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DETERMINANTS OF A CERTAIN CLASS OF
NON-HERMITIAN TOEPLITZ MATRICES

GLEN BAXTER and PALLE SCHMIDT

1. Introduction.

In this paper we will establish an elementary identity between two
determinants and illustrate its use as at a tool for investigating a certain
class of Toeplitz determinants. The feature of our identity which makes
it useful in such investigations is that it equates a determinant of “large”
order n to one of fixed ‘““small” order k. Thus, using only elementary
techniques, precise information can be obtained on the asymptotic be-
havior of certain n x n Toeplitz determinants as n becomes infinite.

We first introduce some notation. With any formal Laurent series

f=24,2"

we associate a sequence of nxn Toeplitz determinants defined by
Dy(f)=1 and
Ay, A, ... A_ 4

D,(f) = “4.1 4o "‘A“"“, n=12....

A, A, ... 4,

If the Laurent series f actually converges for some z, the function
thus defined in a certain set in the complex plane will also be denoted
by f.

The case that will be of interest to us in this paper is that in which f
is a “‘one sided”’ Laurent series in the sense that f has only a finite number
k of negative powers of z. In that case, only the first t diagonals above
the main diagonal in the determinants D,(f) can consist of non-zero
elements.
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We now state the identity.

THEOREM 1. Let g and h be formal Laurent series, which are formal
power series,

,  ay=1, a,=0 for m<0,

g
h

D @y 2™
0

b, zm, b,=1, b,=0 for m<0,
S m 0 m

and let g and b be formally inverse of each other, i.e.

gh = <zamzm> (z bmz’"> =1.
0 0
Then for all n,k=0,

(L1) D,(z*g) = (= 1)™*Dyz"h) ,

that 1s
A g oo Oy by, bp1 oo by
A1 A cee Qppyo — (__ l)nk bn+1 bn e bn—k+2
Opin-1 pin—2 -+ - O bpik—1Onin—2 - by

Although Theorem 1 shows a complete duality between the roles of n
and k, we will be primarily interested in the case in which %k remains
fixed and n becomes infinite. We use Theorem 1 to investigate the
asymptotic behavior of the Toeplitz determinants associated with a “one
sided” Laurent series of the form

(1.2) f - zkg =2z*Ya,z", ay=1, a,=0 for m<O0.
0

In that special non-Hermitian case we obtain the following analogue of
G. Szegd’s theorem on the asymptotic behavior of Toeplitz determinants
(cf. [2] or [1, p. 76]).

THEOREM 2. Let the Laurent series (1.2) satisfy the conditions

) S gl < o,
0
(ii) log f(e¥®) = ghmei’"" with §|hm| < oo,
Then - ~
D.(f) <
(1.3) K k] exp [21: mhmh_m] .
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Condition (ii) states that log f(e?) has an absolutely convergent
Fourier series. Provided (i) holds, this is equivalent, by the Wiener-Levy
theorem [4, Chapter VI, (5.2)], to the condition that the curve traversed
in the complex plane by f(2) as z=¢% traverses the unit circle has winding
number zero around the origin.

For any formal Laurent series f and any complex number » we denote
by f(rz) the formal Laurent series obtained by replacing z in f by r=z.
It is easy to see that for r+0

D,(f) = D,(f(rz)), n=0,1,2,....

Hence, if for some >0 the Laurent series f(rz) satisfies conditions (i)
and (ii), the asymptotic behavior of D,(f) can be found from Theorem 2.
Finally it is obvious that the requirement ay=1 in (1.2) can be re-
placed by ay# 0.
As another application of Theorem 1 we give an expression for the
Toeplitz determinants of an arbitrary Laurent polynomial

g
(1.4) f=zF*g =2"%*3a,zm, qzk, ay=1, a,+0,
0

in terms of the zeros of that polynomial, or equivalently, in terms of
the zeros g,,0,, . . .,0, of the polynomial

29g(z71) = 224 ay297 1+ ... +ay,.
We will prove

TaEOREM 3. If the Laurent polynomial (1.4) has no multiple zeros, then
forn=0,1,2,...

(1.5) D,(f) = (~1* 3 (T erra-*) (Ig (ei—e,»-l) ,

I \iel ;Zj
where I runs through the set of all subsets of cardinality k of the set
{1,2,...,q} and where [={1,2,...,q}—1.

Theorem 3 is a sharpening of a result due to Harold Widom, who
proved in [3] that if a Laurent polynomial f has no multiple zeros, then
D, (f)=0 if and only if the right hand side of (1.5) vanishes.

Theorems 1 to 3 are proved in Sections 2 to 4, respectively.

2. The proof of the identity (1.1).

We use the notation introduced in Theorem 1. The proof is based on
the simple trick of multiplying by the determinants D,(g)=D,(h)=1.
We consider, for n 2k,
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n
Dn(z—kg) Dn(h) = det (z ak”_,,,b,,_j) N 1,) = ].,2, PN (2
v=1
Using the reciprocal property
m
>ab, , = 0, m=0,1,2,...,

of the Laurent series ¢ and 4, we find that

" Okrs, for isn—k
2.1 a.., b . o= n+k
( ) vgl bty —_ z ak_*_i_vbv_j fOl‘ 7/>n—k .
v=n+1
Thus,
0 1 1 }n—-k

D, (z7*g) D,(h) = ,
N ‘ M }k

k n—k
where I is the identity matrix of order n —k and where N and M are
suitably chosen matrices. In simpler terms

D, (z7%g) Dy(h) = (—1)k=H det(N) .

