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ON ESTIMATING THE SOLUTIONS OF
HYPOELLIPTIC DIFFERENTIAL EQUATIONS
NEAR THE PLANE BOUNDARY"

JAAK PEETRE

Introduction.

This paper arose from an attempt to extend the results of Hérmander
[5] for hypoelliptic differential operators with constant coefficients to
hypoelliptic differential operators with variable coefficients?2. The re-
sults are, however, mainly of negative character in the sense that we dis-
prove an inequality that holds in the elliptic case and that one would
have reason to believe to hold also in the hypoelliptic case; and they
give thus by no means a complete picture of the situation. Also we con-
sider mostly Dirichlet boundary conditions only, and—what is worse—
in the neighborhood of a plane portion of the boundary.

Let R™ be the n-dimensional real Cartesian space; denote elements
of R* by z=(z,,...,x,)=(x',t) with 2'=(x,,...,2,_;) and t=x,, and
elements of the dual space by é=(&;,...,&,)=(&, 1) with &' =(&,,...,&,_;)
and v=§,. Let 4=A(D)=A(D,,D,) be a properly hypoelliptic differ-
ential operator with constant coefficients in R™. Following Schechter
[11] (cf. [1], [5]), the appelation “‘properly”’ means that the ‘“root con-
dition” holds: The number of roots 7,.(&') of the equation 4(&',7)=0
with positive (negative) imaginary parts is independent of &’ for & out-
side some compact set. Denote this number by m (m_) and put further
m=m,+m_ which is the normal order of 4. We may suppose that
Imz,(£)>0 for r=1,...,m, and <O for r=m, +1,...,m. Consider
now C* functions u defined in the closed halfspace B», = {zx |¢=0} and
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1 This paper was written when the author was a temporary member of the Institute
of Mathematical Sciences of the New York University.

2 By hypoelliptic we always mean formally hypoelliptic in the sense of [4], [7]: a
differential operator 4 =A(x, D) is said to be hypoelliptic if

1° Vz Vy A(:L‘, 5)~A(.% 5)’ 5 — 00,
2° Vo Yok 0 A%z, £)=0(A(x, §)), § —>o00;

A4 is said to be elliptic if moreover V& A(x, £)~|&|™, & — oo for some m (=the order of 4)
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with compact support. If 4 is elliptic, then m _ =m_, and the following
well-known inequality:

1) [[lw, B2 | = C(|Aw, B" ||+ [lu, B".]])
holds with a suitable constant C for all u satisfying the condition
(2) Djlu=0j=1,...m,,

on the plane R*!={x |¢=0}. (For more general results see e.g. [1].)
Here we have put

3
(3) I, X = ( | Iu(w)lzdx)
X

and

3
(4) lw, X[|l = X (leau(x)lzdw>

laf=m \z

for any open set X of R*. The question is now how to extend this result
to the hypoelliptic case. We observe that in the elliptic case the norm
[llu,X]|| is equivalent to the norm

glb (|| dwy, B + [lug, B])

where the glb is taken over all functions %, in R® whose restrictions to
X equal . So it seems quite reasonable to take this as a definition of
[||u,X||| in the non-elliptic case:

(5) [w, X[ = glb(|dug, B+ [lug, B]) .

If one would then be able to prove (1), with the norm defined as by (5),
for all u satisfying (2), one would, exactly as in the elliptic case, be able
to extend (1) to hypoelliptic operators with variable coefficients, and as
a consequence obtain the corresponding regularity theorem (see Sec-
tion 4). The main contribution of this paper is now that (1), with the
norm given as by (5), is not true in general. This phenomenon, in a
somewhat different situation, was however already noted by Thomée [12]
who considers homogeneous operators and takes n=2; he also admits
constants C that depend on the diameter of the support of w. But we
prove also that, more precisely, (1) holds if and only if the following
condition is fulfilled: Let B(£) be any function that is a polynomial of
degree <m, in v. Expand B(£)/4(£) in partial fractions:

(6) B(§)[A(§) = B.(§)[A.(8) + BL(§[A(&),

where
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A8 = iﬁ (r—7,(8)
and -

A& = IT (1))

r=m++1

Then we have the following inequality:
() [1B1@1a_ @ dv < c.2[1B.&) 4O dv

for all & outside some compact set with some constant C, (independent
of B and ¢&').

