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REMARKS ON PROOFS BY CYCLOTOMIC FORMULAS
OF RECIPROCITY LAWS FOR POWER RESIDUES

TH. SKOLEM

Introduction.

Some classical works of Gauss and Eisenstein contain proofs of the
reciprocity laws for power residues based on the theory of cyclotomy.
In this paper I intend to expose a slightly modified version of a part
of these proofs confining myself first to the quadratic and cubic residues.
After that I give a short proof of Eisenstein’s reciprocity law [2, p. 78]
for I*h power residues, ! a prime, for brevity only exposed in the case
l=5. At last I set up a further, perhaps new, proof of the quadratic
reciprocity law. In the old proofs I replace a few computational tricks
by simple reasoning using the properties of finite fields. The socalled
“Ergénzungssitze’ are not treated here.

Of fundamental importance in the sequel is the theorem: Let
m | g"—1. Then in the finite field K , consisting of ¢" elements there
exist elements a belonging to the exponent m, that is, we have

am =1, a* =+ 1 for all integers « such that O<xz<m.

Several proofs of this are possible, one of them being just the same as
the well known one in elementary number theory set up for the case
n=1. It is also easily seen that in K » there are just @(m) elements a
belonging to the exponent m, ¢ denoting the Euler function.

1.

First I formulate a proof of the quadratic reciprocity law. Let the
Legendre symbol (¢/p) be =1, p and ¢ denoting different natural odd
primes. I assert that ( (—1) (p_l))

Y =1
q

Indeed in K 31 there is an element « belonging to the exponent p,
because p | ¢*®-V—1, (¢/p) being =¢}®-D (modp). All the roots in
K 31 of the equation 2P = 1
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are then 1,x,42,...,4P~1 since there are at most p roots. Indeed, we
know that in an arbitrary field every algebraic equation of degree n
has at most » roots.

Now let i4y,...,14, 1, be the quadratic residues and jy, . . .,j;,—) the
non-residues mod p, and let

-1 -1 |
Xy = 3 &, @y =y als,
r=1 s=1

Then I assert that x; and x, are the roots of the quadratic equation in
K gyo-v 2+ 31— (=1)e-Dp} =0,

Indeed, z;+z,+1=14+a+...4+aP1=0 and we may prove xx,=
H1—(—1)¥-Dp} as follows. If p=1 (mod4), we can never have
Js+1,=0 (modp), and obviously the (}(p—1))? sums i,+j, yield each of
the values 1,2,...,p—1 just (p—1) times. Hence x;2,=%(1—p). On
the other hand, if p=3 (mod4), we have ¢,+j,=0 (modp) i(p—1)
times, the remaining }(p—1)-3(p—3) sums ¢,+j, yielding each of the
values 1,...,p—1 just }(p—3) times. Therefore, in this case

%y = p—1)—1p-3) = {{1+p).
The discriminant is (z; —,)%*=(2; +a,)? —4x2,=1— (1 — (—1)P-Vp) =
(—1)ie-Dp,
Since ¢ is quadratic residue modulo p, we get
- \¢ , .
2, = ( S w) = SN = 3 i =
r=1

and similarly for z,, so that z, and x, belong to the K, contained in
qu-1). The elements of K, can, however, be considered as the rational
integers taken modulo ¢. Thus instead of saying that (—1){®-Dyp is a
square in K, we may say that (—1)¥?-Dp is a quadratic residue modulo g,

that is
—1)i@-D
(Gl Jy
q

Therefore we have the implications

@)~ ()=

(%’) = +1 = ((_1):_”‘1> = +1.

This is sufficient for the greater part of the quadratic reciprocity law.
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It only remains to prove for p=g=3 (mod4) that, if (¢/p)= —1, then
(p/g)= +1. By the way, this can be derived from the unsolvability
modulo 4 of 22— py?—qz2=0, if one first proves the solvability criterion
for ax?+by%+cz=0 with (a,b)=(a,c)=(b,c)=1. This criterion has ear-
lier been proved by a reduction process due to Lagrange. However, it
can be derived easier by a simple use of the box principle as shown
independently and almost simultaneously by L. J. Mordell [3] and my-
self [4]. On the other hand we may prove the implication

(2) = -1 = (£> =41 for p=g=3 (mod4)

p q

in a similar way as the implications above. We may consider the field
Kgp1. Since p | ¢?~1—1, the equation 2 —1=0 has again p roots in
Kp, say 1,o,...,a4P71. We introduce again the two sums z; and z,.

