ON UNIVERSAL MOMENT PROBLEMS

LENNART CARLESON

1.

Let B be an arbitrary Banach space and let $\{x_r\}$ be a set of elements of B. We also consider a Banach space S of sequences $s = \{s_r\}$ with norm ||s||. By a universal moment problem for the space B we mean the problem of finding conditions on the set $\{x_r\}$ and the space S so that for every $s \in S$ there exists a linear functional L on B such that

$$L(x_{\nu}) = s_{\nu}, \qquad \nu = 1, 2, \dots.$$

If this is true, there exists a constant M so that a solution exists with

$$||L||_{\bar{B}} \leq M ||s||.$$

In the following sections we shall give two examples of such problems in classical analysis.

2.

Let $w(x) = W(x)^{-1}$ be a continuous weight function defined on the real axis and with the following properties:

$$(2.1) \begin{cases} \text{a)} \quad W(x) = W(-x) \ge 1. \\ \text{b)} \quad \log W(x) \text{ is an increasing function, convex in } \log x, \ x > 0, \\ W(x) x^{-n} \to \infty, \text{ all } n. \\ \text{c)} \int_{-\infty}^{\infty} \frac{\log W(x)}{1 + x^2} dx < \infty. \end{cases}$$

Let B be the space of real measurable functions f(x), $-\infty < x < \infty$, with the norm

$$||f||^2 = \int_{-\infty}^{\infty} |f(x)|^2 w(x) dx$$
.

As norm in our space of sequences we choose

$$||s||^2 = \sum_{n=0}^{\infty} |s_n|^2 \lambda_n^{-2}.$$

Received February 24, 1961.

We shall study the universal moment problem

(2.2)
$$L_n(f) = \int_{-\infty}^{\infty} f(x) x^n w(x) dx = s_n.$$

 $L_n(f)$ is by assumption (2.1, b) a linear functional on B. The function

$$u(x+iy) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{|y| \log W(t)}{(x-t)^2 + y^2} dt$$

is by (2.1, c) harmonic in y > 0 and $= \frac{1}{2} \log W(x)$ on y = 0. $u(e^{\zeta}) = v(\zeta)$ is thus harmonic in $0 < \eta < \pi$, $\zeta = \xi + i\eta$, and symmetric with respect to $\eta = \frac{1}{2}\pi$. Since $v_{\xi\xi} \ge 0$ on the boundary, this inequality holds everywhere and thus $v_{\eta\eta} \le 0$. It follows that, on the line $\xi = \text{constant}$, v takes its maximum at $\eta = \frac{1}{2}\pi$ which implies

(2.3)
$$u(x+iy) \leq \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{r}{r^2+t^2} \log W(t) dt = \mu(r),$$
$$x^2+y^2 \leq r^2.$$

Let Q(x) be a polynomial in B, $||Q|| \le 1$. By the principle of the harmonic majorant we have for $y \ne 0$,

$$\begin{split} \log |Q(x+iy)| & \leq \frac{1}{\pi} \int\limits_{-\infty}^{\infty} \frac{|y| \, \log |Q(t)|}{(x-t)^2 + y^2} \, dt \\ & = \frac{1}{2\pi} \int\limits_{-\infty}^{\infty} \frac{|y| \, \log \left(|Q(t)|^2 \, w(t)\right)}{(x-t)^2 + y^2} \, dt \, + \, u(x+iy) \; . \end{split}$$

In the integral we use the inequality $ab \le e^{a-1} + b \log b$, valid if b > 0, and choose $a = \log(|Q|^2 w)$. We find

$$\log |Q(x+iy)| < \frac{1}{2\pi e} + \frac{1}{2} \log \frac{1}{|y|} + \mu(r)$$
.