Let us consider some special cases. Suppose m, =m_. Then we may
take B, (£)=B_(&)=1, and we hence obtain the necessary condition

[1n4.©r dx < o fyia,@pdr.
If m,=m_=1, this condition reads
Im 7y ()] = Ok?Imry(é)]

and is in fact also sufficient. It follows that (1) cannot hold for the
special operator

(8) 4 = (D,—i2*)(Dy+i4), A =D2+...+D, 4,

which is obviously properly hypoelliptic. Finally, (7) is fulfilled when-
ever A is elliptic. This can be seen as follows. Suppose 4 is homogene-
ous. (This is no restriction.) Then it is obviously sufficient to establish
(7) for |&|=1. But (7) holds trivially for every £ 40, with a constant
O, depending on &'. It is now easily verified that O, is a continuous
function of &', and hence it will be bounded for |£'|=1. This proves
the assertion.

Next one would perhaps suspect that the definition of the norm given
above by (5) is not at all the “right”’ one. The following (weaker) norm
would perhaps be more natural and more like the one in the original
definition for the elliptic case:

(9) e, X1 =k§plnAku,Xn,

where {4,};_; is any basis of the vector space of differential operator
weaker than A (in the sense of [3]). In the elliptic case we may take
{4301 ={D.};ssm and (9) goes over into (4). We do not know if the
two norms |||u,X|[|" and |||»,X]|| are equivalent in general. We show



340 JAAK PEETRE

now that (1) can not hold in general even with |[[u,X]||| replaced by
[llu,X|]|'. Take A to be the operator (8). Then

4, = (Dy+14%)(Dy+14)
is weaker than 4, and |||u,R" ||| is equivalent to the norm

Ay, B+ e, B
Hence if

(1) [, B |" = C([[Aw, B™ ||+ [[u, B )
would hold true then also (1) would hold true, since clearly
[[4yu, B || = Dl{u, B, []|" ,

which gives the contradiction.

Up to now we have assumed that the constant C in (1) is independent
of the diameter of the support of u. But even if we admit, as in the case
considered by Thomée [12], a constant C' depending on the diameter,
(1) or (1’) will still not be true in general. This we will show in the case
of the special operator (8) in Section 3.

In Section 1 we reduce the problem to the case n=1. This case is
then studied in Section 2 where the equivalent of (7) is established for
ordinary differential operators or more precisely families of such opera-
tors. In Section 3 we study the special operator (8). In Section 4 we
prove the regularity theorem for operators for which the condition (7)
is fulfilled. (It is possible that the regularity theorem is true also with-
out this assumption.) Finally, in Section 5, we indicate briefly how to
extend the results of the paper in several directions.

I would like to thank Prof. Hérmander for valuable advice in con-
nection with the preparation of this paper.

1. Reduction to the case n=1.

Let A=A(D)=A4(D,,D,) be any differential operator with constant
coefficients, satisfying the root condition (see Introduction). (It is also
assumed that the coefficient of D/ is a constant.) Taking the Fourier
transform with respect to &', we get a family of ordinary differential
operators 4(&',D,). Denote by |||v,X]||. the corresponding norm:

llo, Xllle = glblllvg, B[l v =vin X,
where
o1, Bllle = lloy, Rl + |A(E', D)oy, B,

lv, X|| being defined by (3). We note the following important formula:
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3
(10) Rl ~ ( llae, RN a)
the equivalence being uniform in & (for the proof cf. [9, formula (10)]).

LemMmA 1. The inequality (1) holds for all w satisfying (2) if and only
if for every & with some constant C independent of & we have

(11) o, Byl < O(1A(E, D)v, R ||+ I, R..1)
for all C* functions v on R, with compact support satisfying the condition
(12) Di(0) =0, j=1,...,m,.

