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SOME REMARKS ON THE EXPONENTIAL MAPPING
FOR AN AFFINE CONNECTION

SIGURDUR HELGASON

1. Introduction and notation.

Let M be a manifold with an affine connection. The normal coordi-
nates at a point p in M give rise to a topological mapping of a neighbor-
hood of p in M onto a neighborhood of 0 in the tangent space M, to M
at p. Much is gained by replacing this mapping by its inverse, because
this last mapping can be extended to the entire M, (at least if M is
complete). This mapping of M, -~ M was called by Ambrose [1] the
Exponential mapping, because it reduces to the ordinary exponential
mapping for a Lie group G when applied to a suitable left invariant
affine connection on G. For this affine connection, the Levi-Civita
parallelism amounts to left translation on &; in particular, the parallel-
ism arises here from a point transformation. For a general manifold
M, this is of course no longer true; nevertheless, the analogy between
parallelism and left translation is useful.

In this article we prove a formula for the differential of the Exponen-
tial mapping for an affine connection. This formula is motivated by
the known formula for the differential of the exponential mapping of a
Lie group, through the analogy stressed above. In Section 4 some appli-
cations are made; we give there a direct derivation of the classical for-
mula for the sectional curvature of a Riemannian manifold in terms of
the metric and curvature tensor. Although this derivation involves a
certain amount of computation, it is conceptually very simple and is
independent of the differential geometry of curves and surfaces. In
another application we establish some geometric properties of the Ex-
ponential mapping for a pseudo-riemannian manifold. In Section 5 we
determine the pseudo-riemannian manifolds of constant sectional cur-
vature up to local isometry; these manifolds are represented by quadrics
in Euclidean space or equivalently, by coset spaces of orthogonal groups.
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The following notation will be used. If M is a differentiable manifold
of class C%, we denote by C*(M) the set of differentiable functions on M.
The set C*°(M) is an algebra over the real numbers R, the addition and
multiplication in C°(M) being pointwise addition and multiplication of
functions. The vector fields on M can be identified with the derivations
of the algebra C*(M); they form a Lie algebra ©'(M) under the bracket
operation [X,Y]=XY — YX. Let X € ®Y(M). The mapping ¥ - [X, Y]
of DY(M) into itself is called Lie derivation with respect to X, and will
be denoted by 6(X). The vector fields on M are the tensor fields on M,
which are contravariant of degree 1, covariant of degree 0. More gener-
ally, let ©7 (M) denote the set of all tensor fields on M, of type (r,s),
(that is, contravariant of degree r, covariant of degree s). The set D7 (M)
is a module over the ring C*°(M). The direct sum D(M )=Z:? oo D (M)
is the mixed tensor algebra over M ; the addition and multiplication ®
in ®(M) is given by pointwise addition and pointwise tensor product
of tensors.

If p is a point in M, the tangent space to M at p will be denoted M,,.
If X e ®YM), X, denotes the value of X at the point p € M. Then
X,eM,. More generally, the value of a tensor field 7'e ®7 (M) at a
point p € M will be denoted 7',. In particular, the value of a function
fe C™(M) will often be denoted f, instead of f(p).

2. Preliminaries.

In order to fix the terminology, we recall briefly some elementary,
well-known facts concerning affine connections. Let M be a manifold
of class C*. An affine connection on M is a rule V which to each
X € DYM) assigns a linear mapping Vy (the covariant differentiation
with respect to X) of the vector space (M) into itself, satisfying the
two following conditions:

Vi) Vixsgr =fVx+9Vy
V,) Vx(fY) = fVxY +(Xf)Y

for f,g € C®°(M) and X,Y € DY(M). This definition is due to J. Koszul
and is used in Nomizu’s paper [6]. It follows directly from V,) and V,)
that if X or Y vanishes on an open set U then V4(Y) vanishes on U.
A stronger statement holds for X, namely: If X vanishes at a point
p € M, then the same holds for V4(Y). To see this, let {z,,...,z,} be
a local coordinate system valid on an open neighborhood U of p. On
the set U we can write X =3,f,0/0x; where f; e C*(U) and fi(p)=0,
1<i=<m. Asremarked above, Vx(Y) is given on U by the values of X
on U; hence we have, writing V, instead of V,;,,,
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(VX(Y))p = Zfi(p)((vi(y))p =0.
K3

Since an affine connection V gives rise to an affine connection on any
open submanifold, V gives rise to a set of functions I';;* on the coordinate
neighborhood U ; these functions are given by the formulas Vi(0]ox;) =
> 1;%0/0x;, and they in turn determine the affine connection on U.

