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A PROBLEM FOR ELLIPTIC PARTIAL DIFFERENTIAL
OPERATORS DEFINED ON AN ARBITRARY OPEN SET

N. 0. WALLIN

1. Introduction.

Let £2 be an arbitrary open set in real n-space R and denote by
H=H(Q) the Hilbert space of all square integrable functions over (.
Let

A = (0/0x,)*+ . .. + (0]0x,)?
be Laplace’s operator and V=V(x,,...x,) a real potential defined in Q.
Consider the Schrédinger operator

A= —-4+V

with domain of definition consisting of all functions f in H such that Af
in the distribution sense is also a function in H. If Q= R" it was shown
by Carleman that A is self-adjoint provided that V is continuous and
bounded from below [2]. Recently this was generalized by Browder [1],
who in our terminology replaced —A by a differential operator a with
uniformly elliptic and positive principal part and with suitably bounded
coefficients. He proved that

(1.1) (@+V)* = @+7V)

provided that V is continuous and bounded from below and Q2= R,
In (1.1) both operators have their maximal domains of definition. The
asterisk denotes the adjoint in H and @ is the formal adjoint of a. In
this paper a similar problem is treated. We shall replace —4 by a
differential operator a which is defined in £ and has an elliptic and
positive principal part there. The coefficients of a are assumed to possess
continuous derivatives up to a certain order but need not be bounded
in 2 and the ellipticity of @ may be non-uniform. Then we shall show
the following theorem:

THEOREM. (1.1) holds for every continuous potential V that increases
rapidly enough at the boundary of Q.
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The rate of increase of V depends of course on the operator a. If
Q=R and the ellipticity of @ is uniform and if suitable conditions of
boundedness are imposed on the coefficients of ¢ one can obtain Brow-
der’s result in a less general form. This case is not treated here. Our
theorem also holds when @ is a differentiable manifold. The proof is
similar and will not be given.

The proof of our theorem proceeds in two steps. The order of a is
necessarily even, say 2m. Denote by D,f the derivatives of f and let
|| be the order of D f. Put

|Dif (x)[* = IZ D, f(@)? .
|<j

In the first step we show that
(1.2) [ C@IDmf@P +r@) D @) de < o

for any f in the domain of a+V og @+ V. Here e=¢(x) and r=r(x)
are positive functions, ¢ depending on the ellipticity of a and r on the
potential V. An essential point is that r can be taken arbitrarily large
provided that V is large enough. To prove the theorem it is sufficient
to show that

(1.3) (@+7)f.g) = (f,@+7)g)

for every f and g in the domains of ¢+ V and @+ V, respectively (i.e.
the inclusion (@+ V)< (a+ V)*). The scalar product in (1.3) is that of H.
To prove (1.3) we multiply the integrands of the two sides by a suitable
infinitely differentiable function y=1(x) which is equal to 1 on a large
compact part of £ and vanishes in a neighbourhood of the boundary
of Q. Forming the difference between the two integrals and integrating
by parts one gets an expression which by (1.2) tends to zero as y tends
to 1 in all of Q. This is the second step.

In the proof of (1.2) we use a number of well known inequalities plus
a new one which may be useful in various situations. Consider an inte-
gral of the form

(14) L(f) = Lymalf:f) = [ Slglo) Duf Dy dar

where the summation extends over || <m and |§| <m — 1. The function f
is assumed to possess locally square integrable weak derivatives D _f
for all x such that |x| <m. About ¢ we assume: ¢ is infinitely differenti-
able with compact support in £ and the function
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has the same property for every integer k=1. The coefficients I 4(¢)
are assumed to be quadratic forms in the functions ¢* with coefficients
in C1*I+A(Q) where C*(R) is the set of functions with continuous deriva-
tives D, f for all x such that |x| <k. Then, denoting by St the support
of ¢,

p* =

L(f) < o[ IDmgf 2 dar + ¢ [ 1f)2 dee + v [lgf 2 de,

Ste

where s and ¢ are positive numbers which may be choosen arbitrarily
small provided that r=1(s,t,¢, (1,5)) is taken large enough.