Proo¥. i) Suppose (1) is valid. Let ¢ be an arbitrary C° function
on R»-! with compact support. Apply (1) to the function u(x)=
(@' )(t). Taking Fourier transforms with respect to &', we obtain, for-
mula (10) in view,

Jiiie, B.1i1e2 o) ag” < 02 ( [ Dyo, B e+ o, By e e ),
from which (11) easily follows.
ii) Suppose (11) is valid. Apply (11) to the function v(t) =4(¢',t) and

integrate the square with respect to &'. In view of (10), (1) immediately
follows.

LemmaA 2. Let S be a compact set in R*-1. There exists a constant C
such that for every &' € S we have
(13) o, B, |lle £ C(lA(E, D)o, R + [[v, B.])
for all v (no boundary conditions whatsoever!).

Proor. It is clear that (13) holds for every &, with a constant C in

general depending on &. But C is obviously a continuous function of
& so it will be bounded in 8. This proves the assertion.

CorOLLARY. In the formulation of Lemma 1 it is sufficient to require
that (11) holds outside some compact set.

Next we assume that the following condition is also fulfilled:
(14) lim [Im 7,(¢')| > 0,

&—>o00

which is certainly true if 4 is hypoelliptic.

LemmA 3. Suppose that (14) is fulfilled. The inequality (1) holds for
all u satisfying (2) if and only +f for all & outside some compact set we have
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[llv, B.|lle = CllAE, D)o, R, ||
for all v satisfying (12).

In view of the corollary of Lemma 2, it is clear that Lemma 3 will
follow immediately from the corollary of the following lemma.

LeMMA 4. Let A=A(D)) be any ordinary differential operator with con-
stant coefficients such that A(t)=+0 for v real. Let m, (m_) be the number
of roots of the equation A(t)=0 with positive (negative) imaginary parts; put

(15) 4,0 = T (=) = 1T (e=1).

Then we have
(16) o, B4, S A0, B |4
for all v satisfying (12).

CorOLLARY. The inequality
(17) v, B.ll = (glb|4,(7)] glb|A_(7)])™" [l 4v, B, ||
s valid for all v satisfying (12).

Proor or LeEMMA 4. Here we use the notation |u,R|g=|Eu,R|,
llu, B ||z =glb|luy, Bl|z, for any convolution operator E. The correspond-
ing spaces are denoted by HE(R), HZ(R,). (Note thatif F=4 or =4,
then HE(R) and HE(R.) depend only on the degree of 4.) Evidently

o, Ry, < [0, BlLy,® = (A,0,4,0) = (A_"1Av, 4,v)
< [4_"140,R,| 4,0, R.]| = |40, R4 llo, R\, veED(R,),

for in view of the Paley—Wiener theorem

IEg, Bl = g Bl

if B(7) is regular in the upper half-plane (cf. [9, formula (10)]). Conse-
quently (16) holds for all v in Z(R,). Since the closure of Z(R,) in
the norm |jv, B,||,, contains all v in R, satisfying (12), we see that (16)
is also valid for these v. The proof is complete.

Proor or CoroLLARY. We have obviously
o, Bl = (glb|A (7)) I, Bulla,
v, Rylls < (glblA (7)) [l Av, R, .

and

Hence (17) follows.
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2. Estimates in the case n=1.

In the previous section we have reduced the problem to the case n=1.
Accordingly we will now consider ordinary differential operators 4 with
constant coefficients such that A(v)+0 for 7 real, and C* functions »
on R, with compact support.

Let # be any finite dimensional vector space of differential operators
with constant coefficients. We consider the following problem:

To find a function v e H(R,) = H4(R,) such that
(P) (18) Av = g, Bv(0) = 0 forall Be#,
g being a given function € H(R.).
We say that (P) is correctly posed if there exists a constant C such
that for every g there is a solution » such that

(19) o, BL|II = Cllg, Bl

where it will now be convenient to take |||v, R,||| to be |jv, R, 4 (cf. (5))-
(Uniqueness is not required.) Clearly the Dirichlet problem is obtained if
we take # to be the set of differential operators of order <m,. Our goal
is to evaluate the ‘‘best’’ constant C. The main step will be to reduce
(P) to the following equivalent problem (on the whole axis R):

To find ¢ € H_ such that for some v, € H
Py (20) Avy, = g1+, Bv(0) = 0 forall Be %,
g1 being a given function € Hp, .