A curve in a C* manifold M is a regular mapping of an open interval
I <R into M. The restriction of a curve to a closed subinterval is called
a curve segment. Let y: ¢ > y(f), £€l, be a curve in M and let X(¢)
denote the family of tangent vectors to the curve, that is X(t)=
dy(d/dt), t € I. Suppose that Y (¢) is a family of tangent vectors along y,
that is Y(t) € M, for each t € I. Assuming Y(t) to vary differentiably
with ¢, we shall now define what it means for the family Y(¢) to be
parallel with respect to p. Let J be a compact subinterval of I such that
the finite curve segment y;: ¢ - y(¢), t € J, has no double points and such
that y(J) is contained in a coordinate neighborhood U. Let {x,,...,x,}
be a coordinate system on U. It can be shown that there exist vector
fields X, Y € DY(M) such that

X, = X(), Y, = Y()

for t € J. The family Y (¢), ¢ € J, is said to be parallel with respect to v,
(or parallel along y;) if

(1) Vx(Y),s =0 forall ted.

In order to show that this definition is independent of the choice of X

and Y, we express (1) in the coordinates {z,, ...,z,}. There exist func-
tions X% Y7 on U such that

X = 2 .Xia/axi, Y = z Y’La/axi
3 i
on U. We write also for simplicity

zt) = z;(y(®),  XUt) = X'(p(t)),  Yi(t) = Yi(y(1)
for teJ and 1<i<m. Then X(¢)=dx,/dt and since

oYk . 0
@) Va(¥) = 3 (z xiZ 4y xi Yfl“ijk) o U,
PR ox; Oz,
we see that (1) is equivalent to
dY*
3 Piyi -
(3) o —+ > I dt ted,

%]
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In particular, the parallelism definition (1) is independent of the choice
of X and Y. It is now obvious how to define parallelism with respect
to any curve segment y; and finally with respect to the entire curve.
A curve y: t - y(t), tel, is called a geodesic if the family of tangent
vectors X (t) =dy(d/dt), is parallel with respect to y. It follows immedi-
ately from (3) that the system

dzxk dx.: dx.
4 i It it A,
) dt2+§j” dt dt
is a necessary and sufficient condition for the curve ¢ — (,(t), . . o> T (t))

to be a geodesic. From the existence and uniqueness theorems for the
system (4) it follows that given p € M and X € M, there exists a unique
maximal geodesic ¢ — y(t), t € I, in M such that y(0)=p, dy(d/dt),=X.
This geodesic will be denoted yx. The mapping X — yx(1) is defined
on a subset of M,. It is called the Exponential mapping at p and is
denoted Exp, (or simply Exp when no misunderstanding can arise).
An open neighborhood N, of the origin in M, is said to be normal if:
1) the mapping Exp,, is a diffeomorphism of N, onto an open neighbor-
hood N, of p in M; 2) N, is star-shaped, that is if X € Ny and 0<¢<1,
then tX € Ny. If N, is normal, the diffeomorphic neighborhood N, is
also called normal. The manifold M (with the affine connection V) is
said to be complete if for each p € M, the mapping Exp, is defined on
the entire tangent space M,,.

Let p and q be two points in M and y a curve segment from p to g.
It follows from the existence and uniqueness theorems for the system (3)
that the parallelism along y induces an isomorphism of M, onto M.
Let N, be a normal neighborhood of p in M. Let X € M, and for each
q € N, put (X*),=7,,°X, where 7,, is the parallel translation along the
unique geodesic segment in N, from p to q. The assignment q — (X*),
is a vector field on N, which is said to be adapted to the tangent vector X.

In order to extend the covariant differentiation to the mixed tensor
algebra D(M) it is convenient to describe Vx by means of the parallel-
ism.

LeEMMA 1. Let M be a C° manifold with an affine connection. Let
peM and X,Y € DY(M) such that X,+0. Let y: t — y(t) be an integral
curve of X through p=y(0), and let 7, denote the parallel translation from p
to y(t) along y. Then

1
(Vx(Y)), = lim= (¢, Y, — ¥,) .

8—>09$

This lemma is well known, but for completeness we sketch a direct
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proof. Consider a fixed number s= 0 and the vector field Z,4 0stss,
which is parallel with respect to the curve y such that Z,,=17,1-Y

¥(8)*
Let {x,,...,2,} be a system of coordinates in an open neighborhood U
of p such that z,(p)=...=x,(p)=0. Let Xi(¢), Yi(¢), Z/(t) denote the

coordinates of the vectors X, Yy(t), Z,, with respect to the basis 9/0x;,
1<7<m. Then
dzk

Zi =0, 0=t
dt 271

)
and Zk(s)= Y¥(s), 1 =k <m. By the mean value theorem,

IIA

s,

20) = 20) + 5 (" ).

where t* is a suitable number between 0 and s. Hence the k' com-
ponent of (1/s)(z,2- ¥, —Y,) is

é(zkm) — Y*(0)) = %{Z’“(s)—s (U%Zt—k)(t*) - Y"(O)}

=S Zi(t*) (F K )(t* +~ (Y¥s) = Y5(0)) -
%]

As s — 0, this expression has the limit

dY"
ZF"
44

Since X%(t)=du,/ds, this expression is the k™ component of (Vx(Y)),,
and the lemma follows.

