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ON UNIVERSAL MOMENT PROBLEMS

LENNART CARLESON

Let B be an arbitrary Banach space and let {,} be a set of elements
of B. We also consider a Banach space S of sequences s={s,} with
norm ||s||. By a universal moment problem for the space B we mean the
problem of finding conditions on the set {x,} and the space S so that for
every s € S there exists a linear functional L on B such that

L(x,) = s,, y=1,2,....

v

If this is true, there exists a constant M so that a solution exists with

Iz = M| -

In the following sections we shall give two examples of such problems
in classical analysis.

2.

Let w(x)= W(x)~! be a continuous weight function defined on the real
axis and with the following properties:

a) Wk)=W(—=z)=1.
b) logW(z) is an increasing function, convex in logz, x>0,
W(x)x—™ — oo, all n.

(2.1)
log W(zx)
) [Tt

Let B be the space of real measurable functions f(x), —oco < < oo, with

the norm -

171 = @ w@) do.

—00

As norm in our space of sequences we choose

oo
sl = 3 Jsal22,
0
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We shall study the universal moment problem
(2.2) L(f) = [f@zm @) de = s, .

L,(f) is by assumption (2.1, b) a linear functional on B.
The function
1 log W {(t
uatiy) = o ( 1yl log W(t)
o @=0)t+y?

is by (2.1, ¢) harmonic in y>0 and =}logW(z) on y=0. wu(e’)=v(()
is thus harmonic in 0 <9<z, { =&+, and symmetric with respect to
n=3%m. Since v, =0 on the boundary, this inequality holds everywhere
and thus »,, 0. It follows that, on the line &=constant, v takes its
maximum at #=4x which implies

IIA

(2.3) w(x +1y) 1 f log W(t) dt = u(r),

27

xr+y? < 2.

r2 4 2

Let @(x) be a polynomial in B, ||Q||=1. By the principle of the har-
monic majorant we have for y =0,

log |Q(z +iy)| < ’_u, l(yl l%;li(y)l i

f Iyl log(IQ £)[2 w(t))
—t)2+y?

dt + w(x+1y) .

In the integral we use the inequality ab<e?-1+b logb, valid if b>0,
and choose a=1log(|@|?w). We find

1 1 1
1 ; — +Zlog —
og|@(x+1y)| < 2m+2 gl I+M()

Hence by Cauchy’s formula, r> 0,

n

do e

1
2.4 )(0)] < el/zne,,' _
CE O] J i i 2

= KvI M,

where K is a numerical constant and

(2.5) M’ = sup e(r+§)logr——,u(r) .

r>0



ON UNIVERSAL MOMENT PROBLEMS 199

We now introduce the sequence of orthonormal polynomials belonging
to the weight function w(x):

oo

an(x) P, (x) wx) de = b, m;n = 0,1,...,
where n
P, (x) =Y «,,2
v=0
We form the polynomial
N
n=0

choosing for some »

N -3
0 = PO 3 P00
n=0
The estimate (2.4) yields, letting N — oo,
(2.6) z |P,®(0)2 = K2 (»!)2 M,~2.

We assume that our interpolation problem has a solution f(x) of the
form

and find -
= f (Z cxmx”) f(@) w(x) de = Z(xm :
r=0

Conversely, if {b,} defined as above satisfies the condition ¥ |b,|2< oo
our choice of f(x) is a solution. By (2.6) the following estimates hold

Sprsy {z|am|2122|s 24 }
0 n=0 v=
< bl 322 3
= 6lF 3 A201)- 3 P00
< K223 (A/M,)2
=0

We summarize our result in a theorem.
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THEOREM 1. The universal moment problem (2.2) can be solved if the
spaces B and S satisfy the condition

3

(}'v/“nlv)2 < ® K
0

v

where {M,} was defined in (2.5).

I

3.

In this section we shall apply the result of Theorem 1 to non-quasi-
analytic classes of functions. For the general theory of infinitely differen-
tiable functions we refer to [3].