2. Notations and remarks.
We consider a linear elliptic differential operator a of order 2m defined
for every z in © by the expression

a =a(x,D)= 3 a (x)D

la|=2m

o)

where &= (x;,%,...%;), with 1=«, <% and |x|=j<2m. Furthermore
D, = ofiox,, D,=D,...D,.
The formal adjoint @ of a is by definition
a=a(D)= 3 D,a, ).

|la]<2m

Since the operator is supposed to be elliptic
Reay(x,£) = Re ¥ a,(2)¢, & =§&,...¢

oagm ?
|a]=2m

is a definite form in & for all z in 2. Let it be positive. Then

Reay(x,&) = o(x) D &2,
la]=m
where g(x) >0 on Q. If the coefficients of a, are continuous, p(z) may be
choosen to be continuous. Since Reay(z,&)=Reay(z,&) the same is true
for a.

By C¥(Q) we shall denote, as before, the space of k& times continuously
differentiable functions in 2. The space of infinitely differentiable func-
tions in Q is denoted by C™(2), and Cy’ (L) is the set of functions in
C%(2) with compact supports. As in the introduction H=H(f2) is the
Hilbert space of all square integrable functions in £2. The set of functions



188 N. O. WALLIN

f such that D, f in the weak sense is square integrable on every compact
subset of 2 for all |x| <k is denoted by 5%(2). The corresponding set
of functions with compact supports is 5 %(2). It is well known that
for elliptic operators 4 of order 2m with sufficiently differentiable co-
efficients in 2, Af =g implies that f is in H#?**(Q) if f and g are in H#(Q),
cf. [4]. We shall assume that ¢ and @ fulfill this regularity condition.

3. Some inequalities.

Let us introduce the following notation:
DS = [IDf@) de,
8
|DEf@)P = 3 |Df(@)?,
lel<k
D41, 812 = [IDAf (@) do
8

If §=0Q we write simply |D*f|? instead of |D*f,Q|? ete.

We shall show that with a suitable countable locally finite covering
of 2 by closed spheres (S,) and a suitable partition of unity 1=3 ¢,>
belonging to that covering the following inequalities are valid,

): Re(af.f) = &, D™f 12— 7| fI?

for all fe #»(S,). Here ¢, and 7, are positive numbers that depend
on the ellipticity and the coefficients of the operator a in S,.
(ii):
Let f € #™(£2) and denote by ¢ an arbitrary ¢,. If
Lmslfif) = [ 3 le) DS DT do,

lal<m
|Bl=m—1

where the functions [ ,(p) are the same as in (1.4), then

Lo, ma (Sl = 8|D™gf 12 + (s,t,0, D) @f I* + IS, Stgl?.
Here s and ¢ are arbitrary positive numbers and t(s,¢,¢,l) is a positive
number that depends on s, ¢, ¢ and I where ! stands for the collection
(Z.5(p)). Ste denotes the support of ¢

(i) :

For fe s# ™) we have
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[Dm1f 2 < e[ D™fI* + w(e) I,

where &> 0 is arbitrary and z(¢) is a positive number such that z(s) - oo
as ¢ > 0.

(iv):

Let fe o#?™(Q2). Then

Re(pi’af.f) = eplopD™f 2 + rloeD™f 12 — 411, Stepl® — w(rity) lgrf 12
In this inequality ¢, is a positive number that depends on the ellip-
ticity of the operator in S, r, and ¢, are arbitrary positive numbers
and t(ry,t;) is a positive number that depends on r, and i,

(v):

If (v;,) is a sequence of positive numbers there exists a function 7= 7(x)
in e.g. C™(Q) such that .

minz(x) = 7.

zeSy
Now we take t,=2-% in (iv) and majorize 7, = 1(r;,2-%) by V,=V(r,z)
according to (v). The number » indicates the dependence on the se-
quence (r,). This results in
(iv'):

Re (g 2(a+ VL) + 27%|f,St @2 = e lop D™ 12 + rilg D™Lf)2

If (a+V,)feH and fe H then, since V,e C%Q), fe #?2Q). This is
a consequence of the regularity theorem for elliptic operators. From
(iv') and the fact that |f,Ste,|<|f| and 3°2*=1 it follows by Lebes-
gue’s theorem that

(vi):
Re((@+ VL) + /1?2 [ e@) IDmf (@) dw + [ r(@) |Dmf (@) de,
ie. ? ¢
fe(x) D" f(@)2dz < oo
and ?

