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ON THE ASYMPTOTIC DISTRIBUTION OF
EIGENVALUES OF CERTAIN ONE-DIMENSIONAL
STURM-LIOUVILLE OPERATORS

JAN LANKE

1. Introduction.

Consider the formal differential operator

a(f) = —f"—al@)f
acting on functions of one variable. With the domain
D(A) = {f; feH, f Tloc.abs.cont., a(f) e #},

where # = L* — oo, + ), @ becomes a closed operator A from J# into
H. If a is real, locally integrable and bounded from above for large |z,
A is known to be self-adjoint (see e.g. [4]) and its spectrum to be discrete

[5] below d = hln(_a(x»’ 2| > +oo.

Thus, if d= + oo, the entire spectrum is discrete, which is known al-
ready from [12]; for a Hilbert space proof, see [6]. For locally regular a

with d= + oo, the eigenvalues are distributed [10, Ch. VII] in a fashion
described by the asymptotic formula

(1) N() ~ a1 f (a(@)+A),  Ad,

where N(A) denotes the number of eigenvalues <4 and where the integral
is taken over the part of the axis where the integrand is real. In [11]
it is shown that if @ tends to a finite limit —d, the integral in (1) approx-
imates N(A) for A<d with an error majorized by a certain remainder.
On applying this result to operators where a is of the form

(2) a(@) ~ |x|=2%,  |z] > teo,

it is observed that the remainder given in [11] is too crude to establish
(1) if = 3.
The object of the present note is to show that (1) holds for a class of
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operators which is somewhat larger than that for which the question is
settled by [11]. In particular, our class will include the case where the
coefficient o satisfies (2) with 0 <x < 1.

This problem was suggested by professor Lars Garding, to whom the
author wants to express his sincere thanks for much valuable advice.

2. Application of Weyl-Courant’s principle.

Consider in a Hilbert space 5 with norm | || a symmetric bilinear
form A[, ] with domain 2[A4], and let A[ ] be the corresponding quad-
ratic form. We suppose that Z[4] is dense in & and that
(3) Alf]l z = (z=D)IfI?

for some 7 < +oo. Further, using the notations

f:9a = Alf,91+7(f.9),  Ifl® = (Ff)as

for elements in Z[A4], we suppose that
(4) D[A] is complete in the norm ||, .

Then there exists (at least) one self-adjoint operator 4 with domain
PD(A)=D[A] and with

(Af:g) = A[f’g]7 fE@(A), gE@[A] .

In particular, we can choose
2(A4) = {f; fe2[4], |Alf.9]1 =Clgl, Vg € Z[A]},

where C; is a constant depending only on f. If we use the Riesz represen-
tation theorem for bounded linear functionals, we get an operator 4
which we shall call the Friedrichs operator generated by the form
A[]; cf. [8, p. 35]. The fact that this operator is symmetric is evident
from the definition. To see that it is self-adjoint, we use Schwarz’
inequality and (3) to get

ISl = Ifl gl fet, ge D[4],
(f:g) = (Tf7g)A

defines a bounded operator 7' with domain 5# and with range included
in 9[A]. In fact, the range is even included in 2(4). It is easy to verify
that 7' is symmetric, and hence self-adjoint. Furthermore, this operator
is connected with the Friedrichs operator 4 by

Tl = A++F,

and thus
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where E is the identity transformation, and thus the self-adjointness of
A is established.

If we assume that the bottom part of the spectrum of A is discrete
with eigenvalues S A S .. <A S ...,
the spectral representation of A shows that the Weyl-Courant charac-
terization of the eigenvalues takes the form

(5) 1, = supinf A[f]IfI-2, feLn2[A], dim(#OL)<n.
£ s

Thus, if we have two quadratic forms 4,[ ] and 4,[ ] both of which
satisfy the above conditions on A4[ ], then

DI4,] = D[4,],  Alf] 2 A[f], feD[4,],
imply the inequalit
Py Pho meqnaiy In(Ay) Z Al Ay)
for the eigenvalues of the corresponding Friedrichs operators. In other
words, 4,(4) increases when the corresponding form increases and its
domain is fixed, and 4,(A4) increases when the form is restricted to a
smaller domain.

