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SOME COMBINATORIAL THEOREMS FOR CONTINUOUS
PARAMETER PROCESSES!

EDGAR REICH?

1. Introduction.

Let x(t) be a given (non-random) function of ¢, 0=<¢ =<7, subject to
certain restrictions which will be stated in section 2. We shall be inter-
ested in the following two quantities, determined by z(-). Firstly,

(I) m(t)—z(t), where m(t) = sup z(7),

0=t
and, secondly, the first passage time,

inf{v | 2(z)=0}, if 2(7)=0 for some 7,

(1) oo, if 2(7)+0 for all 7.

In connection with the study of (I), we let

L i m)—a@t)=é €20,

¢t §) = {0, it m(t)—a(t)> &

and in connection with (II) we put

pl) = {O, if a>t.

Our main combinatorial theorems, theorems 2.1, and 2.2, of section 2,
state that ¢(¢; 0), and f(¢) satisfy certain Volterra integral equations of
the second kind, whose respective kernels depend, roughly speaking, on
the amount of oscillation of z(:) in the interval (0,f). The quantity
@(t; &), £> 0, is expressible by a quadrature in terms of ¢(t; 0). Although
(I) and (IT) appear, on the surface, to bear little relationship to each
other, it is interesting that the respective integral equations are quite
closely related.

In spite of the elementary nature of theorems 2.1 and 2.2 they can
be used to obtain the non-trivial probabilistic theorems 3.1, 3.2, of sec-
tion 3, in the case when x(-) is a stochastic process with independent (not
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necessarily stationary) increments and x(-) also satisfies certain addi-
tional hypotheses which correspond to the hypotheses made in theorems
2.1 and 2.2. Namely, if

F(t; &) = Prim(t)—=2(t) <&}, £20,

and B(t) = Pr{x<t},

then F(t; 0) and B(t) will turn out to satisfy Volterra equations of the
second kind, (3.6), and (3.8), while F(¢; &), £>0, is expressible by a
quadrature in terms of F(f; 0). The restrictions on the process z(-)
insure that z(-) does not oscillate locally too rapidly, and exclude such
processes as Brownian motion for which F(¢; 0) would be identically zero.

The purpose of theorems 3.3 and 3.4 is to show that, without any
further essential restrictions, the Volterra equations (3.6), (3.8) have
unique solutions, in spite of the fact that the kernels involved are not
necessarily sufficiently regular for the classical Volterra equation theory
to apply.

When z(-) is stationary the integrals occurring in (3.6) and (3.8) are
of the convolution type, and F(¢; 0) and B(¢) can be obtained by Laplace
transforms. This fact illustrates what seems a fairly general heuristic
principle: When a problem involving additive processes with stationary
increments can be solved by Laplace transforms the more general case
of non-stationary increments leads to a Volterra equation (or corre-
spondingly, a triangular matrix, in the discrete case).

2. Combinatorial results.

In this section z(t) shall be a (non-random) function defined for
0t<T, T>0.

In connection with our consideration of (I) we suppose that the fol-
lowing assumptions hold.

(2.1) z(0+) = «(0), z(t + 0) exists, 0=st=sT
(2.2) z(t—0) = z(t) = z(¢+0), 0tsT
(2.3) For each k there are at most a finite number of t's, 0<t=<7T,

such that x2(t—0)=k==z(t+0).

In connection with our consideration of (II) we suppose, in addition,
that

(2.4) If a(ty,—0)=2(t,+ 0) then x(t) is increasing in some neighborhood
of t,.

(2.5) If a(ty) = O then z(ty+0) = 2(t,—0) = 0.
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We say that x(-) has a relative maximum at ¢, if
x(to—e) = @(ly) Z 2ty +e)
for all sufficiently small ¢>0. For 0<a<b=T, £20, let Z(a,b; &) be

the number of elements of the set

(2.6) {t ]| ast<b, z(t)=2(b)+§,
z(+) does not have a relative maximum at ¢},

and let _#(a,b) be the number of the elements of the set
(2.7) {t | ast<b, z(t+0)<x(b)<x(t—0)}.
By (2.3), & and _# are finite.

TaEorREM 2.1. Suppose z(t) satisfies (2.1)—(2.3). Then
(2.8) t L o
(p(t;f)——ftp(u;O)duQ"(u,t;E) _ L daza0=8 s gcper,

) 0, if x(t)<xz(0)—¢&’

NorEe. If we consider the kernel d,%(u,t;&) and the right-hand side
as known, then setting £=0 in (2.8) gives a Volterra equation for
@(t; 0), while for £>0, (2.8) expresses ¢(f; &) in terms of ¢(¢; 0) by a
quadrature. A typical z(-) satisfying (2.1)—(2.3) is shown in Fig. 1.