(We note that v, is in fact uniquely determined by ¢ and g,). We
say that (P,) is correctly posed if for every g, there exists a solution ¢

such that
llp, Bll = Cyligs, B.l| -

lon, Bl = (1+C1)llge, Boll 5

by the triangle inequality. Put now v=v,| R, (restriction) and g=g,| R,.
Then (18) is fulfilled and moreover

o, Bl = (1+ 09 llg, Boll 5

so that (P) is correctly posed if (P,) is, and moreover C <1+ ;. Suppose
now that (P) is correctly posed. Put again g=g,| R, and let v be a cor-
responding solution. Extend v to a function v; in H. This can evidently
be done in such a manner that

o Bl = llo, B -
oy, BIII = Cligy, Bl .

Then of course

It follows that
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Put ¢ =Av, —g;. Then (20) is of course fulfilled, and we obtain
lp, BIl = (1+C)llgy, Bl

again by the triangle inequality. Hence (P,) is correctly posed, and
C,=1+C. To sum up, we have now proved that (P) and (P;) are equiv-
alent and that moreover C' and C,; are bounded at the same time, as
functions of 4 and #%.

Take now Fourier transforms in (20) assuming that (P) is correctly
posed. We then obtain

A(7)5y(7) = Gu(7) + (), f B(z)oy(v) dv = 0.

Since A(t)+0 for 7 real by assumption, we obtain

() [B@1A@) Gun+5) de = 0.
Conversely, if ¢ € Hp_ satisfies (21), then ¢ is a solution of (P;). Put
&) = (B/A(),

and consider K (the inverse Fourier transform of K (r)) as an element
of H. Let K, and K_ be the projections of K on Hy, and Hp . We then
obtain from (21) the following formula:

(22) (K-,¢) = —(K+,9,) forall Bed#.

It follows from (22) that K—=0 if and only if K=0 (cf. [1, p. 633]).
Choose now a basis {B;}\_, in & such that {K;}_, (K; corresponds to
B;!) is an orthogonal basis. Then ¢ is of the form

l
¢ =2 — (K" g)IKIPK+vy,

J=1
where y is orthogonal to {KJ-‘}}=1. It follows that

!
(23) ZlI(K,-“,!h)l2/liK,-‘H2 = CPligalP® .
J=
Take g, =K;*. Then we get
1K = Cu Kl

with C, £C,. Since for every K # 0 evidently K- is part of an orthogonal
basis, we have

(24) IK+H| < O, |IK-|| forall Be&.

Conversely, if (24) holds, then clearly also (23), with C, <1C,, and hence
(19) hold. Expand now B/A in partial fractions:
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B(7)[A(r) = B (v)[A.(r) + B_(r)[A_(r), degree B, < degree A .

(Here A and A_ are defined as by (15).) Then K* is the inverse Fourier

transform of (B.(t)[4+(7)), for the roots of A (z)=0 are in the upper
(lower) half-plane so that the Paley—Wiener theorem applies. We have
thus proved the following theorem.

THEOREM 1. The Problem (P) is correctly posed if and only if B,.=0
implies B=0. Then there exists a constant C, such that we have

[IB@)j4 (@)p e < 0,2[IB.(M]4,(0P dv

for all Be Z. Moreover — and this is the point of course — the constants
C and C, are bounded at the same time.

In view of the results of Section 1 (in particular Lemma 3), we have
the following corollary, which is the main result of this paper.

CorOLLARY. Let A be a properly hypoelliptic differential operator with
constant coefficients in B™ (n arbitrary!). Then (1) holds for all u satisfying
(2) if and only if the following condition is satisfied: There exists a constant
Cy such that (7) holds for all functions B(&) such that B(&) is a polynomial
in v of degree <m, (B.(£) and B_(£) being defined as by (6)), and all &
outside some compact set.

ReMARK. Note that there is a formal analogy between the definition
of elliptic boundary problems, as given e.g. in [1, p. 633], and our condition
(7). In [1] it is required that the boundary operators B;(&’, T) should be in-
dependent modulo 4 (&', ) for every &', while as (7) in a sense expresses
that this independence should be ‘“uniform”.