Now we leave the general theory and return to the operator 4 de-
scribed in the introduction. Concerning the function a we shall until
further notice only assume that it is real, bounded for large |x| and
locally integrable. Let z be a division of the axis,

—0 =2< 2 < ... <Z<Zy=+oo,

and let I, be the interval (z;,2;,,). We introduce the following subspaces
of #:

DAY = {f; I/ I+1f < +oo(0sk=t), fz)=000<k=t)},

DIA] = {f; II+1f < + oo},

DA] = {f; IfI+f < +=(0=k=0)},
where |/f|;, denotes the norm of f considered as an element of L2(I}).
Note that the functions in Z,[4] need not be continuous at the points

of z. Further, let o and @ be locally integrable functions, bounded for
large |x| and with the property

lIA

asasa.

IIA

Let A[f] be the form 400
Alf1 = [(72 - a@)r?)
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with domain 2[A4], and let A[f] and A[f] be the corresponding forms
with a replaced by @ and @ and with domains 2,[4] and 2,[A], respec-
tively. These three forms are seen to satisfy conditions (3) and (4). On
forming the corresponding Friedrichs operators it will be seen that A4,
the operator generated by the form A[ ], is identical with the operator
A defined in the introduction, while the operators 4 and A are

Af = —f"~a()f, Af = —f"—a@)f

with domains

D(4) = {F; W+ e+ 17 +afllg < + o0, flzz) =0},
DA) = {f5 I I+ UF g+ I +8f g < + o0, f' (2 £0)=0},

where I, ranges over all the intervals of the division z, i.e., 05k =<t
and where z; ranges over all finite points in 2, i.e. 0<k=<¢. Since, ob-

viously: 2.14] € 914] < 9,14]
A[f1 z Alf), fe2[A],
Alflz A[f], fe2[4],

the maximin-principle (5) gives the inequality

(6) A(4) z 2,(4) Z 2, (4)

and since

for the eigenvalues of 4, 4 and A4, provided the spectra of these operators
are discrete below the eigenvalue in question. If N(4,-) denotes the
number of eigenvalues <A of the operator indicated, (6) implies

N@4,4) £ N(2,4) = N4, 4) .
Since the operators 4 and A are direct sums
4=Z®ék, Z=Z@A—k’ 0=k=st,

of certain operators 4, and 4,, self-adjoint when regarded as operators
in L¥I,), we get

(7) S N4, A4 £ N4,A4) £ SN@RA), 0=kst,

still assuming discreteness below A of the spectra of all the operators
involved.
Until now we have only assumed that

(8) a is real, bounded for |z| > X, and locally integrable .

The nature of the problem makes the additional assumption

(9) a(x) = o(1),  |#| > +oo,
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a natural one. Further, our methods require a to satisfy
(10) @ is non-decreasing for x < — X, non-increasing for « > X, .
Now suppose &> 0 is given sufficiently small,
0 < & < min(a(—-X,), a(X,)),
and let w_ and w, be defined by
(11) a(wy) =¢ w_< —Xy Xy<w,.
In the above-mentioned division z of the axis, put
2y =w_, 7= w,
and suppose that for a certain j we have
z; = —X,, Zig = X .
Then an admissible choice of @ in I, and I, is
ax) =¢ xelyul

and the spectra of the associated operators A, and 4, will be empty

below —e¢, i.e. _ _
N(_‘s’AO) = N(—E’At) =0.

In I;, the interval where a may be unbounded, we take
a(x) = a(x), xel;.

The operator A; will be regular and thus its spectrum will be entirely
discrete ([1, p. 310]), i.e.

N(—e4;) = 0(1), &\0.
Consequently, with these choices the inequality (7) reduces to
(12) > N(—edy) £ N(—e,4) £ 3 N(—¢,4,)+0(1),
O<k<t, k=*j,

for ¢\, 0. Here we have omitted three non-negative terms on the
smallest side.
In each of the remaining intervals we choose @ and @ constant,

a(@) = ap, a@) =a,, xel,, O0<k<t, k+j.

The same remark as above shows that the spectra of the corresponding
operators are discrete, and, remembering the statement in [5] on the
discreteness below 0 of the spectrum of A, we conclude that (7) is
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applicable for A= —¢ and thus that (12) holds. Since the operators 4,
and 4, involved in (12) have constant coefficients, their eigenvalues may
be explicitly computed,
A(Ay) = n27? || =2 — ay,
A(Ay) = (n—1)222 || — @,
and hence we have
N(—e,4;) 2 | |(a,—e)t — 1,
N(—e,4p) £ a L@ —e)t + 1,
where |I,| denotes the length of the interval I, and where we have
supposed a, = e.