Fig. 1.

Proor or THEOREM 2.1. By (2.1), (2.2),

m(t) = sup x(t) = max z(7)
ostst ostst

exists and is a continuous non-decreasing function of ¢, 0<¢t<7. Let
M (t; &), £20, 0=t<T be the number of elements of the finite set
{r | 0=v<t, m(r)=2(r)=2(t)+&,

x(+) does not have a relative maximum at 7} .
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To derive the theorem we shall obtain two different expressions for
M (t; £). The fact that both expressions equal #(¢; &) will yield (2.8).

If x(t) <x(0)—¢&, £20, then m(t)2x(0)>x(t)+&, O0=7=t. Hence, in
this case #(t; £)=0. On the other hand, we shall now see that

it _

29 eza0)-¢ = Ao =] 7T
If m(t) —z(t) <&, then m(zr)<a(t)+&, 0= 7t=¢ Hence

(2100 @) 2a(0)—& mt)—a(t) < & = A £) = 0.

Next suppose m(t) —z(t)>&. Since m(¢) is continuous, m(0)=x(0)=
z(t) + &, m(t) > x(t) + &, the set

{r | 078, m(z)=2(t)+&}, O<t=T,
is non-empty and closed, and therefore has a largest element s=s(t).
Clearly, m(s) = x(t)+&  and  s<t.

Hence, by (2.3), x(s—¢)<m(s) for sufficiently small ¢>0. But
x(s + ) >m(s), for arbitrarily small ¢>0. For, suppose, on the contrary,
z(s+e)<m(s) for all sufficiently small e>0. This would imply
m(s+e)=m(s)=x(t)+ &, contradicting the definition of s. Hence z(-)
does not have a relative maximum at s, and, using (2.1), (2.2),

x(s) = z(s—0) = m(s) = x(s+0) = x(s),
implying that x(s)=m(s)=x(t)+&. Thus we have shown that
(2.11) x(t) 22(0)—&, m(t)—=x(t) > & = M({t;E) =2 1.
To complete the proof of (2.9) it suffices to show that, if z(t) = x(0) - &,

1, if m)—a()>&

Mt E) = 0, if m(t)—a@)=¢

0=st<T, ¢=20.

Suppose the contrary. Then there exist 7y, 7y, 0 <1, <7,<t, such that
2(1y) =2(15) =m(7,) =m(7y) =2(t) + &, and such that z(-) does not have
relative maximum at 7;. Since m(-) is non-decreasing,

(2.12) m(t) = m(ty) = 2(7y), 7,215 7,.

Since m(7;)=x(t,) it follows that x(v,—¢)<z(7;) for sufficiently small
e>0. But x(-) does not have a relative maximum at v;. Therefore

z(t;+¢e) > x(7y)
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for arbitrarily small ¢>0. This contradicts (2.12) for v=17,+¢. Thus
we have established (2.9).
In view of (2.9) and the lines preceding it,

L, if a@)zx(0)-§
0, if =x(t)<z(0)-¢&
On the other hand, from the definitions of ¢(¢; &), #(¢; &), and
Z(a, b; &) it is clear that

(2.13)  glt; &)+ At &) = { £20.

M €) = —fqa(u; 0) d, % (u,i; &) .
0

If the above is combined with (2.13) we obtain (2.8), completing the proof
of the theorem.

THEOREM 2.2. Suppose x(t) satisfies (2.1)—(2.5), 2(0)<0. Then

12

(2.14) B(t)— [B(u) L2 (.5 0)— Flu,0)] =

0

1, f «(t)=0

<
o, if a@<o °=t<T:

Proor. It is not difficult to verify, using (2.1)-(2.5), that the inter-
vals on which «(-) is increasing are separated by the downward jumps
of z(-); more precisely, between any two points of either the set (2.6)
or (2.7) there is exactly one point of the other set. Thus,

Z(a,t; 0)— #(a,t;0) = 0or +1, t>a.
In fact, if a < oo, it follows, with the help of (2.5) (See Fig. 2) that

ﬂ/ Ay
) T

Fig. 2.

z(t)

0, x()z0

Zt; )= St 0 = | ) TOE0

Therefore, if ¢ > «,
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(2.15) Bt + Z (ot 0) = Flnt50) = 1 ° =

Let us define Z(a,b) = Fa,b) = 0, b<a.