The covariant derivative Vy can now be extended to the mixed
tensor algebra D(M). For a function fe C*(M) one puts

L1
(Vac )y = lim {1 ((6) ~/ )}
and for a tensor field T' € D(M)
1
(VxT), = lim— (7, T, = T,) .

s—>0 S

Then Vyf=Xf and Vy is a derivation of the tensor algebra D(M),
commuting with contractions.
The curvature tensor R and the torsion tensor 7' of the affine connec-
tion V are given by
T(X,)Y) = VxY-V,X-[X,Y]
R(X,Y) = VxVy—VpVx—Vix, 11
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for X,Y € DY(M). Then T is a tensor field of type (1,2) and R is a tensor
field of type (1,3).

Let M be a C* manifold. A pseudo-riemannian structure on M is a
tensor field g of type (0,2) which satisfies the two conditions: 1) g is
symmetric, that is, g(X,Y)=g¢(Y,X) for X,Y € DY(M); 2) for each p € M,
the value g, of g at p is a non-degenerate bilinear form on M,

Let g be a pseudo-riemannian structure on M. There exists a unique
torsion-free affine connection on M (the pseudo-riemannian connection)
with the property that the parallel translation preserves the inner
product on the tangent spaces. This property is equivalent to V,g=0
for all Z e DY(M). Let X,Y € DY(M) and apply V, to the tensor field
X ®Y ®g. Using the fact that V, is a derivation and commutes with
contractions it follows that the relation V,g=0 is equivalent to

(5) Zg(X,Y) = g(V,X,Y)+9(X,V,Y), X, Y € DYM).
From this relation and the formula

VY-V, X = [X,Y]
(expressing T'=0), it can be deduced without difficulty, that

(6) 29(X,VzY) = Zg(X,Y)+g(Z,[X,Y])+ Yg(X,Z)+g(Y,[X,Z]) -

for all X,Y,Z € DY(M). The uniqueness of the pseudo-riemannian con-
nection is obvious from (6); it can also be shown without difficulty that
the operator V,, as defined by (6), satisfies the axioms V, and V,. Hence
the relation (6) defines the pseudo-riemannian connection.

A C*® manifold with a pseudo-riemannian structure g is called a
pseudo-riemannian manifold. In the case, when g, is positive definite
for each p € M, we drop the prefix ,,pseudo’ and speak of a Riemannian
structure, Riemannian connection and Riemannian manifold.

3. The differential of the Exponential mapping.

An affine connection V on an analytic manifold M is called analytic
if for each point p € M, the vector field Vx(Y) is analytic at p whenever
the vector fields X and Y are analytic at p. In terms of local coor-

dinates, analyticity of V is equivalent to the analyticity of the functions
F/‘jkt

THEOREM 1. Let M be an analytic manifold with an analytic affine
connection V. Let pe M and X € M,,. Then there exists an &> 0 such that
the differential of Exp is given by
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f— e”'o(txt)
dE YW= (Y* , YeM,,
@BDIY) = G () Ve,
for |t|<e. (Here (1—e—4)/A stands for the series 3’ (—1)™/(m+1)!4™
and the manifold M, is identified with its tangent space at each point.)

In the proof below, we sometimes write F', for the value of a function
F at pe M. The mapping Exp is given by the solutions of the system
of differential equations (4); since the functions I';;* are analytic, the
mapping Exp is analytic at the origin in M,,. Let f be an analytic func-
tion at pe M. Then there exists a star-shaped neighborhood U, of 0

in M, such that
f(ExptZ) = P(tzy,...,l2,), ZeU, 0=t=1,

where P is an absolutely convergent power series and z,, .. .,z, denote
the coordinates of Z € M,, with respect to some basis of M,,. If ¢ is suffi-
ciently small,

d
(Z*f)Exptz = f(EXP (¢+u) Z) = d—tf(EXp tZ) ,

and by induction

dan
((Z*)nf)ExptZ = %,‘,f(EXP tZ) .
Using Taylor’s formula we find

(7) f(Exp Z) = Z%((z*)"f)p-
= !