Combining the information obtained we get the following

LEMMA 1. Let the function a satisfy (8)—(10). Then N(—e¢), the number
of eigenvalues < — ¢ of the operator A defined in the introduction, satisfies

—S@+a-[(@=cf < N(=e) < S@+a~[(@—ep+0(1)
Q Q

for €\ 0. Here Q denotes (w_, — X )U(Xo,w,) with w, defined by (11),

while a and @ are piecewise constant functions with e<a<a=<a and S(-)

denotes the number of jumps of the function indicated.

3. Proof of the asymptotic relation.

The lemma of the preceeding section reduces the problem of estimat-
ing N(—¢) to the quite elementary problem of approximating the inte-
gral of a certain function over a bounded set by Riemann sums formed
with piecewise constant minorants and majorants, the only complica-
tion being that the number of discontinuities of the approximating
function is subtracted from the Riemann sum or added to it, respectively.

To show the validity of the expected asymptotic relation

N(-e) ~ J(—e), &\0,
where

+00
(13) J(—¢) = a1 f (max(0,a(z) ) ,
we first prove a lemma.
Lemma 2. Suppose a satisfies the assumptions in lemma 1 and that
(14) a(x) = |z, |z| > X,,

for some & with 0<a<1. Then we have
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N(—¢) = J(—¢&)+0(e), e\ 0,
where 2up(2—a) = 1—x .
Proor. Let w, be defined by (11) and consider the equidistant divi-
sion

Xo=2 <@ < ... < T, =w,

of the interval (X, w,). The integer p is to be determined later. Choose
in best possible way a piecewise constant minorant a of a in each of
the intervals of the above division. By means of a rectangle estimate

we get wy wy.

[a-e = [@—ep.

o x1
A similar treatment of the interval (w_, — X)), combined with lemma 1
gives
N(—¢) 2 —2p + n—lf(a,-—e)* - :rrlf(a—e)*,
29

Q

where
Q = (w_, —X,) U (Xo,w,), Qy = (23, —Xp) U (X, 7y) .

Estimating the last integral by (14) and using the obvious fact that
(15) J(—¢) = n“lf(a—e)* +0(1), &\0,
Q

we obtain
N(—¢) 2 =2p+J(—¢)—C (2} 7"+ +0(1), e\ 0,
where C, depends only on «. However, (14) implies
(16) lw,| S g¥e
and thus
N(—¢) 2 —2p+J(—&)—Cp* 1101 0O(1), e\0.

Choosing p near ¢, we get = in the desired equality.

To prove a reverse inequality, we start with the same divisions of
(w_, —X,) and (X,w,) as before. Choose a best possible constant
majorant in each of the intervals except in (x_;, —X,) and (X,,x,),
which require a special care. Again referring to the fact that a is mono-
tone in each of the intervals, we get

T(a —et = T(a —ep
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and similarly for the integral over (w_,z_;). Using lemma 1 and (15)
we find

(17)  N(—¢) < S(a)+J(—e)+n—1f(a—e)%+0(1), e\ 0,

29

where the function @ is yet to be determined in £, Assuming, as we
obviously may, that X,>0, we divide the interval (X,,z;) by the se-
quence Y, = Xonll(l—-a)7 1sn < Ps s

where p, is the greatest integer ¢ with y,<z;. In each of the sub-
intervals of (X,,x,;) thus obtained, choose @ constant and best possible.

Then we get x, x

(18) [@-o¢ s [@p

< 3 K((k+ 1)V~ £10-) afy,)
z Oaa(k 4 1)1/(1~a)—1 k—lx/(l—-a)
z Caa = Cocap +

where the summations are extended over 1<k=<p, and where C,,
depends only on « and X,. Of course we can estimate the integral of a
suitable @ over (r_;,— X,) in the same way. From (17) and (18) we
conclude

N(—e) = @p+p-+p)+J(—e)+COu(p-+p)+0(1), N0
Using the definition of p, and (16) we have
<

IIA

IIA

p, < p*t A1/

and similarly for p_. On choosing the integer p in a way to minimize
the maximum order of the remainder terms, we get the desired in-
equality, and the proof of the lemma is complete.