Equation (2.15) then holds at {=«, also, assuming the form 1+0+0=1,
and also for < «, where it assumes the form 0+0—0=0. (Note that

2(0) <0, by hypothesis.) Thus (2.15) holds for 0<¢<7. On the other

hand, since,
(0.9

“’

1, u

Blu) = {O, "

A IV

it follows, from the definitions of Z(u,t; 0), #(u,t), that

t

12
(2.16) Z(t) = - [ d 2@ 0, Ly = - [Bw) d,fwi).
0

0

The above are easily checked both in the case x <¢, and «=¢. On sub-
stituting (2.16) into (2.15) we obtain (2.14).

3. Stochastic processes with independent increments.

The results of section 2 will now be applied when z(t), 0=¢<7T, is a
stochastic process with independent increments. We actually are con-
sidering a function, r=x(w,t), where w is a point in an appropriate
probability sample space, as well as other functions of w, but the w will
usually be surpressed for briefness.

The following conditions will be used in connection with the formula-
tions of theorems 3.1, 3.2. They correspond to conditions (2.1)—(2.5) of
the last section.

(3.1) Condition (2.1) holds for almost all w.

(3.2) Condition (2.2) holds for almost all w.

(3.3) Let N(t) denote the expected number of extremal points (rel-
ative maxima or minima of z(t)) in the interval 0=t=t¢
(0<t<T). Then N(T)< co.

(3.4) Condition (2.4) holds for almost all w.

(3.5) Condition (2.5) holds for almost all w.

If (3.1)—(3.3) hold then & =oa(w), m(t)=m(w,t), ¢(t; &), B(t), Z(u,t; &),

and _#(u,t) are random variables. We shall consider the following
expectations:
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F(t; &) = Eo(t; §) = Prim(t)—a(t) <&},
B(t) = Ef(t) = Pr{«=t},
Z(a,b; &) = EZ(a,b; &), J(a,b) = E_#(a,b).
TrEOREM 3.1. If 2(t), 0<t<T, is a stochastic process with independent
tncrements for which (3.1)—(3.3) hold, then

t
(3.6) F(t;&)—jF(u;O)duZ(u,t;f)=Pr{x(t)§x(0)—£}, 0<t<T.
0

Proor. For fixed £ and ¢ the function Z(u,¢; &) is a decreasing function
of u, 0 =u =t. Furthermore, since any two zeroes of z(t) =k are separated
by at least one extremal point of (),

(3.7) Z(a,b; &) = N(b)—N(a).
Taking the expectation of both sides of (2.8) we obtain

F(t; &) [Blglu; 0) 4,2 wt; ) = Pria(t) 2a(0)— &}
0

It is now that we make use of the fact that «(¢) is a process with inde-
pendent increments. The random variable @(%; 0) is completely deter-
mined by the history of z(z), 0=<7<u. On the other hand, Z(u,t; &) is
determined by the values «(f) +£&—a(7), u S v<{, i.e. by the history of
x(t)—x(t), wst<t. Therefore, p(u; 0) and Z(u,t; &) are independent,
and we can write
Elp(u; 0) d,Z (u,t; £)] = Ep(u; 0) BEd,Z (u,t; &) = F(u; 0) d,Z(u,t; &),

thus obtaining (3.6).

In a similar way, starting with (2.14), we prove the following theorem:

TrEOREM 3.2. If z(t), 0<t<T, is a stochastic process with independent
increments for which (3.1)—(3.5) hold, then

(3.8) Bit)— f Bu) d,[Z(u,t; 0)— J(u,t)] = Pr{z(t)20}.
0

Note that J(u,t) is like Z(u,t; &) a decreasing function of u, for fixed ¢,
and clearly satisfies a corresponding inequality,

(3.9) J(a,b) £ N(b)—N(a).
Both integral equations (3.6) and (3.8) are of the form

i
- [f@) dEwt) = r),  0st<T.
0
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If it were true that K(u,f) were an absolutely continuous function of w,
0

and 6_K (u,t) sufficiently smooth we could merely refer to the classical
U

Volterra-equation theory to prove that there would be a unique solution.
However, it may be that x(-) has fixed discontinuities. This would pro-
duce discontinuities in K(u,t) as a function of . The lemma which fol-
lows, fortunately, enables us to avoid any unessential restrictions on
the smoothness of K(u,t) in our special case.