Now, suppose Y is an arbitrary vector in M,. Then

d
d Expix(Y)f = Y,x(f° Exp) = @f(Exp(tX+uY))

u=0

If t and u are sufficiently small, we obtain from (7)

() f(Exp(tX+uY))—Z (X guroyp), = 3 s Ganly

m, nZO n+
where S, ., is the coefficient to t*u™ in ((X* +uY*)*+™, In part.icular
8y = (XFP T4 (X*)PAT*X* L+ VHXH)"

We differentiate the expansion (8) with respect to 4 and put u=0.
Then we obtain

oo n

d Expx (Y)f = Z

m ({(X*)" Y*4+ .. .4+ Y* (X*)n}f)p .
0 .
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Let D(N,) denote the algebra of operators on the vector space C*(N,,)
generated by the vector fields Z* as Z varies through M,. Let Lx.
and Ry, denote the linear transformations of D(N,) given by Lx.:
A - X*4 and Ry,: A >~ AX*. Since the Lie derivative 6(X*) equals
Lx.— Rx. on the subspace DYN,) of D(N,), we extend 6(X*) to D(N )
by the formula 6(X*)=Lx,— Rx.. Then 6(X*) and Ly, commute;
hence we have

(Rga® = (Lga— O(X*)™ = 3 (— 1) (p)(LX.)m—P(G(X*))”.
2

Using the relation
=\ k) \k+ 1)

(e 3 (=13 (") (epor ko)

it follows that

S

w1 = 2 (

p=0

< n+l *\n— *
-3 k+1)‘X) €O(— X*(Y*),

80

@ 7 ((EXH)nk (X *)E
n=0 ! p

For sufficiently small ¢, the right hand side can be rewritten by the
formula

(tX*)nk O(—tX¥)E
®) §(2 =kl G L )}f>,,

E ( X*)r[§ (—tX*)m (Y*)}f)p’

r=0 m=0 +l)

The justification of this interchange of summation is elementary, but
not altogether trivial. We outline the various necessary steps. Consider
the right hand side of (9). The inner series converges absolutely at each
point ¢ in a suitable neighborhood U of p, provided ¢ is sufficiently small.
This is easily seen by choosing a coordinate system {z;, . . .,,} in a neigh-
borhood of p on which X* has the form 0/ox,. (See e.g. Chevalley,
Theory of Lie Groups, Vol. I, p. 89.) The analyticity of V implies that
the coefficients g, given by Y*=3g,0/0x; are analytic functions; hence
the sequence (X*)%g,, n=0,1,..., grows no faster than x!. In this
manner one can also prove that the outer series on the right hand side
of (9) converges uniformly for all ¢ in some interval around the origin.
The interchange of summations (that is, formula (9)), then follows from
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Weierstrass’ classical theorem on double series. Since the right hand

side of (9) is 1 — e9¢X®

y*
6(tX*) (= ExptX

the theorem follows.

4. Examples and applications.

I. THE EXPONENTIAL MAPPING OF A LIE GROUP.

Consider the special case when M is a Lie group @, the point p is the
identity element, and the affine connection V is the left invariant affine
connection on @ given by R=0, T(X,Y)= —[X,Y], X,Y being any left
invariant vector fields on @G. This is the (—)-connection on @ in the
notation of Cartan—Schouten [3] and Nomizu [6]. It has the property,
that the geodesics y through e are precisely the one-parameter subgroups
of G, and the parallel translation along y is given by left translations.
Consequently, the Exponential mapping Exp, reduces to the ordinary
exponential mapping exp for G and X* is the left invariant vector field
on G such that X* =X. Let L(g) denote the left translation on G by
the group element g and let ad denote the adjoint representation of the
Lie algebra g of ¢, adX(Y)=[X,Y], X,Y € g. Then the formula of the
theorem reduces to

1— e—adX

d expyx = dL(expX)o —adx

for sufficiently small X € g. Using the analyticity, it is easy to show
that the formula actually holds for all X € g.

II. THE EXPONENTIAL MAPPING FOR A PSEUDO-RIEMANNIAN MANIFOLD.

THEOREM 2. Let M be an analytic manifold with a pseudo-riemannian
structure g. We assume that the tensor field g is analytic and that M is
complete (in the pseudo-riemannian connection). Let p be a point in M
and let Exp stand for Exp,. Then

gp(X’ Y) = gEpr(d EXPX(X)’ d EXPX(Y))
for X,Y e M,

Proor. Let N, be a normal neighborhood of p in M and if Z e M,
let Z* denote the vector field on N, adapted to Z. Let X,Y € M,,.