3. The special operator (D,—iA4%)(D,+1i4).
We are now going to study the operator
A = (D,—14%(D,+14)
and we will first give a direct proof, which does not utilize the results of
the previous sections, that the inequality
(25) Il 4yu, R, = C(|Aw, R+ [, B") 5
where . .
A; = (D+14%)(D,—14) ,

cannot hold true. (Note that 4, is not the same operator as in the Intro-
duction!) First we observe that (25) is equivalent to
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(26) 141(&", D)o, B, £ C(IA(E', D)o, R |+ |v. B,l);

this may be proved by an argument similar to the one used in the proof

of Lemma 1. Take now
o(t) = eIEP gt

Then v satisfies (2) and hence we may apply (26) to it. Since
A,v

[#1° (18— 1) e
and
Ao = (g1 (|2~ 1) P,

141812 - 1| = C(IEP|IE1P-1+ &1 +1£1) ,

we obtain

which leads to a contradiction if we let & tend to co.

Next we consider the case when the constant C in (25) depends on
the diameter of the support of . We will see that also in this case (25)
cannot hold true. In fact, using a partition of unity, it is easily seen
that the following inequality holds

4w, B2 || < C(|Adw, B[ + | D, B ][5+ |lu, B, ||5)

for all w satisfying (2). (No restriction on the diameter of the support
of u.) Using the above construction one easily verifies that also this
inequality leads to a contradiction. We leave the details to the reader.

4. Estimates for variable coefficients and regularity.

Let A=A(D) be properly hypoelliptic, and assume that there is a
constant C' such that the following inequality

@27 IAE,.) Rl £ C(I4A(E,.), Ryl + [[4(€',.), R, 1))

holds for all u satisfying (2) and all &'. (In view of the results of Section
1 and Section 2, this is of course equivalent to the requirement that (7)
should hold.) Put

E = (1+4)}.
Multiply the square of (27) by (& (&) d&’ where
B(&) = (1+]&]2)}
and r is any real number, and integrate. We obtain

fll@Eeyae, ).\
=C (f |(B@)Y du, ), Ro|P dg + [||(BE) a€',.), R P d&')



ON ... DIFFERENTIAL EQUATIONS NEAR THE PLANE BOUNDARY 347

or, in view of formula (10),
w, B[], = C(||Aw, B, |, + |[u, B ]|,) .

Here we use the norms:

(28) [|lw, B* |||, = |||E™u, R",]]|
and

(29) llw, B ||, = ||E"w,B™| .
Since

I, Bl = Cllw, B[]y

for some w>0, in view of the hypoellipticity, the remainder can be
replaced by |||u,R",|||,_, and in fact even by |||u, B |||,_; for we have
an inequality of Ehrling—Nirenberg type:

M, B2 |y = elllu, B2+ O llu, R ],—y,  €>0.
Hence we obtain the following inequality:
(30) [, B* ][, < C(llAu, B ||, + |||w, R™,[[[,—1) -

We want now to extend (30) to variable coefficients. We consider
accordingly differential operators of the form (cf. [9], [10]):

(31) 4 = A, D) = Ao(D)+kz (@) A1(D), ¢,(0) = 0,

=1
where 1° A4, is properly hypoelliptic satisfying the inequality (27),
and 4,, k=1,2,...,s, are weaker than 4, in the sense of [3], 2° ¢,
k=1,2,...,s, are C* functions with compact support such that the
quantity

5 = 3 supley(a)|
k=1

is smaller than a positive constant d, to be determined, depending on
A4,, k=0,1,...,s, only. Clearly every operator of the form (31) is hypo-
elliptic in the vicinity of 0, and conversely every hypoelliptic operator
is of the form (31) in the vicinity of 0. It follows from 1° that we have

(32) [[lu, R, ||], < Co(l4dqw, BR[|, +|[|u, B™|||,_1)
and
(33) lAgu, B, < Cilllw, R, .