[ @) 1Dm (@) dz < oo,

Q2

where 0 < ¢(z) =3 ¢,p,2(x) and 0 <r(x)=3Yr.p2(x). It is easy to see that
the inequality (vi) is also true with the same &(x), r(x) and V, if a+ V,
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is replaced by a+ V, provided that ¥V, is any continuous function
gmax(V,(a,x), where V,(E,x)) is, for example V.=V (a,2)+ V (@,x).
Here V .(a,z) refers to the potential constructed in (iv’).

4. Proof of the theorem.

We are now in a position to prove the inclusion (a+ V,)*>a@+ V, (the
reverse one is trivial) for a suitable V.. Therefore let (£2,) be a compact
covering of £ such that 2, ;<int(£2;) and introduce the function
v, €07(2,), 0Sy; =1 with y;=1 on 2, ;. By the definition of a,

(’/’i(“*‘ Vr)f’ g) = (f> (@+ Vr) %9)

for every f and g in the domains of a+ V, and @+ V, respectively. Since

ay,g =wvag + > b.(y)D,g,

|a]<2m—1

where b,(y;) is a linear combination of derivatives of y,, it follows that

(wila+ V) f.9) = (wif.@+7V,) g)+ Z (f,0,(v:)D,g) .

=2m—1

The second term on the right hand side may be transformed by partial
integrations into

L9 ualfig) = 3 [10) Dof Dyg da
|zx|Sm

|l =m—1“t

the integrations being performed over w;=0,—2,_,. With

sup Ilaﬁ(y)z)l = Ci

«, B, x
we obtain
LRmalhl = 3 [ CoID.S@) Dy do
|6l=m—1 %
e(@)} D, f( 9(@)| do
< TN o 1o
|B|=m—1 %
s 3 [ (c@Das@rs 5 D) de
x|l=m
|l =m—1 4

C2
S dpy [ el@) D" @) d + dy [ 1Dm g2 da,
€4

i

where &¢';=inf, e(x)>0 and d; is the number of derivatives of order
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<k. Let y;(x)=1 on w; and zero elsewhere be the characteristic function
of w; and put

Ciz

2@) = X —-yil@) .

&4
This expression is well defined for every x € £ since the covering (w;)
where w;={2, is locally finite. The compactness of S, then implies that
only a finite number of the w; will meet S} so that

maxy(z) = C') < oo
xeSg
If r,= (', it follows that

x(@) = E Pi2(x) 2(x) = 2 Pi(x) C') = Z Pr2(x) 1) = 7(%)
In combination with the fact that

C2
X@» = _%' on a%,
this choice of r(x) gives

LD e slfs9)| S dys [ @) D@2 d + dy [ r(@) 1D g(a)? da

w; wj

If we let ¢ > oo it follows from (vi) that

fgm»LDmfum2dx-+o and fr@»LDmdg@nde->o,

wj g

that is LY, . (f.,g) > 0. Further y; 71 on all of 2, and we get by
((@+V)f9) = (f.@+7,)g).

Lebesgue’s theorem
This proves our assertion.
5. Partition of unity.

Let (S,) be a countable locally finite covering of £ by closed spheres
S, with radius 7, and center z, such that S, <Q for all k.. We shall
assume that if S’;, is the closed sphere with center z, and radius 4r, the
collection (S’;) is also a covering of Q. It is not difficult but somewhat
tedious to show that such coverings exist and we do not go into the
details. We are now going to construct a partition of unity belonging

to the covering (8,), that is, functions ¢,(x) with the following proper-
ties:
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(5.1) 0 < gix) € C5(8,),
(5.2) 1=>Y¢r) on 0.
To do this put

rs2
exp{—w—#——l for |x—z <1y,
vi(®) = l r#— ’ *

;.

v

for |x—z

Then y,(x) € (7 (S;) and since y;>0 on §’; and (§’)) is a covering of Q

we have
Syix)>0 on Q.