Let {4,}y be an increasing sequence of positive numbers and assume
that log 4, is a convex function of » and that 4,=1. The class C{4,}
is non-quasianalytic if and only if

oolog W(x)
f ————dx <
1+ 22

where )
log W(x) = 2 sup (v log|x|—logA,)+1log(1+2?).
v20
Associate with W (x) the function u(r) by means of the relation (2.3) and
with u(r) the sequence {M,}, defined by formula (2.5). Then the following
theorem holds.

THEOREM 2. Given a sequence ¢, in the class C{M,}, i.e. satisfying the
tnequalities |c,| <b*M,, there exists a function ¢(t) € C{A,} such that

(p(n)(()) =0Cp.
Using previous notations, we define s, =(3b¢)~"c, and 4,=2""M, so

that {s,} € S. The condition of Theorem 2 is fulfilled which means that
J € B exists with

fx”f(x) w(x) dx = s, .

Define - o
o(t) = [ 2 (@) wiz) de

Then ¢™(0)=c¢, and
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™01 < (30" [ fal ()] w(z) do

oo a2n b
< (3b)» “f“{ J W(z) dxl
(3b)" [I£1l An[ fm} ’

IIA

so that ¢(¢) e C{4,}.

ExamrerE 1. If C{4,} is non-quasianalytic, C{M,} contains the ana-
lytic class.
The definition of u(r) shows that u(r)=o(r) which implies

n! = O(supe®™dloer—ry — (M) .

The result is of course well known.
ExamprE 2. If M, =(n!)?, a>1, ¢(t) can be chosen in the same class.

ExampLe 3. If M,=(nlogn)" (a quasianalytic class), ¢(f) can be
chosen in C{(n(logn)?)"}.

4.

When B is a Banach algebra, the case when L(z,) are multiplicative
functionals and S is the space of bounded sequences is particularly
important. We shall give an elementary result and illustrate the situa-
tion for Fourier integrals.

THEOREM 3. Assume that B is a *Banach algebra and L (x) are multi-
plicative. Let N be an arbitrary integer. Asswme that for every choice of

a subset U of (1,2,...,N) there exists an element x € B such that
(4.1) IL(x) 21, »eU,

(4.2) L) <8, v¢U,

(4.3) el = M,

where 0<d<1 and M are independent of U. Then, for any sequence
{e ), le,|<1, x € B exists so that

L(x)=¢, v=12...,N,
and |x| < A, A depending only on 6 and M.
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Proovr. Since B is a * algebra we may assume L (x) real, L(x)=0,
and also, replacing * by z*, 6 <}. We shall first show that x=x(U)
exists so that ||z|| is uniformly bounded and

Lx)z1l »elU,
Lx)=0, v¢U.

Denote the solution of (4.1-3) by y(U) and the complement of U by
U,. We form
¥ (U) = y(U)—a,y(Uy)

where a,;>0 is the largest number so that L/(y,)=0, all ». Clearly
a, <90 and L,(y,)=0 for some » € U,. Delete this (or these) index from U,
and call the remainder U,. We now form

Y2(U) = y(U) —a,y(Uy) —ayy(U,)

with a,> 0 as the largest number such that L (y,)=0 for » € U,. This
implies a, +a, < 6. We now delete one or more indices from U, as above
and continue the process. We finally get

k
yu(U) = ?/(U)“?a’i?/(Ui) .

Here
k
(4.4) a; >0, Ya; <96
1
and
(4.5) Liy) = 1-6%, »eU,

02 Ly,) =2 -, v¢lU.
In a similar way we now form

1
2(U) = ?/k(U)‘Fg b;y(V,),

where

(4.6) b; > 0, ibi < 6%,
and '

(4.7) L(z)21-6% veU,

0=sL() s6% ve¢U.

In the limit we obtain an element x,=3,u(V)y(V), where 3 |u(V)| =
376"<1 and
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L)z 1-02-6*—... > 1%, »eU,
L(z) = 0, ve¢ U.

2(U)=2x, has the desired properties.