Because of (¢/p)= —1 we obtain

9 = Xy, T, = 2y,
so that
(=) = 4,7 — 2y = Ty — 1, .
Now there is an element ¢ in K »1 such that ¢ belongs to the exponent
4, because 4 | g?~1—1, and we have ¢?= —i. Hence

(i(wl - xz))q = 1(x,—,) ,

so that i(x; —x,) is some element of K,. It can therefore be interpreted
as a remainder class of ordinary integers taken modulo g, or in other
words we may write

Wz, —xy) =T, r rational integer .
Hence p = —(@—2y)? = #* (mody),
whence (p/g)= +1.
As the reader will verify, the quadratic reciprocity law is then com-
pletely proved.

2.

After this I shall prove, in a similar way, the cubic reciprocity law
in the algebraic number field k((—3)}). This law asserts for cubic
Legendre symbols that (I,/l;)=(ly/l;), if !, and I, are non associated
primary primes, that is primes = —1 (mod3).

I shall make use of some formulas proved in the theory of the equation
x? =1, p natural prime. Letting r be a primitive pth root of 1, p=1
(mod 3), one puts
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=Dt wy=>1r, 3=,

% J
where ¢ runs through those of 1,2,...,p—1 which are cubic residues
modulop, j runs through those in one of the two classes of non-residues
and A through all belonging to the other class. Then (see [5, p. 351])
the following formulas are valid,

(1 + 02+ 0%23)® = pm, (1 + 0%+ 0x5)® = pn’,

where o=}(—1+(—3)%) and 7, z’ are the primary complex primefactors
of p in k(p). I omit here the rather easy proofs of these formulas. I
shall consider a finite field K ,, n such a positive integer that p | g —1
or in other words n a multiple of the exponent to which ¢ belongs mod-
ulop. If n is chosen as an even number, then not only is 27 =1 solvable
in K » but an element o exists satisfying p2+¢+1=0. Then the men-
tioned formulas can be interpreted in K ,, and they are of course valid
there.

The simplest case of the cubic reciprocity law is the case, where I,
and I, are both natural primes =2 (mod3). Then we have trivially

(l1/l2) = (l2/ll) =1

The next case is the one, where [, is a natural prime ¢=2 (mod3),
while /, is a prime factor n of p=7na’, p=1 (mod3), z=zn"= —1 (mod3).
First let (¢/z)=1 in k(g). Then also (¢/z')=1 and g cubic residue mod-
ulop even in the field k of rationals. Hence in K

z? =z, r=123,
whence

which shows that

(@, + 0%y + 0%25)" = &y + 0y + 0%,
&1 = 2+ 0%y + 0%,

belongs to K. In other words &; is just one of the remainders modq
in k(o). Then the equation &%=pn shows that pm is a cubic residue
modulog in k(p) so that (n/g)=1, since p is a cubic residue modulog
even in k. Thus it is proved that

-1~ )

Then let (¢/n)=p in k() so that (g/n’)=p?. Putting
qz_lzgm,u: 3*,“)

we have already in the subfield K, an element o which is primitive root
of the equation ¢*"=1. Outside K @ but still in Kq,., if » is chosen divis-
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ible by 6, we have an element v such that 13=¢ because 3m+1| ¢n—1,
n being divisible by 6. Now I assert that

(67)7 = &7,
if we assume the indizes on the ““periods” x chosen in such a way that
9 = %, 2,1 = 3, xd = 2y .
Indeed £17 = @+ 0*wy+ 0wy = o(2,+ 07Ty +0%5) = &,
and similarly £,2=p2&, so that

2
&7 = o0& .

We may choose o so that, according as u=1 or 2 (mod3), ¢ =2 or .
Then ¢¥?V =02 and we obtain (& 7)¢ =&, v as asserted.
This shows that &;7 belongs to K . so that we have in k(p)

pro = (§,7)° (modg),

whence, remembering that p is cubic residue modyg,

G- = (-0

(g) = O'g(qz'_]) —_ 92 .
q

while

Hence (z/q)=p.
Thus it is proved that (¢/n)=p = (n/q¢)=p. Of course we obtain in

the same way .
()-¢ - ()-e
7 q

therefore in all cases (g/7)=(x/q).