If  is sufficiently small, then Exp ¢tX e N,. It is obvious from Lemma 1,
that

(10) (VxelZ*)xpix = 0.
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Moreover, if 4 is any vector field on N, we have from (5)
(11) 9(Z*,V 42*) = $49(Z*,Z%) = 0

because g(Z*,Z*) is constant on N,. We shall now prove by induction
that
(12) g(X*, 0(X*)(Y*))gxpix = 0

for each integer n>0. For n=1, the equation (12) follows from the fact
that the torsion is 0, so

[X*7Y*]Exth = (VX*( Y*))Exth_ (VY'(X*))ExplX = - (VY‘(X*))Exth;
hence
g(X*’[X*:Y*])Exth = ——g(X*, VY*(X*))Exth =0.
Assuming (12) for an integer n >0, we have
gExplX(X*> [X*7 B(X*)n( Y*)]) = JExptx (X*7 VX*(O(X*)n( Y*)))
due to (11) and the vanishing of the torsion. Using (5) again, we obtain
g (X*, Vo (BX*)™ Y*)))mxpix
= (X*- g(X*,0(X*)(Y*)))mxptx —9(Vx(X*), 0(X*)™ ¥ *))gxp ix -

Both terms on the right hand side vanish due to (10) and the induction
hypothesis (12). This proves that

g(X*,0(X*)" Y *))pxpix = 0,
so (12) holds for all n>0. Using Theorem 1 and (12) it follows that
(13) gExth(d Exth (X), d Exth(Y)) = g(X*: Y*)Exth = gp(XaY)

if ¢ is sufficiently small. Now if M is an analytic manifold with an ana-
lytic, complete affine connection, the mapping Exp, is an analytic
mapping of M, into M. It follows that the left hand side of (13) is
analytic in ¢, hence constant, so Theorem 2 is proved.

CoroLrArY 1. If Y € M, is a null vector of d Expy, then g,(X,Y)=0.

CoroLLARY 2. Let S, denote the ,,sphere” g,(X,X)=1% in the tangent
space M, (g, ts not necessarily positive definite). Let S,=Exp, S, and
assume that the mapping Exp, is regular on S,. Then each geodesic eman-
ating from p intersects S, orthogonally.

In fact, each straight line in M,, through p intersects the sphere S,
orthogonally with respect to the inner product g,. Since the tangent
space to S, at X is mapped onfo the tangent space to S, at Exp, X,
the corollary follows from Theorem 2.
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ITI. GAUSSIAN CURVATURE AND THE RIEMANNIAN CURVATURE TENSOR.

Let M be a C* manifold with an affine connection V. The curvature
tensor R is obviously skew symmetric:

(14) RX)Y) = —R(Y,X), X,YedDY(NM).
If V is torsion-free, the Bianchi identity
RX,Y)Z+R(Y,Z)-X+R(Z,X)-Y =0, X, Y,ZeD(M),

is easily verified. If V is the affine connection arising from a pseudo-
riemannian structure ¢, then

(15) g(RX.Y)Z,T) = —g(R(X,Y)T,Z)

for X,Y,Z,T € D(M). This well known skew symmetry is verified as
follows: It suffices to verify (15) at each point p € M; hence we can
assume that M is a normal neighborhood of p and that the vector fields
are adapted to their value at p. From (6) we find in this case

Using (5) and the relation (V5(Z)),=0 it follows that

95 (R X, Y)Z,Z) = g,(VxVyZ,2)~g,(VyVxZ,Z)
= X,9(VyZ,2)-Y ,9(VxZ,Z) = 0
which is equivalent to (15).

Let F be a Riemannian manifold of dimension 2 and let p be a point
in F. Let B,(0) denote the open disk in the tangent plane F, with cen-
ter 0 and radius r. If r is sufficiently small, the mapping Exp, is a
diffeomorphism of B,(0) onto the open disk B,(p) in F, consisting of all
points ¢ € F' whose distance from p is less than r. Let A4,(r) and A(r)
denote the areas of B,(0) and B,(p) respectively. The Gaussian curvature
of F at p is defined as the limit
(16) K = lim12 fl—ﬁ:)—Am .

r—0 r24,(r)
As is well known from the differential geometry of surfaces, this is
equivalent to Gauss’ original definition in terms of principal curvatures.
The existence of the limit above is contained in the following lemma
which at the same time facilitates the computation of K.

LemMA 2. Let f denote the Radon—Nikodym derivative of Exp, on B,(0)
(that is, f is the ratio of the corresponding surface elements on B, (p) and
B,(0)). Then

o K = ~§(4f).
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where A is the Laplacian on the metric vector space F,, A= 02[0x,®+ 0%/0x,?,
x, and x, being coordinates with respect to some orthonormal basis.

The proof is an immediate application of Taylor’s formula, see [4].