From this it follows that
_ 74(®)
(E 7’k2(75));J

1=>¢2r) on Q.

(5.3) Pi(x) e C3(8))

and

It is easily seen that the function

Dy;Dyy; ... Day;
Vi ZarVi #¥i for -2, < 75,
(5.4) pk-1
0 for |x—2] =1,
is in C3(S,;) for every integer £=1. Here «!,a%a3,...a* are multi-

indices. Because of (5.3) the same will be true if we replace y, by ¢;, i.e.

Do, D, ... Dy,
P Yo kP for Ix_’zi| <7,
(5.5) pft
0 for |x—2z) 27;.

is in C3(S;). At last we point out that by squaring (5.5) and dividing
by @; we obtain a new function of the same kind. We also remark that
differentiation of (5.5) again leads to a function of the same kind.

6. Proof of the inequalities.

The inequalities in section 3 will now be proved one by one.
@
Since g(x) is a continuous function in £ and > 0 it follows that infg, o(z) =
0, >0, that is, the ellipticity is uniform in §,. Garding’s inequality [3]
then implies (i).
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From the considerations in section 5 it follows that if ¢ is any ¢, then
the function

l
i’s@ for lx—2| < r,
'
0 for lx—2| =2 r,
is in Cy**1#1(S). This implies
luﬁ((p) 7
Lymalff) = [ 3 24D, (D} de
Jol=m '
|ﬁ|£m~l
—j 9 b of Dy du +f 19(¢) D,fD,f da .
lo|=m |a] < m—1
|Bl=m—1 |8] = m—1

Since the function [ 4(¢) are quadratic forms in the functions (5.5) with
coefficients in C1**1#l(Q) the same is true for I{)(¢) (this is easy to check).
This implies that
I5(e)
2T e O A8y .
@

By iterating the procedure we obtain, writing L,, ,,_; for L,, ,._(f.f),

l((n l(l)((p) o
Ly s _f D pof Dy da + f =P D of Dfdw +
la]=m lojsm—1 @
18] < m—1 |8l < m—1
l(m)( )
+...+f 5 D ofD,fde,
lel<0 '
1Bl = m—1

where we have put 1 ,(p)=1(¢). From

1®(p) ®(p)

< 4riD.gpft + 1| 20,

D, of D, f

for every >0 it follows that

(0)( 2

(p)

sl S drdalDmgfrt [ 30 S D e +
1Bl= m—1
l(M)
+. +f ) \D,f |2 da,
laj<0
1Bl = m—1

that is,

Math. Scand. 9 — 13
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(61)  Lpnosl S drdpy IDmRf1* + 1 [ 3 U(g) 1D, 2 e,

|Bl=m—1
where

lﬁ(‘P) = 2

lelsm

1) () (@) "
4 K1 4
We notice that (@) is a quadratic form in the functions (5.5) with
coefficients in C'¥I(2), and that the second term on the right hand side

of (6.1) considered as a quadratic form in the derivatives D,f is of order
(m—1,m—1). We denote it by L,,; ,,.;. We have thus

(6'2) 'Lm m—ll %rdm 1le(Pf[2 r-1 [Lm—l,m——ll ’

where d, as before denotes the number of derivatives of order k. It is
now natural to proceed in the same way with L, _,, ,. By partial
integrations L,  ,_, is transformed into L,, ,,_,, all boundary terms
disappearing since the coefficients in L,,; ,,_; have compact supports.