LEMMA. Suppose there exists a set of numbers {8}, 0=t,<t;< ... <t,=T,

n
such that
t

(3.10) f|duK(u,t)[ <1, t,<t<t, k=1,2...n.
t—1

Then the integral equation
(3.11) fit)— f f) d K(ut) = rt), 05t<T
0

has at most one bounded solution f(t).

Proor. Suppose (3.11) has solutions f(?), , 0=t<T. Then

t
(3.12)  f(O)—g(t) = ﬁf(u)—g(u)]dqu,t), 0st<T.
0

Hence

O =g(0) S sup |f)—g(u)|[[d K (w0)], 0st<T.
0

0=sust
In particular, using (3.10), with 0=¢,<t=<¢%,,

f@) =g@), O0=t=stst,.
Once we have established that f(t) =g(¢), 0 <t <t,_,, we have, by (3.12),

¢

F)—g(t f[f(u) o] d,K(u,t), b, <t<T.

th—1
In particular,

If(®) —g(®)| = sup|f(u)—g(u)| flduK(%t)l, b1 STSY .

t—1

Therefore, by (3.10), f(t)=g(t), tx_1 St =1, also.
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While the solution of (3.11) may not be expressible by a single Neu-
mann series converging over the entire range, 0 <t <7, the proof indi-
cates that the solution can be found by means of at most a finite number
of continuations of Neumann series.

Denote by &(¢) the set of all functions () having an extremum at ¢.
We then may state the following

THEOREM 3.3. If (3.1)—(3.3) hold, and if Pr{x(-)e &(t)}<1, 05¢t<T,
then F(t; 0) is the unique bounded solution of

F(t; 0) fFuOdZ(utO) Pr{x(t) = 2(0)} .

REMARK. An interesting consequence of theorems 3.1 and 3.3 is that,
under the hypotheses stated, a knowledge of Pr{z(t)=«(0)—¢&}, and
d,Z(u,t; &) suffices for the calculation of F(¢,&)=Pr{m(t)—x(t) <&}
Now, as h > 0+,

Z(u+h,t; &) —Z(u,t; &) ~ Pri{z(o)=2(t)+£&} for some o€ (u,u+h),

assuming that we can neglect the probability of a relative maximum in
(t,t+h). Thus d,Z(u,t; &) depends on the transition probabilities of x(-)
in a rather simple way. A phenomenon of a similar nature is known to
occur in the case when the basic process z(-) is the sum §,, n=1,2,...,
of n independent identically distributed random variables (the limiting
case is then a process with independent stationary increments). From
the work of Sparre Andersen [2] it is known that a knowledge of the
sequence {a,*}, a,*=Pr {8, <0}, suffices for a determination of the proba-
bility that the maximal term in {S,,S,,...,S,} occurs at the nth plase.

Proor or THEOREM 3.3. Since Z(u,t; &) is monotonic in u,
(3.13) f]dZutO deutO)

= Z(a,t; 0) = N(t)—N(a) < N(b)—N(a), astsb.

By (3.3), N(t), 0=t<7T, is an increasing function, N(0)=0, N(7T') <
It also follows from the definition of N(¢) that

N(t+0)—N(z—0) = Pr{z(-) € &1)}.

In view of the hypothesis, and the fact that N(7')< oo, there exists a
number 6 <1 such that

N@¢E+0)—-N(—0) =6, 0st=T.
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Hence there exist numbers, 0=t,<t, < ... <t,=1T, such that, say,
N(tk)_N(tk—l) = %(0-}—1) < 1’ k= 1,2,--.,”11.

In view of (3.13) we can choose these {,} as the {;} of the lemma, and

this completes the proof.

In connection with the discussion of the uniqueness of (3.8) we assume
that (3.1)—(3.5) hold. In view of (3.4), the only extrema of x(f) in this
case are the relative maxima of x(¢f) which occur at the points where
there are jumps. The result is then as follows.

Let 2(t) denote the set of all functions «(-) having a jump at ¢.

TaHEOREM 3.4. If (3.1) to (3.5) hold, and if Pr{x(-) e D(¢)} <1, 05t T,
then B(t) is the unique bounded solution of (3.8).

Proor. Again choose 0<1 so that N(t+0)—N(t—-0)<60, 05¢=T.
There exist at most a finite number of points 7,75, ...,7,, 057,27,

such that N(7;+0)—N(7;—0) = 1, 1=12,...,m.

