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ON SOME RESULTS OF JONSSON AND TARSKI
CONCERNING FREE ALGEBRAS

H. JEROME KEISLER

1. Introduction.

In the paper [3] which precedes this note, Jonsson and Tarski give
sufficient conditions for a class K of algebras to have certain properties,
which they have named Property 1 and Property 2 (see [3, pp. 95 and
96). However, in many cases the results of [3] are not adequate to settle
the question of whether K has Properties 1 and 2. In this article we shall
prove two theorems which extend the applicability of the results of [3].

The main results of this paper, Theorems 1 and 2, involve the notion
of a reduct (cf. Tarski [4]) of an algebra 9, which is obtained from U
by doing away with some of the operations of 9. Roughly speaking,
the main results state that if for every sufficiently small set of opera-
tions, the class of reducts of members of K to this set of operations has
Property 1 or 2, then K itself also has the same property.

As an example we shall see that the class of vector spaces over the
field of rational numbers can be shown, by combining our theorems with
the results of [3], to have both Properties 1 and 2; however, this class
does not satisfy the sufficient conditions for Properties 1 and 2 given
in [3].

The questions answered by Theorems 1 and 2 were proposed by Pro-
fessor Jerzy L.os. The author is grateful to both X.0§ and Tarski for their
interest in this work.

2. Notation.

We shall here assume all the terminology which was introduced in [3].
Throughout this note, we shall let « be an arbitrary ordinal, u=(v.),_,
be an «-termed sequence of ordinals, 9 and B be arbitrary algebras of
type u, and K be an arbitrary class of algebras of type u.

Let s be any subset of x. We shall call the algebra (4,0;),., of type
(VDo the s-reduct (cf. Tarski [2]) A | s of the algebra . Similarly, we
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shall use the notation K] s for the class {3 ]s | % € K} of algebras of
type {ve)ecs

We shall call a cardinal m regular if any family of fewer than m car-
dinals, each of which is less than m, has a sum less than m. For example,
the cardinals Xy, 8;,R,,... are all regular, but the cardinal x, is not
regular. Throughout our discussion we shall assume that m is the smallest
infinite regular cardinal such that c(v,) <m for all & <a.

B is said to be a subalgebra of A if B< A, and for each & <, B is closed
under the operation O,, and P, is the restriction of O, to B. Every
non-empty set X <A generates a unique subalgebra of %A. If »,=0 for
some & < «, then the empty set also generates a unique subalgebra of .
Otherwise, the empty set never generates any subalgebra of . When-
ever we speak of the subalgebra generated by X, we shall implicitly
assume that X does generate a subalgebra.

3. General theorems.

Lemma 1. Suppose the element a is contained in the subalgebra of A
generated by the subset X < A. Then there is a subset s <« such that c(s) <m
and a is contained in the subalgebra of A | s generated by X.

Proor. Assume the hypothesis is satisfied. Without loss of generality,
we may assume that X generates 2. Consider the set 4¢={b|be 4,
and for some s <« such that c¢(s) <m, b is contained in the subalgebra of
A ] s generated by X}. Obviously X< A4, Suppose &< and @<y,
is a sequence of elements of 4,. For each x <, there exists s, S« such
that c(s,) <m and a, is contained in the subalgebra of % ] s, generated

by X. Let 8={§}UU6,,.

x<v£
Since m is regular and infinite, c(s) <m. But O;({@.).<,,) is clearly in
the subalgebra of 2 | s generated by X, and is therefore contained in 4,.
Hence 4, is closed under all operations O,,& <«. Since X generates ¥,
we have 4,=4, and therefore a € 4,,.

Lemma 2. Suppose the subsets X< A and Y <A each genmerate the
algebra A. Moreover, suppose ¢(X)<m and ¢(Y)<m. Then there is a
subset s <o such that c(s)<m and X, Y each generate the same subalgebra

of Als.

Proor. Assume the hypothesis is satisfied. By Lemma 1, for each
z € X there exists a subset ¢, <« such that ¢(¢,) <m and z is in the sub-
algebra of % ]¢, generated by Y. Let t=U, x?,. Since m is regular,
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¢(t)<m. Moreover, X is included in the subalgebra of 2 ]t generated
by Y. By the same argument, there exists a subset ¥ =« such that
¢(z)<m and Y is included in the subalgebra of % ] u generated by X.
Now let s=¢tuUwu. Since m is infinite, ¢(s)<m. Also, each of X, Y is
included in the subalgebra of 9 7]s which is generated by the other.
Therefore X and Y generate the same subalgebra of 9 ] s.

THEOREM 1. Suppose that for each subset s<« such that c(s)<m,
K s has Property 1. Then K has Property 1.

ProOF. Assume the hypothesis is satisfied. Suppose the algebra A
is K-freely generated by the finite set X. Let Y be a subset of 4 such
that c¢(Y)<c¢(X), and suppose Y generates 2. We shall arrive at a
contradiction.

Since m is infinite, we have ¢(X)<m and ¢(Y)<m. By Lemma 2,
there is a subset s<« such that ¢(s)<m and X, Y generate the same
subalgebra 9, of A ]s. However, it is easily seen that X K] s-freely
generates %,, because X K-freely generates . Therefore K |s does not
have Property 1, contrary to hypothesis.