(||.,B™|||, is of course the norm corresponding to 4,) Now, by the
triangle inequality, we obtain

(34) 4w, B, < ||Au, B™,|, +k21”6kAku,Rn+“r°

We have now the following lemma.
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LemMmA 5. Let ¢ be any C* function with constant support and let r be
any real number. There exists a constant I" such that

llcv, B*. ||, = suple(@)| [lo, R, + Lllv, B |, -

Remark. This is a variant of a lemma by Hérmander and Lions [6].
For the proof see [9], [10].

Applying Lemma 5 we obtain from (32), (33), (34):

[llu, B |||, < Colldw, B™ ||, + Cy|||w, B |||,y +
+2 CyCy sup le(@)] || [u, B[], + X CoCh Iy ||, R |||,y

Hence, if ¢ is sufficiently small (30) follows. Thus we have the following
theorem.

THEOREM 2. If A is of the form (31) and 6 is sufficiently small, then the
inequality (30) holds for all u satisfying (2).

Next, let H"(R",) and H"(R",) be the spaces corresponding to the
norms (28) and (29) respectively. Then we have

TrEOREM 3. If we HYR"™,) for some q and satisfies (2) and if
Aw e H"(R»,), then w e H"(R™,).

Proor. Suppose that ¢g<r—1. Apply (30) with ¢ instead of r, to
(up—u)/|h'|, B € B*-1 where uy(x)=u(x’+h',t). It is then easy to see
that the right hand side and consequently the left hand side will remain
bounded as 4’ tends to 0. By weak compactness it follows now in a well-
known manner that actually e H#(R",), so
that ¢ can be replaced by ¢+ 1 and hence, after
a finite number of steps, by r. This proves the
theorem.

Let 2 be an open set in R",. It is supposed
that every point on the intersection of R"-1 and
the boundary of X is bounded away from the rest
of the boundary. Let Hj (X) be the space of
distributions % on X such that ¢u € H"(R",) for
all C*° functions ¢ with the support contained in a
compact set of Z*=Xu(ZnR*1). In a similar
manner Hy () is defined.

R" -1

THEOREM 4. If u € D'(X*) and satisfies (2) on
(Z-Z)nR*-1 and if Aue Hj (X), then u e H, (Z).

loc
Proor. By partial regularity (cf. [8], [9]), we may assume that
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ue HE (X) for some q. Then ¢gue HYR",) and satisfies also (2), and
Agpu € H#@(Rn ) (by Leibniz’s formula) for some z>0. For since
A, is hypoelliptic, it follows that

[42@) = O+ 1EP)H(144(H)1+1), o +0,
for some z>0, so that
”Akau:RnJr”q+z é 0|HusRn+IHq .

So Theorem 3 shows that @ue H®*@*"(R7 ) which means that
u € HE@=7(3), In other words, ¢ can be replaced by glb(q+z,r), so
that after a finite number of steps we obtain r. This proves the theorem.

CorOLLARY. If u e Z'(X*) and satisfies (2) and if Aue &(X*), then
u € &(Z*).

Proor. By partial regularity.

REMARKS. 1° To sum up we have proved the regularity near a plane
portion of the boundary of the solutions of the Dirichlet problem for
properly hypoelliptic operators. A satisfying the condition (7). Occa-
sionally one can also extend this to the case when the whole or part of
the boundary is curved, as in the elliptic and, more generally, the
parabolic case. For symmetric operators Malgrange [7] extended Gar-
ding’s inequality [2] for elliptic operators to hypoelliptic operators. It
follows that the Dirichlet problem has a weak solution. Our results
show that the solution is a strong one, i.e. regular in any domain that is
bounded by a finite number of planes, except in the vicinity of the inter-
section of these planes, where no regularity can be expected in general.

2° The corollary of Theorem 4 is probably also true without any
hypothesis of the type (7), at least for some operators. One has then
to use estimates derived from Lemma 4. The difficulty is to extend
Lemma 5 to these new norms.

5. Various extensions and remarks.

As the reader may have remarked the hypoellipticity plays a minor
role throughout the discussion (except in Section 4 where it is indispens-
able). In fact it is easy to formulate the main result (Corollary of Theo-
rem 1) for a much bigger class of operators.

