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COMPLEMENTS
TO THE KARHUNEN REPRESENTATION

I. FLEISCHER and A. KOOHARIAN

1.

Classically, a stochastic process is a probability space £ whose points
are complex-valued functions z(¢) of a real parameter interpreted physi-
cally as time. It is assumed that the functions on £ obtained by fixing
t are measurable; for the present purposes it is further required that they
be square integrable. This permits them to be normalized to have mean
zero, and it makes it meaningful to speak of the covariance function
r(s,t) = K x(s)x(t).

Now if r is a continuous function of the difference of its arguments:
r(s,t)=p(s—1), then p is positive definite and therefore, by Bochner’s
theorem, is the Fourier transform of a finite Borel measure on the line:

o(r) = [ o ().
In these circumstances it has been known for a long time that the process
may be represented as

w(t) = f ¢ 7(d2),

—00

where Z is an “‘orthogonal increments’ process, i.e., essentially a family
of signed measures on the line parametrized by 2 and satisfying
B \Z(dA)]? = p(dA).

On the other hand, let Z; be an orthonormal basis in the subspace
of L,(2) spanned by the z(¢). The fact that z(t)=3f,(t)Z; is valid for
each ¢ in the mean, permits us to deduce the relation

r(s,t) = 2 fua)fi(t) .
Conversely, the latter equality may be shown to imply the former.
Karhunen [4] has shown how to treat both these phenomena in a
unified manner. Let (A4,u) be a measure space, and for each ¢ let f(¢,4)
be square integrable on this space. If
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r,0) = [ £0.) FED wian),
4

then there exists a process Z having properties analogous to those above,
in terms of which

() = f £(8,2) Z(d2) .

The equation holds for each ¢ almost everywhere in 2; or, since square
integrable elements over (2 stand on both sides, taking an inner product
on both sides yields an identity in ¢.

Our point of departure is the desire to treat processes which need not
be directly defined on the time axis: whose sample points, for example
include limits of functions of a real variable or may consist of operators
on such functions. Thus we are led to the study of processes para-
meterized not by a real variable but by a function space over this vari-
able, or, quite abstractly, by a topological vector space; the sample
points then belong effectively to the dual of this space. Although Kar-
hunen’s theorem makes no use of the real line structure, and is therefore
immediately adaptable to the situation at hand, we find it necessary,
in view of the applications we have in mind, to strengthen his conclu-
sion by exhibiting uniformities in the convergence with respect to the
stochastic variable, and to show how to attain the corresponding
uniformities in the indexing variable. The assumed structure on the
indexing parameter may then be exploited to bring the result into a
compact and useful form: in the presence of the uniformities previously
established, the integral representation is shown to be valid in a suitably
topologized tensor product space.

Two applications are presented. In the first, the process is defined on
a Hilbert space $. Although a representation may be established in
terms of any realization of § as a space of square integrable functions,
we are particularly interested in the series representation obtained when
the covariance function is a completely continuous bilinear form on 9.
This series converges in the mean square sense on the product of the
probability space and the measure space over which § is realized. In
this way we rederive the result which constituted the basis of our former
investigation, but in a more consistent and lucid manner, and without
relying on an extraneous continuity assumption.

In the second application, we index the process with the space of
infinitely differentiable functions having compact support; consequently,
the sample “functions’ are distributions. Thus we are in a position to
treat processes whose covariances are ‘‘delta functions”, which have
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long been familiar to electrical engineers under the picturesque appella-
tion ‘“white noise.”” Translated to this setting, the representation yields
a generalization of a theorem of Ito [3].

2.
We shall be dealing with a family X, ¢ € @, of random variables of
finite variance defined on a probability space 2 with measure p. For
convenience we take all means equal to zero.
Now we suppose there is given a family f, of square integrable func-
tions on a measure space /A with measure u, which is in one-to-one
correspondence with the family X :

(1) fo o X, forall ¢e®,
in such a way that for ¢,y € @,

@) Rig.y) = EX,X, = Fpfy, = [f,Foan
A

In other words, the correspondence (1) is a Hilbert space isometry
between the X in ©, and the f, in §,. Such an isometry is known to
be uniquely extendable to the closed linear subspaces My and M,
spanned by these families in their respective Hilbert spaces. Thus for
every Y € My which corresponds to g € M, we have

(3) EX,Y = (fptdu = [f,7 0.
A4

In the special case MM;= $H, we may in particular take for g the charac-
teristic function yg of a measurable set S of finite measure in 4. If we
denote the corresponding Y by Z(S), this family is readily seen to satisfy
EZSYZ(S)=u(8n8’) and to span M. Regarding gu(di) as a signed
measure, we may write (3)

EX,Y = [f,[guan) = [ f,EZ@NY
A A

or, symbolically,
(4) X, = f £,2(d3) .
A

This is the content of Karhunen’s theorem.

The right side of (4) is effectively an integral over A with values in 9t x
which is asserted to exist in the weak topology. It may actually be
shown to exist in the strong (mean square) topology; or, in the general
formulation, the right side of (3), considered as the integral of f, with
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respect to the signed measure gdu, may be approximated by a linear
combination of characteristic functions uniformly for g bounded in t,.

Indeed,
s [1gt du|
A A

whence the result, since for fixed ¢ the Hilbert space distance of f, to
the linear space spanned by finitely many characteristic functions of
u-finite measurable sets converges to zero on the net of these spaces
ordered by inclusion.