THEOREM 2. Suppose that for each subset s <o such that ¢(s)<m, K]s
has Property 2. Then K has Property 2.

ProoF. Assume the hypothesis is satisfied. Suppose U is K-freely
generated by the finite set X. Let Y be another subset of 4 such that
¢(Y)=c(X) and Y generates . We wish to show that Y generates
A K-freely.

Let 9B be any algebra in K, and consider an arbitrary mapping f € BY.
We must show that f can be extended to a homomorphism of 9 into 8.

Since ¢(X)=c(Y)<m, we may apply Lemma 2 to show the existence
of a subset sS« such that c¢(s)<m and X, Y each generate the same
subalgebra A, of A]s. As in the proof of Theorem 1, X generates
Ay K ] s-freely. Since K]s has Property 2, ¥ also generates U, K | s-
freely. Because the algebra B | s is a member of K ] s, f can be extended
to a homomorphlsm f' of Ay into B ]s. Let f be the restriction of f’
to X. Since f e BX and X K-freely generates %, f can be extended to a
homomorphism f’’ of U into B. The restriction of f'* to the set 4, is
obviously a homomorphlsm of %, into B ]s. However, f’ is the only
extension of f to a homomorphism of 9, into B ] s, because X generates
A, (cf. [3], Lemma 1). Therefore f’ itself is the restriction of f’ to 4,.
Since Y is included in 4, f is the restriction of f”’ to Y. Thus f can be
extended to the homomorphism f'’ of % into B, as we were to show.
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4. An example.

We conclude with an example to show that Theorems 1 and 2 of this
paper actually do enable one to apply the results in [3] to special cases
not covered by the sufficient conditions given in [3] for classes K to
have Properties 1 and 2.

To facilitate our discussion, let H; denote the hypothesis of Theorem 1
of [3], namely that K contains a finite algebra with more than one ele-
ment. Let H, denote the hypothesis of Theorem 2 of [3], namely that
every equation which is identically satisfied in every algebra of F(K)
is also identically satisfied in K. Thus H; and H, are sufficient condi-
tions for Property 1 and Property 2, respectively, according to the
results of [3].

Let E(K) denote the class of all algebras which identically satisfy
every equation which is identically satisfied by every member of K. It
is easily seen that K< E(K), and that if K satisfies H, or H,, then E(K)
satisfies the same condition. Moreover, K has Property 1 or Property 2
if and only if E(K) has the same property. Therefore to demonstrate
the value of the results of this paper, we must find, for 1=1,2, a class K
such that E(K) does not satisfy H,, but nevertheless K can be shown
using our methods to have Property 3.

We see at once that Theorems 1 and 2 can give new information only
when m=c¢(x). The simplest case where this occurs is when m=g,
and x=w.

Let us now consider the class K, of all vector spaces % over the field
of rational numbers (cf. [2]). Each algebra U of K, thus has a binary
operation +, and every rational number is identified with a unary
operation on U ; we may suppose the rational numbers have been ordered
in a sequence of type w, so that U is of type (2,1,1,1,...).

In view of our earlier discussion, the following theorem shows that
Theorems 1 and 2 really do extend the applicability of the results of 3],
and in particular our theorems apply to the class K.

TuroreM 3. (i) E(K,) satisfies neither H, nor H,.
(i) For each finite subset s< w, E(K, | s) satisfies both H, and H,.

Notice that by the results of [3], (i) implies that E(K, ]s) has both
Properties 1 and 2 for each finite scw. Hence by Theorems 1 and 2
with m=R,, the class K, has both Properties 1 and 2. [One can, of course,
easily give a direct proof that K, has Properties 1 and 2 using the special
fact that every vector space has a unique dimension. A less well-known
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example of a class of algebras which satisfies the conditions in Theorem
3 is the class of proper cylindric algebras, of a given infinite dimension,
such that co(—dy;)=1 (for notation see [1]).]

Proor orF TeEOREM 3. We shall first prove (i). K, can be defined
as the class of all algebras % which identically satisfy the infinite set of
equations which state that (4, +) is an abelian group, that the ring of
rational numbers is a ring of operators for (4, +), and that 1 is the
identity operator on A. Therefore K,=E(K,), and it is sufficient to
show that K, satisfies neither H, nor H,. Whenever % is in K,, the
group {4, +) must be completely divisible, and therefore the set 4 is
either infinite or consists of a single element. It follows that K, does
not satisfy H,. Since F(K,) consists only of one-element algebras, but
K, contains infinite algebras, K, does not satisfy H,.

We shall only outline the proof of (ii). Let s be a finite subset of w.
We may suppose the ordinal 0, which corresponds to the operation +,
is in s, for if K, ] (su{0}) satisfies H, and H,, so does K, | s. Letr,,...,r,
be the rational numbers which correspond to the members of s other
than 0.

Let p be a prime number which does not divide the denominator of
any of r,,...,r,. Then the additive group 3, of integers modulo p,
with r,,...,r, defined as operators in the natural way, can be shown
to be a member of E(K,]s). Thus E(K,]s) contains a finite algebra
with more than one element, and hence satisfies H,.

Given any equation which is not identically satisfied by some member
of E(K, ] s), one can show that for any sufficiently large prime ¢, the
group 3, with the operators r,,...,r, defined in the natural way also
does not identically satisfy this equation. It follows that E(K,]s)
satisfies H,.
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