The elements of NV can be found from (2.1) by the simple change of sub-
scripts ¢’ =¢—(n — k). Dropping primes, we have

n+k
D,(a4g) D) = (=10 det (= '3t by)

rv=n+1
k
= (= 1y det(zai_”bnw_j), ij=12.. k.
p=1
Hence for n=>k
D, (27%g) D, (k) = (—1)"* Dy(g) Dy(z"h) ,

which proves Theorem 1.

3. The asymptotic behavior of the Toeplitz determinants of a “one-
sided” Laurent series.

We assume as given a Laurent series f=z"%g of type (1.2) satisfying (i)
and (ii) of Theorem 2. By the principle of the argument, condition (ii)
implies that g has exactly k zeros inside and no zeros on the unit circle,
and that we can write

k
(3.1) 97t =0@ I (1+02)7,

v=1
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where 1< |0,/ S0y = ... £|0y], and where
=>¢q,2" with > lg,| < .
0 0

Furthermore, ¢(z)+0 for |z|<1.
The proof of Theorem 2 will be essentially contained in the proof of
the following asymptotic formula:

k
(3.2) D,(f) ~ (oy. .. Gk)”l:[lQ(—Gfl), n—> oo,

To prove (3.2) we introduce the quantities D, (¢,5), ¢=1,2,...,k,
i=12,...,k, m=0,1,2,..., defined by

o k k
(3.3) Z (52" = Q) IT (1+0,2) H1(1 +0,2) .
m=0 v=1 v=7+

From (3.1) we see that the coefficient of 2™ in h=g-1is D, (1,k). Thus,
by Theorem 1 we have

Dy(f) = (= 1y** det(Dpriy(LE), 4§ = L,2,...,k.

Let us now consider the two k x k matrices (m;;) and (n;;) whose en-
tries are defined by the relations

k i—1
S myzi-i = [[(1+0,2), i=12,....k,
Jj=1 r=1
and % .
Sny2d =Tl (1+02), Jj=12,... k.
i=1 v=j+1

Note that both (m,;) and (n;) are subdiagonal with m;=n,;=1, i=
1,2,...,k, so that dot(my;) = det (n) = 1.
Note also that the ¢j’th element of the matrix product

(my;) (Dn+i—j( 1, k)) ()

is exactly the coefficient of z7+-7 in

-1 00

TI¢( 1+o’z)H (14+0,2) ED L,k)yzm = > D,,(3,) 2™
v=1 y=j+1 m=0

In other words
det(Dnﬂ-_j(l,k)) = det(DM,:_j(i,j)), 1,7 =12,...,k,

and we have reduced the problem to finding the asymptotic behavior
of the determinant on the right in the above equation.
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By tedious but elementary calculations we find from (3.3)

limD,,(¢,5) = 0 for ¢ > j,

|D,(%,5)] < const.nk|o;|*  for ¢ < j,
'Dn(.?n?) = (—Gj)n Qn(—o'j_l) ’

where @,(z) is the n’th partial sum of @(z). Thus, dividing the j’th
column of det(D,.;_;(3,5)) by D,(j,j) we see that

k
Dn(f) = (=1 det(DnHZ—j(i’j)) ~ (op. .. op)" ]_:];Q( —0o,7), n —> oo,

and (3.2) is proved.
To finish the proof of Theorem 2 we merely note that from

oo k
> hpam = > log(zt+0,)—logQ(z), =z =9,

v=1
follows
= logo,...0y
and o k [+ k
>mhyh = =3 > h,(—0, )" =1log ] Q(—0,™).
1 v=1 m=1 v=1

4. The Toeplitz determinants of an arbitrary Laurent polynomial ex-
pressed by the zeros of that polynomial.

Let f=2z"%g be a Laurent polynomial of form (1.4). Let g,,0,,...,0,
be the reciprocals of the zeros of f, or equivalently, the zeros of the poly-
nomial 27g(z~1). Finally let g; =, for ¢ 5.

By Theorem 1 we have the following expression for the n’th Toeplitz
determinant associated with f

(4.1) D,(f) = (mL)* det(b,,;—;), %j=12,...,k,
where b,, =0 for m <0 and

> bum = g7(2) H(l e,?)

m=0

By expanding in partial fractions we obtain

q
(4.2) bm = zAvam’ m = 0, 1’2) see
v=1
where
4, =0 Tl (0,—0)" »=12,....q.
uEy
The expression (4.2) for b, also holds for m=-1,-2,...,—¢+1,

because for all m
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1 o ...pg%%gme?
g 1 .. pg1% ggmHa-1
> A4,0m =TI (e.—e)? ez S E
o} it e e
1 g, ...p0%0mt1

Hence by (4.1) and (4.2) we have, for n=0,1,2,...,

q
D,(f) = (~1y%det (3 A,0mi1),  ij =12k

v=1

We can write the kx k determinant on the right as a product of two
g x ¢ Vandermonde determinants as follows

(=)™ D,(f) =

A, A, .4, 1 g ...p %% lgntek . gnite1
Ayort Agee™t L. Age,t boee ... 077K g taH L gyntet
Ay0;77 Aot L A, Y 1 o, ... p TR g mteE L g ntet

From this we easily derive the expression (1.5) by Laplace expansion of
the second Vandermonde determinant above after the last k& columns.
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