Then ¢ may be =1 (mod3) and =wxx', where » and »' are =—1
(mod 3), while p is still =1 (mod3) and =an', a=a"=—1 (mod3).
Let first (g/n)=1. Then also (g/n')=1 and (g/p)=1 in k. Hence in K.

! = 2y, Xl = Ty, xy? = x5,

or in other words z,, x,, 3 belong to K, Since ¢?=p, also g is in K.
Therefore &, =x; +px,+ 0%, is in K, Further K, can be interpreted in
k(o) as the set of remainder classes modx and as the set of such classes
modx’ as well. Therefore the congruences

(% + oy +0%23) = mn’,  (x;+ 0%+ ox,5)% = an'?,

are valid in k(p) modulis » and »’, that is
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AN CC AN . an'?\  (ww'?\ ]
(7)_<x')—’ (7>_(%')_ '
Now let (¢/n)=p. We use again an element 7 as above, 13=0, 03" =
0,0% according as u=1,2 (mod3), putting ¢—1=3"u,3 1+ u. We may
assume that ¢ multiplied by the cubic residues modp yields the non-
residues of the first class. Then

§17 = (21 + 0%y +0%3)7 = X5+ %3+ 0%, = 0% .

Hence m—
(16,)7 = 1992&, = ¥ Hp2Ty = &,

au; -
because G lg? — gut42 = 1

so that 7£, belongs to K,. Since pro=(£;7)3, it follows that pzo is
cubic residue modulis » and ' in k(¢). Further

o

(—) or (37) = ¢@D (modx or »')
X V]
] g
(- (5)-e
t4 X
nin' nin’
TTY - 2 _ 2
( *® ) o ( o' ) e
w2 nm'?
(%) =) =e
X ¥4

If (g/n) =0® we get in the same way
n2n’ a2’ 7'? nm'? .
(5)-(o)-e (5)-(5) =2
X X H »
All these results can be condensed into the equations
o nin’ q\> q
g 5)-Gr)-G)-G)
® X 1 JT
nw'? nm'? q\?2 q
@ (5)-()-G)-G)
g X T 4

Clearly we may exchange the roles of p and ¢ so that we obtain

® ()= (%)= () - ()

that is

Hence

and since (g/n’) =g?
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o )00

Multiplication of (2) by (x/x) yields

()0-E6- )

which by (3) is =(p[x)? so that
()6 -C00)

Introduction of Jacobi symbols in the usual way makes it possible to
derive from what we have proved up to this point the following two

more general theorems:
(L1 ) <L2 >
2 1

s valid for any two primary numbers with coprime norms.

whence (x/7) = ([x).

THEOREM 1. The equation

THEOREM 2. If A and B are rational numbers, we have

4

I omit here the rather trivial proofs which essentially consist in a
multiplying together of Legendre symbols. However I should like to
show a very simple proof of the following generalisation of Theorem 1.

)-@)

for any two coprime primary numbers L, and L,.

TuEOREM 3. We have

ProoF. In order to prove this it suffices to show that (L'/L)=1 when
L and L’ are conjugate and coprime numbers. Letting L be a+bp,

=—1,b=0 (mod3), and making use of Theorems 1 and 2 we get, when
a+bp and a + bg? are coprime,

a + bp? 2a—b b—2a\? b—2a (@ + bp)?
(a+bg) N <a+bg)’ (Eﬁ_g) - ((a+bg)2) N ( b—2a )
_ ((a2—b2+(2a—b)bg) _ <a2—b2) -1
2a—b 20 —b ’
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2a—b .
(a+bg) B

Indeed, b —2a is primary and coprime with the norm of a+bg because
a common prime factor would have to divide (1+ 2p)a=((—3)!)a and
therefore also @ and b. Clearly this is sufficient for the proof of Theorem
3, because if the norms of L, and L, have prime factors in common,
the product of the corresponding Legendre symbols will be 1.