Let M be a Riemannian manifold with Riemannian structure g and
curvature tensor E. Let p be a point in M and let Exp stand for Exp,,.
Let N, denote a normal neighborhood of 0 in M, and let N,=Exp N,.
Let S be a two-dimensional vector subspace of M,. Then Exp (N,nS)
is a connected submanifold Mg of M of dimension 2 and has a Riemann-
ian structure induced by that of M. The Gaussian curvature K(S) of Mg
at p is called the sectional curvature of M at p along the plane section S.
Using Theorem 1 we shall now prove the classical formula

_ 5,(R,(Y,2)Y,2)

a7 K(8) = Tezi

where Y and Z are any linearly independent vectors in S; Y v Z denotes
the parallelogram spanned by these vectors and |Y v Z| denotes the
area. In order to apply Theorem 1 we shall first assume that M and ¢
are analytic. We also assume temporarily that the vectors Y and Z
in S are orthonormal. Let X,,...,X,, be an orthonormal basis of M,
such that X;=Y and X,=Z. Then each X € § can be written X =
. X, +2,X,, %;,2,€ R, and the Laplacian on S is A =2a%/0x,%+ 0%/0x,2.
A curve in the manifold Mg has the same length regardless whether it is
measured by means of the Riemannian structure on M or by means of
the induced structure on Mg If q€ Mg, the unique geodesic in N,
from p to ¢ is the shortest curve in Mg joining p and q. It follows that
the Exponential mappings at p for M and Mg respectively coincide on
SnN, Let X;* ...,X,* X* denote the vector fields on N, adapted to
the tangent vectors X;,...,X,,. If X e SnN,, we put

v; = Expy (X)), v, = Expy(X,)

and define the functions c;* on N, by

IA

m
(18) [Xi*"Xj*] = zciijk*, 1 _S_ i, j m .
k=1
The mapping Exp (2, X, +2,X,) - (2;,2,) is a system of coordinates
on the manifold Mg and the vectors », and v, are tangent vectors to M.
They can therefore be expressed

m m
v = .ZfiXi*’ Vg = Z ngj* ’
=1 J=1
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where f;, g; are analytic functions of x, and x,. For sufficiently small
z; and x,, these functions can be determined by Theorem 1. In fact, we
have

(19) vy = X* = HX* X+ [X5 (X X -

(20) vy = Xp*— H[X* X+ 3 [ X% [X5, X,4]] - ... .

The function f is the ratio of the surface elements in SNN, and Mg.
Hence

AL
J(&) = | X v X

= vV, .

The projection of the parallelogram v, vv, into the (X*, X;*)gy, x-plane
has area
\fi95 —F395l | X* v X% = 1fi9,— 1394 -

vy v vy|? = E (fi9;—1;9:" -

1>

Let this quantity be denoted by F. The relation f=F* implies

2fAf = AF ! (8F>2 + <6F 2}

B B 2f2l o, 8x2> ’

This expression has to be evaluated for (x;,2,)=(0,0). Since the torsion
vanishes, we have

[Xi*, Xj*] = VXi*(Xj*)_ VXj‘(Xi*)

It follows that

s0, by (10), the functions c;* vanish at p. From (19) and (20) we obtain
expansions for the functions f; and g;

Ji = 030 — 329001" + $2,25( X ¥ Cor) + 302 (Xp* ) + - . -
95 = 05— 3®10157 + §m125(Xp* 1)) + 32, (X *erg) + . o

where ¢,; is Kronecker’s delta and the terms which are not written
vanish for (z;,x,)=(0,0) of higher than second order. It follows that
oF[ox, and oF [0z, vanish for (x,2,)=(0,0) so

2(4f )y = (AF) = (A(flg2)2)0 .
Omitting again terms of higher than second order we have

(f192) = 1 —2;015% —@y001 1 + 32, 2(X ¥ 01p7) + 3,2 (X % cpt) +
+ 3212y (X ¥ et + Xp*p57) -
Since
X2 = (Xy*Cpo?)y = (0/0my 15%)y ete.

we obtain
2(4f)p = —§(Xyc?+ Xpe) s
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so due to Lemma 2
(21) K(8) = X,9([X,*, Xp*], X,*) + X9 ([ X,p*, X *], Xp%)
On the other hand, using the relation [X*, X;*],=0 together with (5)
and (10), we find

_gp(-Rp( Y,Z)Y,Z) = gp(vxz’VXI'Xl*"XZ*) ——gp(VXl*sz‘Xl*5X2*)

= ng(vxl-Xl*,Xz*)—X19(VX2»X1*,X2*) s

which by (6) equals the right hand side of (21). This proves (17) in the
analytic case when Y and Z are orthonormal. If Y and Z are any linearly
independent vectors in § we can write 4d=y,Y +2,Z, B=y,Y +2,Z
where A and B are orthonormal vectors in S. Using the skew symmetries
(14) and (15) we find

K(S) = —g,(R,(4,B)A, B)
—0p(Bp(1:1Y +2: 2,y Y +2,2)(1 Y +2.2), 4, Y +2,2)

9, (R(Y,2)Y, Z
"(ylzz_yZZI)zgp(Rp(Y>Z)Y’ Z) = —:F TYVZP )

Il

Il

Finally, since both sides of the formula (17) only depend on ¢ in an ar-
bitrary small neighborhood of p, one can derive (17) in the C* case by
approximating the € Riemannian structure g by analytic Riemannian
structures g,, for which (17) holds.