Now we are in a position to prove our main theorem.

TurorEM 1. If a us real, locally integrable, non-decreasing for x < — X,
non-increasing for x> X, and satisfies

a(x) £ |z for || > X,,

a(z) 2 |z|-% for xz < —X, orfor z > X,
where

(19) 0<a=spg<l,
(20) B < a(2—a)(l+ax—a2)-1,
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then N(—c¢), the number of eigenvalues < —e of the operator A defined in
the introduction, satisfies

N(-e) ~J(—¢), &e\O0,
where J is defined by (13).

Proor. The assumed lower estimate for a implies that
J(—¢) 2 (Cs+0(1))ed1-1/), eN O,
with some C;>0. We prefer to write this inequality in the form
=18 = O(J(—¢)), &\0.
Thus (20) tells us that
AU — o(J(—g)),  £N\0.

Now we observe that the left side of the last equality is exactly what
stands inside the ordo term in lemma 2, and since our assumptions on a
imply that the lemma is applicable, we have

N(—s):J(——s)+o(J(—s)), e\ 0,

which proves the assertion.

It should be observed that if 0 <« <1, there always exists a f§ satis-
fying (19)-(20), and similarly if 0<pf<1. In particular, if «=p, (20) is
valid for 0 < & < 1, and thus our theorem is applicable to certain operators
to which [11] does not apply.

Concerning the necessity of the assumption (19) it may be noted
that if « >1 we have ([7] or [2, p. 114])

N(—e) = 0(1), &\0,

and it is clear that the same holds for J(—¢). On the other hand, if
« <1< 8, the asymptotic formula breaks down entirely, as is shown by
the example a(z) ~ ka2, | > +o0,
where J(—¢) - + oo but where N(—¢) stays bounded if k is sufficiently
small but tends to infinity if % is sufficiently large; cf. [7], [2, p. 121].
However, the reverse calamity cannot occur, since known results ([7],
[2, p. 114]) show that if @ is monotone in the sense of theorem 1 and if
J(0) < + oo, then there is only a finite number of negative eigenvalues.

4. Equations of higher order.
There is a straightforward generalization to the operator A defined
by
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am(f) = (= 1ymfem — a(w)f

on the domain

{f; fe o, f@mD 3T loc.abs.cont., a™(f) € H#} .
Again referring to Weyl-Courant’s principle we have

S N@,A() £ N(2,A™) < ¥ N4, A7) .

Here

(21) ASPf = (= 1)mfem — a;(x)f
with domain the subset of L2(I,), where

(22) Ifllz, + (= 1)™f@™ —ay(2) flif, < +o0
and where

JOz) = fP2a) =0, 0 =5 <m,

while A¢™ is the obvious analogue of (21) on the subset of L?,), where
(22) holds with a; replaced by @, and where the natural boundary

conditions ) ) .
2+ 0) = fO244,—0) = 0, m =j<2m,

are fulfilled. Even if these operators have constant coefficients, their
eigenvalues cannot be explicitly computed if m>1. However, it is well
known ([3] and [9, p. 224]) that the eigenvalues u, of any self-adjoint
operator in L?(0,1) generated by

(= 1ynyem
satisty Pn = (nw+O(1))*™, 7> +oo,
and thus the eigenvalues of the above operators satisfy
In(ADY) S — @yt |2+ Cp)m,
A(ASP) 2 =8+ || ~2m(na — O )™
where C,, depends only on m (and not, e.g., on |I,]). Hence, with the
same notations and assumptions as before, we get

~CiS(a) +a [(@—efm 5 N(=e) S CpS@+a~[@—e)m+0(1),
Q2 2

and in the same way as before we can prove the following theorem.

THEOREM 2. If a is real, locally integrable, non-decreasing for x < — X,
non-increasing for x> X, and satisfies

a(x) < |z|~2me  for x| > X,,

a(x) 2 |z|~2™F for x < —X, orfor x> X,,
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where O<asf<l,

B < x2-a)1+a—a?)1,

then N(—¢), the number of eigenvalues < —¢ of the operator A™ defined
above, satisfies

N(—¢) ~n‘1f(a—-e)*/m, e\ 0,

where the integral is taken over the part of the axis where the integrand is real.
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