Then
| Ly m—2l S 312, 1| D™f |2 + 72| Lyy_p mal »

+ 2

la]=<0

|¢x|§m—1

that is,
(63) ILm——l,m—-ll é %’!‘2dm_1IDm(pf|2 + TﬁzILm—z,m—2l

for all > 0. Analogously

{Lm—2,m—2[ é dm_ziDm—l(pj‘IZ + ILm—S,m——sl ’
'Lm—s,m—al é dm—3 IDm_2¢f[2 + |Lm~4,m-4l ’

ILl,ll b d1ID2<Pf[2 + IL0,0| .
By adding these inequalities we obtain
(6.4) | Lp—g, m-2l S (Mm—=2)d,,_o| D™ @f|2 + |Lg o

Inserting (6.3) into (6.2) and using (6.4) we obtain after trivial simplifi-
cations
(6.5)  |Ly,mal = md, (r|lD™@f|? + r3 D™ 1@f [B) + 173 |Lg o -
Here
Ly,o = [mql) £ dz = [(molp)ly) gfF de
so that

(6.6) | Ly, ol §f(8”1|¢f12+81mo(¢)/¢l2 If?) do = s~tof P + sC,|f,Stel?,

where C_=maxg, |m(p)/g|® and s arbitrary >0. Taking s=tr® where
¢t is arbitrary >0 we get from (6.5) and (6.6)
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(6.7) Ly, m—a| = mdy(r|D™@f |2+ 73| D" 1gf2) + 1=t of |* + tCp|f,Stol?.
According to (iii)
|Dm-tof |2 = 4| Dmef |2 + T(r!) |@f| .
This inequality and (6.7) yield
(6.8) | Ly | = 2md, r|Dmef|? + (¢—3t(r4)mdm+r‘6 t—l)ltpfl2 + tCop|f,Stp|?.

The substitution
r — (2mrlm)_17', t - C-1¢ s

in (6.8) gives (ii) and we are finished.

(iii) :

This is a classical inequality and is proved by partial integrations and
Schwarz’s inequality or by a Fourier transformation (e.g. [3]).

(iv): o
— (pe2af.f) = (a@pf,orf) + Lsn,m—l(f’f) .
Here L¥, | is of the form (ii). By (i)

(6.9) Re(ag,f, orf) 2 & | D™y fI2 — T3 lppf

and according to (ii)

ILP o S 3| Do f12 + t(t) |9 f12 + t|f,Stgy/?

which in combination with (6.9) gives

(6.10) Re(@iaf.f) = e | D™ f|? — 7'(4) loiSf1? — 4lf, St l?
z 16| D™ @p 12 + 21 | D™ fI12 — T (b i) @i f1? — U If, St gy[2

Here r, and t, are arbitrary positive numbers. Now

D", fI2 = lge D2 + LY, ,
| D" f1? = |gp DmLf |2 + L3

m—1, m—2 *

Here Lg? m-1 18, of course, not the same form as above but also of type
(i). By (ii)

ILP 1| < D™ f2 + 7o(t) l@if 12 + 1S, Stel?,
ng?—x,m—zl S D™ fI2 4 T(8) lgnf1? + s1f.Steyl?,

where ¢ and s are arbitrary >0, so that

(6.11) 21Dmg fI* 2 lgpD™fI2 — 7o) l@nf1? — tIf, Steil?,
(6.12) 21D g fIP 2 |gp D12 = 73(8) @nf1® — s1f.Stgyl®.
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Choose t=8¢;,~1t,, s=r;~1%,. Insertion of (6.11) and (6.12) into (6.10)
gives
(6.13) Re(piaf.f) = kerlg D™fI1® + rilg D™= 2 —

= (1 b) |@ef | — 38 S, St /? .

&, — 8¢y, 3t, >t ,

The substitution

in (6.13) gives (iv).

)

Let 1=3¢;?) be our partition of unity belonging to the covering (S,).

Set
m, = max 7,.
8y Sg + 0

7(x) = 3 m;p2() .

Define
For € 8, we have

T(x) = Z mv'pvz(x) 2 Z Tk(Pvz(x) = Tk,
SynSg+0 SynSr+09

that is, infg, 7(x) 2 7. Notice that 7(x) e C7(Q).
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