Also the restriction to Dirichlet boundary conditions has been mostly
done for convenience only. The hard point is to extend the Corollary
of Lemma 3. But under fairly general assumptions we have

EE )Rl < ClAu(,.), By
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for all £ outside some compact set § and some real number p, u being
any C*™ function with compact support in R”, satisfying the condition:
Bu = 0, i=L12...,m,,
on Rr»-1 and this suffices to carry through the reduction to the case
n=1.
One may also consider inequalities corresponding to non-homogeneous
boundary conditions. Let us outline a deduction in the case of ordinary

operators, the notation being that of Section 2. Instead of (21) we have
now the formula:

| B@A@) Guio) +3(m) de = .
¢ being the prescribed value of Bu(0), which yields

(K~ = —(Kihg) + ¢
and finally

!

Q= Zl(— (K;*,91) +6:i)/”<Kj—”2Kj— .
]:

In virtue of (24) we now obtain

l
lell = IC*lgall + (1+C*) X le;l/IIKSI »
J=1
which aparently implies:

1
e, By||| = Clldu, Rl + C" 3 [Bu(0)/| Kyl -

i=1

From this inequality it is now easy to get to the case n>1. However,
the assumption that {K,-*}jl-=1 is an orthogonal basis turns out to be
highly unnatural; to get an inequality corresponding to a given basis
{B;}}_, in # one has to impose extra requirements.

Let us finally point out an interesting class of operators which includes
in particular the elliptic and more generally the parabolic case. For
simplicity, we consider constant coefficients only. Write A in the form

A = AD) = D"+ Aps(Dp)D 1+ ..+ Ag(Dy) -
Then the defining relation is
(35) [AE)] ~ [7™+]Ao(&)], & —o0

(i.e. the ratio between the two expressions should be bounded when &
lies outside some compact set S). An equivalent formulation is

(36) glb[Im7,(£')] ~ lub|z,(§)], & —co.

Obviously both (35) and (36) are satisfied if 4 is elliptic or more gener-
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ally parabolic. For this class one can also successfully treat boundary
problems other than the Dirichlet boundary problem. In fact, most of
the results and methods of [9, Chap. I], are directly applicable to this
case. Only one has to operate with |4,(&')['/™ instead of (1+|&’|2), even
in the definition of the relevant norms and spaces.

REMARK. As in the elliptic case it is easy to see directly that (7) is
fulfilled.

REFERENCES

1. S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of
elliptic partial differential equations satisfying general boundary conditions I, Comm.
Pure Appl. Math. 12 (1959), 623-727.

2. L. Garding, Dirichlet’s problem for linear elliptic partial differential equations, Math.
Scand. 1 (1953), 55-72.

3. L. Hormander, On the theory of general partial differential operators, Acta Math. 94
(1955), 161-248.

4. L. Hormander, On the interior regularity of the solutions of partial differential equations,
Comm. Pure Appl. Math. 11 (1958), 197-218.

5. L. Hormander, On the regularity of the solutions of boundary problems, Acta Math. 99
(1958), 225-264.

6. L. Hérmander and J. L. Lions, Sur la complétion par rapport @ une intégrale de Dirichlet,
Math. Scand. 4 (1956), 259-270.

7. B. Malgrange, Sur une classe d’opérateurs différentiels hypoelliptiques, Bull. Soc. Math.
France 85 (1957), 283-306.

8. J. Peetre, Théorémes de régularité pour quelques classes d’opérateurs différentiels,
Thesis, Lund, 1959 (&~ Med. Lunds Univ. Mat. Sem. 16 (1959), 1-122).

9. J. Peetre, Another approach to elliptic boundary problems, To appear in Comm. Pure
Appl. Math.

10. J. Peetre, A proof of the hypoellipticity of formally hypoelliptic differential operators,
To appear in Comm. Pure Appl. Math.

11. M. Schechter, Solution of the Dirichlet problem for systems not necessarily strongly
elliptic, Comm. Pure Appl. Math. 12 (1959), 241-247.

12. V. Thomée, Locally cogent boundary operators, Math. Scand. 7 (1959), 5-32.