By the way it is also possible to prove directly that (z'/n)=1, =
primary prime. This can be done by use of the lemma below on the
equations

so that

—2 —2
pz $¥@-D t+ l)i(p—l) = pm, pz $3@r-D (t+ 1)%(210—1) = pa' .
t=1 t=1
Since I have no comments on this proof I only refer to the exposition of
it in [1, p. 142).

3.

Then we may look at the 5tt power residues in the field k(e), &= es@™.
Letting p denote a natural prime =1 (mod5) and r a primitive pth
root of 1, x;, z,, %5, z,, ; may denote the sums Zilril, Z,-zriz, cee Zisri5,
where 4; runs through all 52 power residues of p, ¢, through all residues
in a coset to these, 75, 7,, 7; respectively through the members of the
further cosets. Abbreviating x; +ex,+ ... +e*z; to (¢,x) we have (see

[5, p. 346])
(5) (8:2)° = pyi(e) Po(e) yale)
besides the analogous equations obtained by replacing ¢ by 2, &, &b
Here _ —
’h(‘f) ____pzzeindt—2ind(t+l), wz(b,) =pz281ndt—3ind(t+1),
t=1 ) =1
'I’s(e) =p— 8indt—4ind(t+1)

t=1
where the indizes refer to a primitive number g such that gi®D=e¢
modulos, say, n; being one of the four primefactors in p, p=mw,737,.
I let 7wy =um,(e?), my=my(e3), my=m,(e*) when m, =mz,(¢). By the way the
number of classes of ideals in k() is 1.
I shall make use of the lemma: Let m and n be positive integers <p—1.
Then

=2 n!
tm(t+1)n = 0 - d
2+ T T mrn—prlp—1—my 0P

according as m+n<p—1lor Z2p—1.
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The correctness of this is seen at once by use of the rather trivial
theorem that any homogeneous symmetric function of 1,2,...,p—1 is
=0 (modp), if its degree is =0 (modp—1).

It is obvious that y,(¢) is =

p—2

p—2 P2
S HED@E+1)Ee-D, > HEE-D(E4+1)5e-D, > EE-D(f4+ 1)5@-D
t=1 t=1 t=1

p—2
3 3D (¢4 1)8e-D
t=1

modulis 7y, 7y, 75, 7,, respectively. Indeed e2, &3, &t are =gs®D modulis
Ty, T3, T4, Tespectively, whence ¢ =gs@r-D, giCp-D_ gllp-D  respectively.
According to the lemma, y,(¢) must be divisible by =, and z,;, but not
by =, or n,.

In the same manner y,(¢) is =

p—2 P—2 p=2
z t%(z)—l)(t +1)i@-D, z t%(p~1)(t+ 1)s-D, z @D (¢ + 1)%(@—1) ,
t=1 t=1 t=1

P2
S @D+ 1)ie-D |
t=1
modulis 71y, 7,, 75, 7,, respectively, so that y,(¢) is divisible by &; and 7,
not by m, or x,.
Finally ys(e) is =

p—2 p—2
S @D+ 1)5@-D, 3 HE-D (¢4 1)iEe-D, Zt @D (¢ + 1)3@-D,
t=1 t=1

p—2
> 3@e-D(E+1)ie-D
t=1

modulis 7, 7,, s, 7wy, respectively. Thus y,(e) is divisible by =, and 7,
but not by =, or =,.

Hence (5) yields (e0) = B(e)utntndn, ,
where E(c) is a unit in k(¢). Replacing ¢ by &%, &3, & we get analogous
equations

(,2)° = E(2)mytnlmlms,  (2,2)° = B(®)ngimy®ngdms,
(e4x)® = H(e¥)mtmgimyda, .