Choose ¢>0 so small so that the intervals [t;,—e¢, 7,+¢] are non-over-
lapping, and so that

N(t;+e)—N(z;—e) < 3(0+1), i=12,...,m.

This guarantees that, as in the last proof,

il

2
f[duJ(u,t)|§§~(0+l), f—e<t<t4e i=1,2...m.

Ti—e

Condition (3.4) guarantees that we can make

12

flduZ(u,t;O)l, T, —esStST;+e,
arbitrarily small by taking ¢>0 sufficiently small. Let us therefore
choose ¢>0 so small so that actually

t
@.14) [ (2t 0)|+1dJ @] < 1,
e T,—estzt;+e, 1 =1,2,...,m.
Let R=[a,b] be a component of [0,7]1—U" (r,—¢,7;+¢). If t € R then
N(t+0)—N(—0) < }.

Therefore we can find points a=sF<sf< ... < sﬁ =) such that, say,

NeH)-NsF) <3 k=12...p.
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Hence ¢

| vzt O +ld @01 S 38 = 3 of, stssf
R
Sk—1

Thus if we choose as the points {;} the points {7;+ ¢} and {s¥}, we shall
have ,

[Ud 2 0+ @I 0] < 1 tastst, i=12,...

t—1

The theorem then follows from the lemma.

4. Example.

We shall illustrate the above results by an application to a stochastic
process occurring in the theory of queues.

Consider a single server queue, serving customers arriving at
0<i;<ty< ... on a first-come, first-served basis. Let the service period
of the kth customer be y,=0. Following Takacs [4] let the so-called
virtual waiting time 7(t), ¢ 20, be defined as follows:

(i) n(0)=%(0+)=0 is given (the waiting time of an “‘inspector’ if he
joined the queue at {=0);

(ii) nte+0) =t —0)=yp, k=1,2,...;

(iil) n(t)=max[n(t,+0)—(t—1;),0], &, <t=t,.q, k=1,2,... (Cf. Fig. 3).

7(¢)

Fig. 3.

The sequences {t}, {y.} are random, and shall be assumed to be
distributed as follows:

(4.1) The process »(t)=max{k | ¢, <t}is a process with independent
increments; Ev(f) <oo, 12 0.

(4.2) The variables y, are mutually independent; each y, is inde-
pendent of {t;};+.
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(4.3) Pr{y.<y}=H(y.t), where H(y,t) is a distribution function in
y for each t=0.

It follows from the above that 7(t) is a Markov process, but we shall
not use this fact. (As a special case #(f) may be non-random. This
occurs when {¢,} and {y,} are non-random, and hence H(y,¢,) is a one-
step function in y.) The following two quantities are of interest [3][4]:

(4.4) Pr{n(t)<£}, if 7(0)=0,
(4.5) Pr{g<t}, where g=inf{t | n(¢)=0}, n(0)>0.
Let us define an auxiliary process, z(t), as follows.

(1) 2(0)=2(0+)= —n(0);
(ii) a(t,—0)—x(t,+0)=y,, k=1,2,...,
(iii) () =x(t;,+0)+t—1t;, L <t=t, ..
It follows from (4.1)-(4.3) that z(t) is a process with independent incre-
ments satisfying (3.1)—(3.5).
From the definitions of #(t) and x(¢) it is clear that their first zeros
coincide, that is, in terms of the notation introduced in section 1, x =4,

and, hence,
(4.6) Pr{g<t} = B().

Also, it turns out that, if 5(0)=0,
n(t) = m(t)—x(t),  m(f) = max (7).

0=t
This can be seen most readily if x(f) and m(¢) are graphed on the same set
of coordinate axes. It is also a consequence of Lemma 5.1 of [3]. Hence,
in the notation of the previous sections, if #(0)=0,

(4.7) Prin()sé} = F(,6), £20.

(The question of determining F(¢,£) when 7(0)>0 can also be handled
by the methods of this paper, if m(t) is defined slightly differently.)