Hence by Cauchy's formula, r > 0,

$$(2.4) |Q^{(\nu)}(0)| \leq e^{1/2\pi e} \nu! \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{d\theta}{|\sin \theta|^{\frac{1}{2}}} \frac{e^{\mu(r)}}{r^{\nu + \frac{1}{2}}} \leq K \nu! M_{\nu}^{-1},$$

where K is a numerical constant and

$$M_{r} = \sup_{r>0} e^{(r+\frac{1}{2})\log r - \mu(r)}.$$

We now introduce the sequence of orthonormal polynomials belonging to the weight function w(x):

$$\int_{-\infty}^{\infty} P_n(x) P_m(x) w(x) dx = \delta_{nm}, \quad m,n = 0,1,\ldots,$$

where

$$P_n(x) = \sum_{\nu=0}^n \alpha_{\nu n} x^{\nu}.$$

We form the polynomial

$$Q(x) = \sum_{n=0}^{N} a_n P_n(x) ,$$

choosing for some ν

$$a_n = P_n^{(v)}(0) \left\{ \sum_{n=0}^N |P_n^{(v)}(0)|^2 \right\}^{-\frac{1}{2}}.$$

The estimate (2.4) yields, letting $N \to \infty$,

(2.6)
$$\sum_{n=0}^{\infty} |P_n^{(\nu)}(0)|^2 \le K^2 (\nu!)^2 M_{\nu}^{-2}.$$

We assume that our interpolation problem has a solution f(x) of the form

$$f(x) = \sum_{0}^{\infty} b_n P_n(x)$$

and find

$$b_n = \int_{-\infty}^{\infty} \left(\sum_{\nu=0}^{n} \alpha_{\nu n} x^{\nu} \right) f(x) \ w(x) \ dx = \sum_{\nu=0}^{n} \alpha_{\nu n} s_{\nu} \ .$$

Conversely, if $\{b_n\}$ defined as above satisfies the condition $\sum |b_n|^2 < \infty$ our choice of f(x) is a solution. By (2.6) the following estimates hold

$$\begin{split} \sum_{0}^{\infty} |b_{n}|^{2} & \leq \sum_{n=0}^{\infty} \left\{ \sum_{\nu=0}^{n} |\alpha_{\nu n}|^{2} \lambda_{\nu}^{2} \sum_{\nu=0}^{n} |s_{\nu}|^{2} \lambda_{\nu}^{-2} \right\} \\ & \leq ||s||^{2} \sum_{\nu=0}^{\infty} \lambda_{\nu}^{2} \sum_{n=0}^{\infty} |\alpha_{\nu n}|^{2} \\ & = ||s||^{2} \sum_{\nu=0}^{\infty} \lambda_{\nu}^{2} (\nu!)^{-2} \sum_{n=0}^{\infty} |P_{n}^{(\nu)}(0)|^{2} \\ & \leq K^{2} ||s||^{2} \sum_{\nu=0}^{\infty} (\lambda_{\nu}/M_{\nu})^{2} . \end{split}$$

We summarize our result in a theorem.

THEOREM 1. The universal moment problem (2.2) can be solved if the spaces B and S satisfy the condition

$$\sum_{\nu=0}^{\infty} (\lambda_{\nu}/M_{\nu})^2 < \infty ,$$

where $\{M_r\}$ was defined in (2.5).

3.

In this section we shall apply the result of Theorem 1 to non-quasianalytic classes of functions. For the general theory of infinitely differentiable functions we refer to [3].

Let $\{A_r\}_0^{\infty}$ be an increasing sequence of positive numbers and assume that $\log A_r$ is a convex function of ν and that $A_0=1$. The class $C\{A_r\}$ is non-quasianalytic if and only if

$$\int_{-\infty}^{\infty} \frac{\log W(x)}{1+x^2} dx < \infty ,$$

where

$$\log W(x) = 2 \sup_{\nu \ge 0} (\nu \log |x| - \log A_{\nu}) + \log (1 + x^{2}).$$

Associate with W(x) the function $\mu(r)$ by means of the relation (2.3) and with $\mu(r)$ the sequence $\{M_r\}$, defined by formula (2.5). Then the following theorem holds.

Theorem 2. Given a sequence c_n in the class $C\{M_n\}$, i.e. satisfying the inequalities $|c_n| \leq b^n M_n$, there exists a function $\varphi(t) \in C\{A_n\}$ such that

$$\varphi^{(n)}(0) = c_n.$$

Using previous notations, we define $s_n = (3bi)^{-n}c_n$ and $\lambda_n = 2^{-n}M_n$ so that $\{s_n\} \in S$. The condition of Theorem 2 is fulfilled which means that $f \in B$ exists with

