}) ay,
and the corresponding lemmas:

LemmA 3.4. Let y<0,0<k<n. Then P20 and Q. <y if and only if
L,(y)=k and S,=R,,.

Lemma 3.5. Let y<0,0<k<n. Then P+ Q,<y and y <P <0 if and
only if L,(y)=Fk and S, <R,

This completes the proof of Theorem 1.1 for all . Obviously, a similar
theorem holds for N, *(y)=the number of sums §;,...,8, which are
greater than or equal to y.

4. Corollaries.
We introduce the notation: S;+=max[8,0]. The order statistics of
81%,...,8,* are designated by B, 2R, ,2R, ,2...2R, ,.

TeEOREM 4.1. If X, ..., X, are symmetrically dependent random vari-
ables with respect to which C is a symmelric event, then

Pr[R, ,,;15y,C] = Pr[R,—R,<y,C], 0=m=Zn-1, —o<y<oo.



358 ACHI BRANDT

Proor. For y <0 the two sides of the equality vanish. For y >0 we
just have to sum over £=0,1,2,...,m in (1.1).

The following theorem, concerning the characteristic functions of
(R, S,) was first proved in [3] by function theoretic methods. In [6]
an algebraic proof appeared which is closely connected with a recent
proof in [1].

TurorEM 4.2. (Pollaczec and Wendel.) Let X,,X,,... be an infinite
sequence of independent and identically distributed random variables. Let
@D(0)=E(exp 10X},),

Yn = V)n(950') = E(eXP @[QSn++USn]) s
Cn,k = Cn,k(g’o) = E(exp Q’[QRn,k'I'GSn]) .
Then, the following identity holds, provided |w)|,|z|<1:

) n 1 S ™
n§1w kgfk lé‘n’k N (1—2:)(1—602@(0‘)) [exp {n§1? (1~ )'/)n} B 1] '

It is not too difficult to prove this theorem from Theorem 1.1 (for C
we take the event S, <t) and a theorem of Spitzer. Spitzer’s theorem
is simply the case z=0 in Theorem 4.2, but he has proved it independently
(in [5]), using pure combinatorial considerations. Thus we obtain a purely
combinatorial proof of Theorem 4.2. Conversely, combinatorial results
may be deduced from Theorem 4.2 (see [5] and [7]) as well as from
Spitzer’s theorem (see [5]).
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