The same inequality shows further that if the mean square (u) distance
converges to zero on this net uniformly for ¢ € ¥, then there will be a
simultaneous uniformity (for ¢ € ¥ and g bounded) in the convergence
to zero of the mean gdu distance of f, to these subspaces.

fom z o dsdrs; | Ip

ff.pg du— f; o 2050 Tt

3.

Henceforth, @ will be a topological vector space and X, will be a
linear, 2-weakly continuous mapping of @ into My. It follows that
R(p,p) is a separately continuous bilinear form on @. The mapping
adjoint to X then associates to every square integrable function u e M 5
an element (X ,u) in the dual @' of @. In this generalized sense, one
may say that the sample points of the process belong to @'.

When ;= 9, and the convergence described at the end of the last
section is valid uniformly for bounded subsets of @, (4) may be inter-
preted as an integral in the dual of @ ® My, topologized by uniform
convergence on tensor products of bounded sets. In other words

5) X = [fozan

is the limit in the indicated sense of expressions
S asi[ £, 41 @ 2(8) .
Si

We shall refer to (5) as the strong representation for X in the tensor
product topology.

An immediate consequence of (5) is that X is bounded on tensor
products of bounded sets. More generally if the convergence is uni-
form on any set S on which the approximating sums are bounded, then
X is again bounded on 8. In certain contexts the existence of a topology
on ® ® Mx in which S is bounded leads to the continuity of X. Con-
versely if X together with its approximating sums are continuous in
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the topologized @ ® My then the representation converges uniformly
on precompact sets.

4.

In this section @ is Hilbert space and, to begin with, R is thus only
continuous on @ x @ in the product topology. Since R(p,¢)=0, the
operator A associated to R via R(gp,y)=({A4(p),p) is positive symmetric;
in terms of its square root we obtain

(6) R(p,p) = <(A¥(p), A¥(y)) .

Now if @ is realized as some space of square integrable functions over a
measure space /A, we deduce

(7) X, = fA%(q;) iz .

In particular, if the range of A% has the basis {y; | i € 4}, (7) can be
given as the discrete form
(8) Xy = 2 (A0 200)
(232

where the series converges in the mean on 2 for each ¢ € @. In neither
(7) nor (8), however, can we expect to conclude, in general, any uniformity
of the representation with respect to its p-dependence.

To obtain such uniformity we are led to assume that R derives from
a completely continuous operator on @ (equivalently, R may be a con-
tinuous linear functional on the tensor product @ @ @ in the topology
induced by the natural inner product in this space.) Since its definition
implies the positive definiteness of R, the theory of such operators yields

(9) R(p,y) = i (@, 27 <> xid[ A5

where x,; is an orthonormal set in @ and A; are positive numbers for
which 3,1/42 is finite. Thus we are led to take for A the positive in-
tegers, and to set u(s)=1/4;, f,(1)={p,x»- In Jx(1)=0;; we have a set
of generators for §,; therefore, there exists an orthogonal family Z(7),
of norm 1/4;}, which spans §, and in terms of which

(10) X, = 3 (> 20).

Furthermore, since

2 (Pl = max glf/A;,

2N
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(10) converges uniformly for bounded sets in $, as well as for bounded

gsets in IMy; in other words, introducing the normalized vectors
Z,=23Z(3), we obtain

(11) X =23 1®ZA
=1

in the strong sense.

It follows from the remarks at the end of Sec. 3 that X is continuous
in the topology induced by the natural inner product on @ ® My if
and only if 33,1/, < cc.

5.
Now @ is taken as the space & of infinitely differentiable functions
vanishing outside compact sets (in a finite dimensional Euclidean space)
topologized so as to render the adjoint of X an £2-weakly continuous
distribution-valued mapping. It follows that R is a distribution in two
variables. Stationarity may be formulated as the requirement that R
be expressible in terms of a distribution 7 in one variable and the operator
7 of argument translation as

(12) R(p,p) = r((Tp,p)) -

From its definition R(p,p)=0 whence r is of positive type. By the
distribution-theoretic version of Bochner’s theorem, there exists a Borel
measure u = 0 such that

(13) ) = [(9) du.

Here ¢ is the Fourier transform operator which takes values in the
space Z* of infinitely differentiable functions vanishing at infinity
more rapidly than any polynomial.

It is immaterial for our purposes whether 2 or Z* is used as the
indexing parameter. Indeed, since both § and integration with respect
to u are continuous on Z*, r is continuous in the topology induced on
2 by 2*, and therefore has a unique extension to 2* satisfying (13).
Similarly, in virtue of (2), X, is £2-weakly continuous in the same to-
pology and may also be extended to 2*. Conversely, the possibility of
restricting r and X from 2* to & is immediate.

It remains to verify that (2*) spans §, and that the representation
for R arising from (13),

Rig.v) = [$@)F0) du

has the required uniformity properties. The former may be deduced
from the facts that & is onto 2*, that elements of 2* approximate
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characteristic functions of compact sets uniformly, and that u is a Borel
measure. The latter follows because the ), distance of F(p) to the sub-
space spanned by finitely many characteristic functions of compact
sets is continuous on Z* and, therefore, converges to zero uniformly
for compact (=bounded) subsets of 2*. Thus, the representation has
the form

(14) X, = [0 © z(an

in the strong sense. Inasmuch as the injection of & in 2* is continuous
and onto a dense subset, the same reasoning may be applied to obtain
the strong representaion for 2.

This result was in large part originally obtained by It6 [3], without,
however, remarking the relevance of the Karhunen theorem. His devel-
opment requires 2 strong continuity, is valid only in &, and does not
establish the uniformities with respect to the ¢ variation.
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