$$\int_{-\infty}^{\infty} x^n f(x) w(x) dx = s_n.$$

Define

$$\varphi(t) = \int_{-\infty}^{\infty} e^{3bixt} f(x) w(x) dx.$$

Then $\varphi^{(n)}(0) = c_n$ and

$$\begin{split} |\varphi^{(n)}(t)| \; & \leq \; (3b)^n \int\limits_{-\infty}^{\infty} |x|^n \; |f(x)| \; w(x) \; dx \\ & \leq \; (3b)^n \; ||f|| \left\{ \int\limits_{-\infty}^{\infty} \frac{x^{2n}}{W(x)} \, dx \right\}^{\frac{1}{2}} \\ & \leq \; (3b)^n \; ||f|| \; A_n \left\{ \int\limits_{-\infty}^{\infty} \frac{dx}{1+x^2} \right\}^{\frac{1}{2}}, \end{split}$$

so that $\varphi(t) \in C\{A_n\}$.

Example 1. If $C\{A_n\}$ is non-quasianalytic, $C\{M_n\}$ contains the analytic class.

The definition of $\mu(r)$ shows that $\mu(r) = o(r)$ which implies

$$n! = O(\sup e^{(n+\frac{1}{2})\log r - r}) = O(M_n).$$

The result is of course well known.

Example 2. If $M_n = (n!)^a$, a > 1, $\varphi(t)$ can be chosen in the same class.

Example 3. If $M_n = (n \log n)^n$ (a quasianalytic class), $\varphi(t)$ can be chosen in $C\{(n(\log n)^2)^n\}$.

4.

When \overline{B} is a Banach algebra, the case when $L(x_{\nu})$ are multiplicative functionals and S is the space of bounded sequences is particularly important. We shall give an elementary result and illustrate the situation for Fourier integrals.

THEOREM 3. Assume that B is a *Banach algebra and $L_r(x)$ are multiplicative. Let N be an arbitrary integer. Assume that for every choice of a subset U of (1, 2, ..., N) there exists an element $x \in B$ such that

$$(4.1) |L_{\nu}(x)| \geq 1, \quad \nu \in U,$$

$$(4.2) |L_{\nu}(x)| \leq \delta, \quad \nu \notin U,$$

$$||x|| \leq M,$$

where $0 < \delta < 1$ and M are independent of U. Then, for any sequence $\{c_v\}_1^N$, $|c_v| \le 1$, $x \in B$ exists so that

$$L_{\nu}(x) = c_{\nu}, \qquad \nu = 1, 2, \ldots, N,$$

and $||x|| \leq A$, A depending only on δ and M.

PROOF. Since B is a * algebra we may assume $L_{\nu}(x)$ real, $L_{\nu}(x) \ge 0$, and also, replacing x by x^k , $\delta < \frac{1}{2}$. We shall first show that x = x(U) exists so that ||x|| is uniformly bounded and

$$L_{\nu}(x) \ge 1, \quad \nu \in U,$$

 $L_{\nu}(x) = 0, \quad \nu \notin U.$

Denote the solution of (4.1-3) by y(U) and the complement of U by U_1 . We form

 $y_1(U) = y(U) - a_1 y(U_1)$

where $a_1 > 0$ is the largest number so that $L_{\nu}(y_1) \ge 0$, all ν . Clearly $a_1 \le \delta$ and $L_{\nu}(y_1) = 0$ for some $\nu \in U_1$. Delete this (or these) index from U_1 and call the remainder U_2 . We now form

$$y_2(U) = y(U) - a_1 y(U_1) - a_2 y(U_2)$$

with $a_2 > 0$ as the largest number such that $L_{\nu}(y_2) \ge 0$ for $\nu \in U_2$. This implies $a_1 + a_2 \le \delta$. We now delete one or more indices from U_2 as above and continue the process. We finally get

$$y_k(U) = y(U) - \sum_{1}^{k} a_i y(U_i)$$
.

Here

$$(4.4) a_i > 0, \sum_{1}^{k} a_i \le \delta$$

and

In a similar way we now form

$$z(U) = y_k(U) + \sum_{i=1}^{l} b_i y(V_i),$$

where

(4.6)
$$b_i > 0, \qquad \sum_{1}^{l} b_i \leq \delta^2,$$

and

$$(4.7) L_{\nu}(z) \ge 1 - \delta^{2}, \quad \nu \in U,$$

$$0 \le L_{\nu}(z) \le \delta^{3}, \quad \nu \notin U.$$

In the limit we obtain an element $x_1 = \sum_V \mu(V) y(V)$, where $\sum |\mu(V)| \le \sum_1^{\infty} \delta^n < 1$ and

$$L_{\nu}(x) \ge 1 - \delta^2 - \delta^4 - \dots > \frac{1}{2}, \quad \nu \in U,$$

$$L_{\nu}(x) = 0, \quad \nu \notin U.$$

 $x(U) = 2x_1$ has the desired properties.