We shall now consider the right-hand sides and kernels of (3.6) and
(3.8) in the present situation, in order to obtain Volterra equations of
the second type for Pr{f<t} and Pr{xn(t)=0}. Such equations have
previously been obtained by completely different methods in [3] for
the case when {t,} are the instants of a variable Poisson process, and
H(x,t)=H(x) satisfies certain regularity conditions. A Volterra equation
of the first type for Pr{y(t)=0}, and expression for Pr{n(t) <&}, £>0,
by quadratures, was obtained by Benes [1] by means of a combinatorial
argument based on the special geometric properties of the sample func-
tions %(f) and z(¢).
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Since
(4.8) a(t)—x(0) = — 3 xpt+t,

o<tp<t

we find, for the right-hand side of (3.6),

(4.9) Pr {u(t) 2 2(0) ~ £} = Pr{ S m gt+s} .

o<tp<t
Similarly, if we set 7(0) = —x(0) = y,, the right-hand side of (3.8) becomes
(4.10) Prix(t)z0} = Pr{ > xkét} .

0stg<t

By (4.8), Z(a,b; &), a<b, is the expected number of elements of the set

(4.11) {t | ast<b, Y xk=b—t+§},

t<tp<b

and J(a,b), a<b, is the expected number of elements of the set

(4.12) { t | ast<b, I go<b—t, 3 g > b—t}.
t<tp<b t<tp<b

What we actually need, however, is d,Z(u,t), and d,J(u,t). In order to
simplify the situation we shall henceforth suppose that the probability
that ¢, has any particular value is zero; that is 5(¢) and z(¢f) have no
fixed discontinuities. We also assume that H(y,t) is absolutely con-
tinuous in y and continuous as a function of {. The general case could
easily be handled with only slight modifications. Set

S(a,b;y):Pr{ > xkgy}, a<b.
a<tp<b

If the expected number of “events” of some sort in a given interval is
finite, and if at most one event can occur at one time, then the expected
number of such events in a small interval is essentially the probability
that exactly one event occurs in that small interval. Applying this

remark to the case when the ‘“‘events’ are the occurrences of an element
of (4.12), we find

—d,J(u,t) = Pr{y(-) has a jump in (u, u+du)} .
‘Pri > S t—u, ywt+ X oxx > t—ug.
u<trp<t u<tp<t

Here y,, is a random variable with distribution H(y,u), and which is
independent of {y,}, u<t,<t.
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Thus, defining S’(a,b; y) as the convolution (with respect to y),

Y
§'(abiy) = [Sab; ) dHy-1a),
0

we find

(413) —d,J(u,t) = Pr{y(-) has a jump in (u,u+du)}
[S(u,t; t—u)— 8" (u,t; t—u)].

Similarly, since () is with high probability linear with slope +1 in the
interval (u,u+du)
—d,Z(u,t) = Pr {t—u+.{-‘—du < > w St—u+ég.

u<ltp<t
Hence,

oS(u,t; y)]

3y y=t—u+é
The formulas (4.9), (4.10), (4.13), (4.14) show how the kernels and

right-hand sides of the equations (3.6) and (3.8) for F(¢; £) and B(t) are

determined from a knowledge of the function S(a,b;y). To illustrate
this more specifically, suppose the following is true.

du

(4.14) —d, Z(u,t) = [

(4.15)  The instants {t;} are the events of a non-stationary Poisson
process with density A(¢), A(£)=0,

A() = fz(r)dr <o, 120,
0

(4.16) The random variables y,, s, . . . are equidistributed with distri-
bution

y
H(y) = fh(z) dz .
0

Let A*n(y) denote the n-fold convolution of A(y), and let

Yy
H*n(y) = f h*n(z) dz .

0

Then o
S(a,bsy) = 3 ecroraon O 4O gy
k=0 k!
Therefore, if (4.15)—(4.16) hold, (4.9) becomes
~ _ap A@TF
(4.17) Priz(t)zz(0)—&} = Se A<‘>7~ H*k(t+&) .

k=0
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To obtain (4.10) we must convolute S(0,¢; y) with the distribution of
%o> and then set y=t. Similarly, by (4.14),

(4.18)  —d Z(u,t) =

i z g TA®—A(t—w)] [w_k H*k(y) du, u<t.
ay k=1 k! y=t—u+é&

Also, by (4.13),
(4.19)  —dJ(u,t) =

Alw)du - gg“[/l(t)—/i(u)] M

[H*k(t —u) — H¥ED(E—n)], u <.
k=0 k!

If the expressions (4.17)—(4.19) are used in (3.6) and (3.8) we obtain Vol-
terra equations of the second kind for F(¢; 0) and B(¢) under the assump-
tions (4.15)-(4.16). A computation shows that these integral equations
actually agree with the ones in theorems 1 and 2 of [3] in case H(y) and
A(t) satisfy the further restrictions imposed in [3].
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