5. Pseudo-riemannian manifolds of constant curvature.

The definition (16) has no meaning in the general pseudo-riemannian
case when g is no longer positive definite. However, using the formula
(17) as a motivation, we can give a definition of sectional curvature
which applies to all cases.

DerFINITION.. Let M be a C manifold with pseudo-riemannian struc-
ture g and curvature tensor R. Let p be a point in M. Let S be a two-
dimensional subspace of the tangent space M, such that the restriction
of g, to S is non-degenerate. The sectional curvature K(S) of M at p
along the section § is defined by

(R DX,Y)
gp(X’X) gp(Y:Y)_gp(X;Y)z

(22) K(S) =

X and Y being any linearly independent vectors in S.
Some remarks are necessary in order to make the definition legitimate.
We first observe that in the Riemannian case,
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X v Y2 =g,X,X)g,(Y,Y)—g,(X,Y),

so the definition is then equivalent to the previous one. Secondly, the
fact that g, is non-degenerate on S insures that the denominator in (22)
is not zero. Finally, the skew symmetries (14) and (15) imply that the
right hand side of (22) is independent of the choice of X and Y in S.

Suppose for a moment, that, for each p € M, K(S) is a constant K
independent of p and § (assuming of course that g, is non-degenerate
on S). Then the relation

(23) 9p(Bp(X,Y)X,Y) = K(g,(X,Y)? — g,(X, X)g,(Y,Y))

holds for all p and all pairs (X,Y) € M, which span a two-dimensional
subspace on which g, is non-degenerate. But then, by continuity, (23)
holds for all X,Y € M,. In this case we say that the pseudo-riemannian
manifold has constant curvature.

Consider the quadri-linear function on M, x M, x M, x M,,

B(X,Y,ZT) = gp(Rp(X,Y)Z,T)—K{gp(X,T)gp(Y,Z) —9,(X,Z)g,(Y,T)} .
The function B satisfies the identities

B(X,Y,Z,T) = —B(Y,X,%,T), B(X,Y,ZT)= —BX,Y,T,%)
B(X,Y,ZT)+B(Y,Z,X,T)+B(Z,X,Y,T) = 0
B(X,Y,X,Y) = 0

It is elementary to verify that these four identities imply that B is
identically 0. Consequently, the relation

for X,Y,Z,T € DY(M), is a necessary and sufficient condition for the
pseudo-riemannian manifold M to have constant sectional curvature K.

Now let K be any constant and let p and ¢ be two non-negative integers
such that p+¢>1. We shall construct a pseudo-riemannian manifold
whose pseudo-riemannian structure has signature (p,q) (that is p plus
signs, ¢ minus signs) and sectional curvature K. The special case p=1
is considered in detail in [5]. Since the general case! offers no additional
difficulties, the proofs involved are only outlined.

Consider the quadratic form

P p+g+1
QX) = Q(=y, . . "xp+q+1) = Z z?— 2 sz
=1 J=p+1

1 Added in proof: The more general question was raised in a letter by Dr. J. Wolf; in
his forthcoming paper [7] the global classification problem is studied.
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and let O(p,q+ 1) denote the group of linear transformations leaving @
invariant. The subgroup of O(p,q¢+1), which leaves the point p,=
(0,...,0,1) € RP+e+! fixed, can then be identified with the group O(p,q).
The coset space O(p,q+1)/O(p,q) is diffeomorphic, by means of the
mapping p:20(p,q) - x*p,, € O(p,q + 1), with the orbit of the point p,
under O(p,q+ 1). This orbit is the quadric @(X)+1=0. The Lie algebra
0o(p,q+ 1) of the group O(p,q+ 1) can be identified with the Lie algebra
of all real square matrices of the form

X, X
@ (5 %)

where X, is an arbitrary matrix of p rows and ¢+ 1 columns, !X, denotes
the transpose of X, and X; and X, are skew symmetric matrices of orders
p and ¢+ 1 respectively. The Lie algebra o(p,q) of the subgroup O(p,q)
is obtained by replacing all elements in the last row and the last column
in (25) by zeros. The Killing form B(X,Y)=Tr(adX-ad Y) of o(p,q+1)
is given by
B(X,Y) = (p+q—1) Tr(XY).
It follows that B is non-degenerate, so the Lie algebra of 0(p,q+1) is
semi-simple.
Let s, denote the linear transformation of RP+2+1 given by

Sot (Tps e Ty Tpigir) > (=% o o o5 = Zp i Tpigan) -

Then the mapping o: x — s4sy, * € O(p,q+1), is an involutive auto-
morphism of O(p,q+1). The corresponding automorphism of the Lie
algebra o(p,q+1) is do: X — 5,Xs,, and it is easy to see that 0(p,q) is
the set of all fixed points of do. Let m denote the eigenspace for the
eigenvalue —1 of do. Let as usual £}; denote the matrix

Ekl = (amkanl)1§m§p+q+l, 1Snsp+g+l *
Then m has a basis consisting of the matrices
Z; = Eip+q+l+Ep+q+1i9 l<i=2p;
Zy = Ejprg1—Epignjy P+H1=J = ptyq.