A number in k(¢), not divisible by 1—¢, is said to be semiprimary, if
it is = a rational number mod (1 —¢)2. Since the remainders of the
numbers =0 (mod1l—e¢) are 1, 2, 3, 4 multiplied by 1, ¢, €%, 3, &, it is
clear that every integer in k(¢) can be multiplied by such a power of ¢
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that the product becomes semiprimary. Therefore we may assume x,,
chosen above, semiprimary. Then also x,, 73, 7w, will be semiprimary
because all the numbers 1—¢?, ¢=1,2,3,4, are associated, and 7, 7,,
7g, w4 all = the same rational integer modulo (1 —¢)2. Hence z,2n,2 7537,
and the analogous products must be = +1 (mod (1 —¢)?). Further

(&;2)° = 2P+ a8+ ... +2® = (X +2,+ ... +2;)° = —1 (mod5).
Multiplication of the first and the fourth of our equations yields
(e,2)%(e,2)° = E(e) E(e*) (mymomsmy)® -

Here mym,mgm,=norm z; =p. It is easily shown that (¢,z)(¢%,z)=p (see
[5, p- 346]). Therefore E(c)E(¢*)=1. In the theory of cyclotomy a very
elegant proof is found (see [1, p. 269]), that if F(¢)F(e~')=1, then F(e)
is some power of e. However, this follows as well from a general theorem
in the theory of algebraic number fields. Thus E(¢)= + &* which yields

(e,2)5 = + emtmy2mydm,, a=0,1,2,3,o0r4.

Modulo (1 —¢)? the left hand side is = —1 while the right side is = + &%
It follows that a=0 so that the equation can be simplified to

(&,2)° = + miml2m3my .

I shall now prove that the Legendre symbols (¢/x) and (r/q) are equal,
g a rational prime =+5, = a semiprimary prime in k(¢) coprime with 5
and ¢. I distinguish three cases of which the two first are very simple.

1° The prime x is of degree 4. Then n=pk, p rational prime =2 or 3
(mod5), £ a semiprimary unit. It is easy to prove that the semiprimary
units are just those in the quadratic subfield %(5%). Therefore z belongs to
k(5%) so that it is unchanged by the automorphism ¢ — ¢-1. Now, be-
cause 5 | p>+1 and ¢g?-'=1 (modx or p), we have

(g) = ¢3®-D = 1 (modx). Thus (—) =1,

7
On the other hand we may write (n/q) =¢%, a one of the numbers 0, 1, 2,
3, 4. Applying the automorphism ¢ - ¢~! we obtain (7/g)=¢"% Hence
a =0, whence (n/q)=1.

2° The degree of m is 2. If p is the natural prime =4 (mod5) divisible
by =, then p=nn’', where ' is a semiprimary prime conjugate to . Then
again the automorphism & — ¢! leaves # and n’ unchanged. Because
5| p+1 we get
(g) = ¢s®D =1, thatis (g> =1.

TT T

On the other hand (x/q)=1 for the same reason as before.
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3° The degree of x# is 1. Then for some natural prime p=1 (mod5)
we have, writing s, instead of =,
p = mmamsmy,  Where m; = my(e?), ¢ = 1,2,3,4,

and m;, 7y, 73, 7, are semiprimary. I consider the field K, where n shall
be a common multiple of 4 and p—1. Then the equations 2?—1 and
x®—1=0 have primitive roots r and ¢ in K. Therefore elements de-
fined as z,, x,, x5, z,, x; above exist in this field, and we have the equa-
tion
(6) (,2)° = tm*m’ngdm,
together with the analogous ones.

Now let (g/n)=1. Then, in K

=z, i=12345.

Letting f be the least positive integer such that ¢/=1 (mod5) we
therefore obtain /
(e, )¢ = (&,2),

which shows that (e,z) is an element of K. Now K is just the field of
remainder classes modulog in k(¢). Then (6) shows that z,*m,2n37, is
a 5th power residue moduloq in k(¢). Thus we may write

4,23
(”1 o T3 7‘4) 1

q

However it is clear by consideration of automorphisms that

T Ty ’ .
(—) = (m) R 1 =1,2,3,4.
q q

This inserted in (6) yields (n,/q)=1, and thus the assertion.
Then let (¢/n)=¢. We may assume the indizes for the x; chosen in
such a way that in K,

T2 =Ty, X =23, X =2, T =w k=2,
Then the reader will verify that
(e,0)? = e-19 (4 x) = e~ (e,2) .
In K there is an element o which is primitive root of the equation
" =1, when ¢—-1=5"u 51pu.