Now let $\{c_{\nu}\}_{1}^{N}$ be an arbitrary sequence, $|c_{\nu}| \leq 1$, and $c_{\nu} = \alpha_{\nu} + i\beta_{\nu}$. Let U_{0} be the set of indices ν , $\alpha_{\nu} > 0$. Define $\lambda(U_{0}) > 0$ to be the largest number such that $\lambda(U_{0}) L_{\nu}(x(U_{0})) \leq \alpha_{\nu}$, $\nu \in U_{0}$. We have equality for some $\nu \in U_{0}$. The rest of U_{0} is denoted U_{1} and $\lambda(U_{1})$ is defined similarly. Clearly

 $x_1 = \sum_i \lambda(U_i) x(U_i)$

has the property $L_{\nu}(x_1) = \alpha_{\nu}$, $\nu \in U_0$, $L_{\nu}(x_0) = 0$, $\nu \notin U_0$. Arguing in the same way for $\alpha_{\nu} < 0$ and for β_{ν} we have proved the theorem.

REMARK. If B is the space of bounded analytic functions in the unit circle it was proved in [1], that the interpolations $f(z_r) = c_r$, $|c_r| \le 1$, $f \in B$, are possible if (and only if)

$$\prod_{\nu \neq \mu} \left| \frac{z_{\nu} - z_{\mu}}{1 - z_{\nu} \bar{z}_{\mu}} \right| \ge \delta > 0.$$

By deleting certain factors in the above product we immediately see that the inequalities

$$|f(z_{\nu})| \geq 1, \quad \nu \in U,$$

$$f(z_{\nu}) = 0, \quad \nu \notin U,$$

have uniformly bounded solutions. Hence also for this algebra, which is not a *algebra, (4.8) implies that all bounded interpolations are possible.

As an illustration we shall prove the following theorem. An argument somewhat similar to the one below was used by Edwards [2].

Theorem 4. A sufficient condition that the moment problems

(4.9)
$$\int_{0}^{2\pi} e^{in_{\mathbf{r}}x} d\mu(x) = c_{\mathbf{r}}, \quad |c_{\mathbf{r}}| \leq 1, \quad n_{\mathbf{r}} > 0 ,$$

can be solved is that every interval $(2^k, 2^{k+1})$ contains a bounded number if n,'s (Sidon [4]). Another sufficient condition is that the number $P_s(n)$ of solutions of

$$n = \pm n_{k_1} \pm n_{k_2} \pm \ldots \pm n_{k_s}, \qquad k_1 < k_2 < \ldots < k_s$$

satisfies the inequalities

$$(4.10) P_s(n) \leq K^s$$

for a fixed number K or that $\{n_r\}$ is a finite union of such sets (Stečkin [5]). A necessary condition is that every interval of length λ contains $O(\log \lambda)$ numbers n_r .

PROOF. Sidon's result. $\{n_r\}$ can be decomposed, $\{n_r\} = \bigcup_{i=1}^p \{n_{ri}\}$, where $n_{ri}/n_{r+1, i} < 3^{-1}$. Choose an arbitrary finite subset U_i of each $\{n_{ri}\}$ and a small positive number ϱ . The trigonometrical polynomial

$$T(x) = \sum_{i=1}^{p} \prod_{i \in U_i} (1 + 2\varrho \cos n_{i} x) = \sum_{i=1}^{A} a_n e^{inx}$$

has the following properties:

$$\begin{split} T(x) & \geq \ 0, \qquad \frac{1}{2\pi} \int\limits_0^{2\pi} T(x) dx = p \ , \\ a_{\mathbf{v}} & \geq \ \varrho, \quad \mathbf{v} \in \mathbf{U} \ U_{\mathbf{i}} \ , \\ a_{\mathbf{v}} & = \ O(\varrho^2), \ \varrho \rightarrow 0, \quad \mathbf{v} \notin \mathbf{U} \ U_{\mathbf{i}} \ . \end{split}$$