In the formulas below, the range of the indices ¢, j is 1=Z¢=p,

p+1=j<p+q. Then
B(Z;,Z;) = 2(p+q-1),

B(Z;,Z;) = —2(p+q-1).

Therefore, the bilinear form B*=B/2(p+g—1) on m x m is non-degener-
ate and has signature (p,q). Let = denote the natural projection of
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O(p,q+1) onto O(p,q+1)/0O(p,q). The differential (dn), induces an
isomorphism of m onto the tangent space to O(p,q+1)/O(p,q) at =(e);
for simplicity in notation we identify m with this tangent space. There
exists a unique pseudo-riemannian structure g on O(p,q+1)/O(p,q)
invariant under the action of O(p,q+1) such that g, =B*.
Since the space O(p,q+1)/0(p,q) is symmetric, the curvature tensor R
at the point z(e) is given by (Nomizu [6])
R(X’Y)'Z = —[[X7Y]aZ]
for X,Y,Zewm. Let X=3x,Z,+3x;Z;, Y=3y;Z;+>y;Z;. Then
B*(R(X,Y)X,Y) = — 3Tr((([X,Y,X])Y)
= —3Tr(XYXY-YXXY-XXYY+XYXY)
=Tr(XXYY-XYXY).

A simple computation shows that
Tr(XYXY) = 3 (29 + 2, (29,2 + (X 29— 2, 4;9;)%
Tr(XXYY) = 3 (2;9:)*+ 2, (x;9;)%+ PXAEDS sz) (Z Y= yjz) )
B*(R(X,Y)X,Y) = B¥X,X)B¥Y,Y)-B*X,Y)2.

80

In view of (23) this shows that the space O(p,q+ 1)/O(p,q) has sectional
curvature — 1 for all sections through the point z(e). Since the space is
homogeneous, it has constant curvature —1.

On the other hand, the mapping y above is a diffeomorphism of
O(p,q+1)/O(p,q) onto the quadric (X)+1=0. The quadratic form @
on RP+2+l induces a pseudo-riemannian structure on this quadric, in-
variant under the action of the transitive group O(p,q+1). We shall
now prove that the mapping v is an isometry; due to the homogeneity,
it suffices to verify that the differential dy,,, is an isometry of m onto
the tangent plane z,,,.,=1 to the quadric @(X)+ 1=0 at the point p,.
Since y((exptX)O(p,q))=exptX-p,, it follows that dy,,(X)=X-p, for
X e m. Consequently

dwn(e) (Zn) = (617:,? cee 6p+q+1n) for 1 =n= p+q ’

which shows that
Q (dy.( X)) = BX(X,X)
and y is an isometry.
The preceding discussion is summarized in the next theorem.

THEOREM 3. Let p and q be two non-negative integers such that p+q>1.
Let V be a vector space over R of dimension p+q+1.

Math. Scand. 9 — 10
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I. Let Q— be a quadratic form on V with signature (p,q+1) and let X _

be some fixed vector in V for which @—~(X_)<0. The quadric
Q-(X) = @~(X.)

has a pseudo-riemannian structure of signature (p,q) tnduced by @-. This
pseudo-riemannian manifold is complete, symmetric and has constant sec-
tional curvature <0.

I1. Let @+ be a quadratic form on V with signature (p+1,q) and let X |
be some fixed vector in V for which Q+(X,)>0. The quadric

Q+(X) = @+(X,)

has a pseudo-riemannian structure of signature (p,q) induced by Q+. This
pseudo-riemannian manifold is complete, symmetric and has constant sec-
tional curvature > 0.

III. The quadrics in I and I1 exhaust the class of pseudo-riemannian
manifolds of constant curvature +£0 up to local tsometry.

The first part is already proved. The second follows from I applied
to the quadratic form —@+. Concerning III, let M be a pseudo-riemann-
ian manifold of constant curvature. It follows from (24) that the curva-
ture tensor R is invariant under parallelism, so M is a locally symmetric
space. The pseudo-riemannian connection on M is therefore determined
locally by the value of R at a given point (Cartan [2, p. 237], Nomizu
[6, p. 63]). A diffeomorphism ¢ leaving a pseudo-riemannian connection
invariant is an isometry, provided dg, is an isometry for some point p.
It follows that for each p € M there exists an open neighborhood N,
isometric to an open set of a quadric as defined in I or II. This concludes
the proof.
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