We may choose ¢ so that
08" = 7,
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Outside K, but still in K, there is a v such that
P =0.
Indeed 5™+ | ¢ —1 because n is, according to supposition, divisible by
20 and g% —1=(g*—1)(¢*®+q'?+¢%+q*+1) with ¢/ —1 a factor of ¢*—1
in any case. We obtain now, since 7% 1=¢
(r(e,2))? = 7l (e,2)7 = 7(e,2) .
Thus 7(¢,z) is a remainder class modulog in k(¢). Further

(v(&,2))5 = + mtm2a3m,0 (modg) .

This furnishes in the same way as above

-1
G- (-0
q q q
Now if x is any prime divisor of ¢ in &(¢)

g
(—) = o3& = 8" = ¢ |
Vg

Letting g be the number of different primes in k(¢) dividing ¢ we have
fg=4 and therefore
c
()=
q

so that (m,/q)=¢, and the assertion is proved.
It follows by multiplication of symbols (¢/z) and (n/q), respectively,

that more generally a 8
)= ()

for arbitrary rational integer ¢ and an arbitrary primary g in k(e),
provided that 5, @ and g are mutually coprime. This is Eisenstein’s
Reciprocity Law (see [2, p. 78]).

I think the reader will understand that it is possible to extend these
considerations to higher power residues. Only the existence of more
than one class of ideals in some cyclotomic fields makes a little trouble.
An eventual treatment of these more complicated cases must be post-
poned.

4.

At last I give a proof of the quadratic law of reciprocity in & which
does not apply the Lagrange resolvents used in the theory of cyclotomy.
Indeed it suffices to use the trivial formula
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1
(7 p=JI0-,
h=1

where r is a primitive root of the equation 2P =1. I consider a field K,
n a multiple of p — 1. There is then an element r in this field which belongs
to the exponent p and (7) is valid.

Firstly let p be =3 (mod4). Then I assert that
(8) P = —I.I(l—rj)2,
J

where j runs through the quadratic residues modp. Indeed (7) can be
written p=TIT;(1—7/) IT;(1—r~), j running through all quadratic resi-
dues modulop, since —j then runs through all non residues. However

I (1=r) = (=)D T r-i(1— ),

J J

so that we obtain (8) because 3j=12+22+ ... +(}(p—1))?=0 (modp).
Now let (g/p)= +1in k. Then in K

H(l—r?')‘I:H (1 —7r9) H(I——r’

J J
because ¢j again runs through the quadratic residues. Therefore

IT;(1—77) belongs to K, which is the set of remainder classes modulog
in k. Thus in £ we have according to (8)

)+ (3 -

Then let (g/p)= —1. In this case
IMTa-re =T 1= =T (Q1-r) = (_1)4}@—1)1—[ (L=ri),
J J J J

that is TT;(1—#7)2= —JI;(1—74). Therefore IT;(1—7) is not an element
of K 80 that according to (8), —pisnot a square in K, or in other words

(%") — -1 o (?g) = (= 1)@,

Secondly, let p be =1 (mod4). Understanding by g a primitive number
modulop it is easy to verify that instead of (7) we may write

(9) p = P2@Q?,

where P = (r—rY) (18t —r—0)(18® —p=0) .. (0RO _pghr-9))

and Q = (9—r0)(re* =1 )

Math. S8cand. 9 — 16

. (,.gi(p~3)__r_gi(p—3)) .



242 TH. SKOLEM

Now let (g/p)=+1, say ¢=¢** (modp). Then in K,

Pe — (rgz.s_r_gzs)(rgzs+2_r_023+z) . (7,0234-;(;0—5)_r_gzs+§(p—5)) = (_ 1)3P .
Indeed the first }(p—1)—s factors in the expression for P? also occur
in P, whereas each of the last s factors in P? occurs in P with opposite
sign. Similarly @?=(—1)*@. Hence

(PQ) = PQ

which means that P@ is an element of K,. Then (9) shows that p is a
square in K, that is, (p/q)= + 1.

Then let (¢/p)= —1, say g=g¢2**! (modp). Then one observes in the
same manner that

P = (_1)8Q’ Q= (___1)3+1P’
(PQ) = —PQ.

This means that P@ is not in K, so that, according to (9), p is not a
square in K, that is, (p/q)= —1.

so that

Collecting the obtained results the reader will convince himself that
the quadratic reciprocity law in the natural number field is completely
proved.
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