Now let {c,}Y¥ be an arbitrary sequence, |c,|<1, and ¢,=«,+1f,.
Let U, be the set of indices v, «,>0. Define A(U,)>0 to be the largest
number such that A(U,) L,(2(Uy)) S«,, v€ U, We have equality for
some v € U,. The rest of U, is denoted U, and A(U,) is defined similarly.

Clearl
Y 2 = S U a(Uy

has the property L, (v,)=«, ve U, L(x,)=0, v¢ U, Arguing in the
same way for «,<0 and for §, we have proved the theorem.

RemMARrk. If B is the space of bounded analytic functions in the unit
circle it was proved in [1], that the interpolations f(z,)=c,, |c,|=1,
f€ B, are possible if (and only if)

2,—2,

£El1z2d0>0.
1-2,%,

IT

vEu

By deleting certain factors in the above product we immediately see
that the inequalities

(4.8) If@) z1, velU,
fz)=0, v¢U,

have uniformly bounded solutions. Hence also for this algebra, which
is not a *algebra, (4.8) implies that all bounded interpolations are
possible.

As an illustration we shall prove the following theorem. An argument
somewhat similar to the one below was used by Edwards [2].

THEOREM 4. A sufficient condition that the moment ‘problems

2n
(4.9) [emm du@) = e le) 51, m >0,

0

can be solved is that every interval (2%, 2k+1) contains a bounded number
if m’s (Sidon [4]). Another sufficient condition is that the number P (n)

of solutions of
no= Em En,t .k, k<k<... <k,

satisfies the inequalities
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(4.10) Py n) £ K?

for a fixed number K or that {n,} is a finite union of such sets (Steckin [5]).
A necessary condition is that every interval of length A contains O(logA)
numbers n,.

Proo¥. Sidon’s result. {n,} can be decomposed, {n}=U?_,{n,},
where n,;/n,,, ;<3~1. Choose an arbitrary finite subset U, of each {n,;}
and a small positive number g. The trigonometrical polynomial

p A
= > TI (1+20cosn,x) =Y a,en®
i=1veUj —-A

has the following properties:
2n

1
T(z) 2 0, -— f T(@)dz = p,
27t0

a, 290, veUU,,

a, = 0(?), >0, v¢UU,.
In Theorem 3 we now choose B=L(0,2x) under convolution and z(U)=
o~1T. Since ¢™* define the linear functionals, fy(x) exists such that

2n 2n

je"”"”‘fN(x)dx=c”, » < N, f]fN x)de £ M.

0

We let N — oo and select a weakly convergent subsequence of {fy(x)dx}.
Steckin’s theorem. Suppose that (4.10) holds, and form for some sub-
set of U of (1,2,...,N)

A
T(x) = TI (1 +o cosn,z) = Y a,e"* .
velU —A

The following estimates hold:

0 <ay =1+ (}0)° Py(0) < Const.
8=1
if Ko<2;
, 2= %0, veU;

(o)
n = z < Const. 02, n#+n,

8=2

if Kp<?2.
As above we can now conclude that the interpolation is possible for
a finite union of sets with the property (4.10).
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Now assume that all moment problems (4.9) have solutions u with

[1dul < 21
Let ~
P(x) = 3 a,e™”
1

be a polynomial with |P|<1. Then, if ¢, =sign(a,),
N N
(4.11) Sla) = Y ea, = fpdﬂ <M.
Let ¢,(¢) be the Rademacher system and consider
y N
W) = 35 S o) cosne.

If y <1/4e it follows from a well-known inequality ([6, p. 214]) that

1

J. @ dt < Constant = C .

0
Hence ¢ exists with
2n

(4.12) f MO gy < 2
0

Now, By (D k@) = o)l > 26N

with k independent of N. Using a trivial estimate of |y/(x)|, we find

]wt(x)[>kN’3, ]x——xol < m

which by (4.12) yields b &N Nt gt < 200

or

N = O(logny) .
Since we can as well consider a sequence 7, ., —7,, ..., N N—N, W
have proved the theorem.
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