In Theorem 3 we now choose $B = L^1(0, 2\pi)$ under convolution and $x(U) = \rho^{-1}T$. Since e^{in_px} define the linear functionals, $f_N(x)$ exists such that

$$\int\limits_{0}^{2\pi}e^{in_{\nu}x}f_{N}(x)\;dx\,=\,c_{\scriptscriptstyle \nu},\qquad \nu\,\leqq\,N,\qquad \int\limits_{0}^{2\pi}|f_{N}(x)|\;dx\,\leqq\,M\;.$$

We let $N \to \infty$ and select a weakly convergent subsequence of $\{f_N(x)dx\}$. Stečkin's theorem. Suppose that (4.10) holds, and form for some subset of U of $(1,2,\ldots,N)$

$$T(x) = \prod_{v \in U} (1 + \varrho \cos n_v x) = \sum_{-A}^{A} a_n e^{inx}.$$

The following estimates hold:

$$0\,<\,a_0\,\leqq\,1\,+\!\!\sum\limits_{s=1}^\infty(\tfrac12\varrho)^s\,P_s(0)\,\leqq\,\mathrm{Const.}$$

if $K\varrho < 2$;

$$a_{n_{\pmb{\nu}}} \, \geqq \, \tfrac{1}{2} \varrho, \quad \pmb{\nu} \in U;$$

$$a_n \leq \sum_{s=2}^{\infty} (\frac{1}{2}\varrho)^s P_s(n) \leq \text{Const. } \varrho^2, \quad n \neq n_{\nu}$$

if $K\varrho < 2$.

As above we can now conclude that the interpolation is possible for a finite union of sets with the property (4.10).

Now assume that all moment problems (4.9) have solutions μ with

$$\int |d\mu| \leq M.$$

Let

$$P(x) = \sum_{1}^{N} a_{\nu} e^{in_{\nu}x}$$

be a polynomial with $|P| \leq 1$. Then, if $\varepsilon_{\nu} = \text{sign}(a_{\nu})$,

$$(4.11) \qquad \qquad \sum_{1}^{N} |a_{\nu}| = \sum_{1}^{N} \varepsilon_{\nu} a_{\nu} = \int P \, d\mu \leq M.$$

Let $\varphi_{\nu}(t)$ be the Rademacher system and consider

$$\psi_t(x) = \frac{\gamma}{N^{\frac{1}{2}}} \sum_{\nu=1}^N \varphi_{\nu}(t) \cos n_{\nu} x.$$

If $\gamma < 1/4e$ it follows from a well-known inequality ([6, p. 214]) that

$$\int_{0}^{1} e^{\psi_{l}(x)^{2}} dt \leq \text{Constant} = C.$$

Hence t exists with

(4.12)
$$\int_{0}^{2\pi} e^{\psi_{l}(x)^{2}} dx \leq 2\pi C.$$

Now, by (4.11)

$$\max_{x} |\psi_{t}(x)| = |\psi_{t}(x_{0})| > 2kN^{\frac{1}{2}}$$

with k independent of N. Using a trivial estimate of $|\psi_t'(x)|$, we find

$$|\psi_t(x)| > kN^{\frac{1}{2}}, \qquad |x - x_0| < \frac{k}{N^{\frac{1}{2}} \cdot n_N}$$

which by (4.12) yields

$$k e^{k^2 N} N^{-\frac{1}{2}} n_N^{-1} \leq 2\pi C$$

or

$$N = O(\log n_N).$$

Since we can as well consider a sequence $n_{\mu+1}-n_{\mu},\ldots,n_{\mu+N}-n_{\mu}$, we have proved the theorem.

REFERENCES

 L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 53 (1958), 921-930.

- R. E. Edwards, Bounded functions and Fourier transforms, Proc. Amer. Math. Soc. 9 (1958), 440-446.
- 3. S. Mandelbrojt, Séries adhérantes. Régularisation des suites. Applications, Paris, 1952.
- 4. S. Sidon, Über orthogonale Entwicklungen, Acta Sci. Math. Szeged 10 (1943), 206-253.
- S. B. Stečkin, On absolute convergence of Fourier series, Izv. Akad. Nauk SSSR Ser. Mat. 20 (1956), 385-412. (Russian.)
- 6. A. Zygmund, Trigonometric series I, Cambridge, 1959.

UNIVERSITY OF UPPSALA, SWEDEN