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PROJECTIONS OF MUKAI VARIETIES

MICHAŁ KAPUSTKA

Abstract
This note is an answer to a problem proposed by Iliev and Ranestad. We prove that the projections
of general nodal linear sections of suitable dimension of Mukai varieties Mg are linear sections
of Mg−1.

1. Introduction

In [10] Mukai gave a description of general canonical curves, K3 surfaces
and Fano threefolds of sectional genus g ≤ 10 in terms of linear sections of
appropriate varieties. For prime Fano threefolds of index 1 the description may
be summarized in the Table 1. The table gives a classification of prime Fano
threefolds of index 1 and genus g ≤ 10 up to two exceptions. For g = 6 there
exist also smooth prime Fano manifolds which are obtained as intersections
of a cone over a linear section of the Grassmannian G(2, 5) with a quadric not
passing through the vertex. Whereas for g = 3 there exist double covers of P3

branched in quadric hypersurfaces. These are not included in the list, but are
degenerations of the general cases below. Furthermore, there is only one more
family of general prime Fano threefolds of index 1. It corresponds to the case
g = 12.

In the table we use the notation Xi1,...,in for the generic complete intersection
of given degree. The variety Q2 is a generic quadric hypersurface. The notation
G(2, n) stands for the Grassmannians of lines in projective n−1-space in their
Plücker embeddings. The variety OG(5, 10) is the orthogonal Grassmannian.
It is a component of the set of linear spaces of dimension 4 contained in a
smooth eight dimensional quadric hypersurface in P9 in its spinor embedding.
The variety LG(3, 6) is the Lagrangian Grassmannian, it is a linear section of
G(3, 6) in its Plücker embedding parametrizing 3-dimensional vector spaces
isotropic with respect to a chosen generic symplectic form. The variety G2 is a
linear section of G(5, 7) in its Plücker embedding parametrizing 5-dimensional
vector subspaces of a 7-dimensional vector space isotropic with respect to a
chosen generic four-form. The notation Mg and the name Mukai varieties has
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Table 1. Anti-canonical model of prime Fano threefolds
of index 1 and given genus.

Genus Model

2 X6 ⊂ P(14, 3)

3 X4 ⊂ P4

4 X2,3 ⊂ P5

5 X2,2,2 ⊂ P6

6 X1,1 ⊂ Q2 ∩ G(2, 5) =: M5
6

7 X1,1,1,1,1,1,1 ⊂ OG(5, 10) =: M10
7

8 X1,1,1,1,1 ⊂ G(2, 6) =: M8
8

9 X1,1,1 ⊂ LG(3, 6) =: M6
9

10 X1,1 ⊂ G2 =: M5
10

become common in this context. The upper index used in the table stands
for the dimension of the variety and will be omitted from now on. We shall
describe these varieties more precisely in Section 3.

It is now a natural problem to relate these Fano varieties by means of stand-
ard constructions such as, for example, projections. In particular the following
problem was considered in [13], [4]. It concerns proper linear sections of
Mukai varieties i.e. intersections of Mukai varieties with linear spaces whose
codimension is equal to the codimension of the linear space.

Problem 1.1. For given 7 ≤ g ≤ 10, what is the highest n such that
there exists a proper linear section H of dimension n of Mg admitting a single
ordinary double point p as singularity and such that the projection of H from
p is linearly isomorphic to a proper linear section of Mg−1?

The justification for proposing this problem is the observation that taking
the projection of a nodal Fano manifold (K3 surface or canonical curve) of
sectional genus g from the node we still get a Fano manifold (K3 surface or
canonical curve) but with sectional genus reduced by 1, hence the result should
appear as a section of Mg−1. The only problem arising is that the resulting
variety might again be (and in fact, by Proposition 5.4, in dimension at least 3
will always be) singular and not prime (i.e. the Weil divisors class group is not
generated by the canonical class) in which case Mukai’s result does not work.

As evidence in [13] it was observed that the statement is true for n = 1
i.e. the projection of a nodal curve which is a linear section of Mg is always a
proper linear section of Mg−1. Moreover an upper bound for n was given,
by computing the maximal dimension of quadrics contained in Mg−1 and
observing that the result of the considered projection must contain a quadric
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divisor as the exceptional divisor of the projection.
Observe first that n can be arbitrarily large for an analogous problem for-

mulated for g ≤ 5. More precisely we have the following observation:

Observation 1.2. For 3 ≤ g ≤ 5 and n ∈ N there exists a complete
intersection M of type Mg (i.e. as in the Table) and dimension n in a corres-
ponding weighted projective space such that M admits a single ordinary double
point as singularity. Moreover for any such M the projection from the node
is linearly isomorphic to a complete intersection of type Mg−1. Conversely a
generic complete intersection of type Mg−1 containing a smooth quadric as a
codimension 1 subvariety can be obtained in such a way.

Similarly for g = 6.

Observation 1.3. There exists a quadric Q such that G(2, 5) ∩ Q has a
single node. Moreover for any such intersection the projection from the node
is linearly isomorphic to a complete intersection of type X2,2,2. Conversely a
generic complete intersection X2,2,2 containing a smooth quadric as a codi-
mension 1 subvariety can be obtained in such a way.

Indeed these are examples of standard Kustin-Miller unprojections, see [12,
§4].

The case g = 9 was the main result of [4]. Before we state the theorem
let us observe that the general singular hyperplane section of LG(3, 6) has
a single node as singularity. Let now L be any nodal hyperplane section of
LG(3, 6) and p its unique singularity.

Theorem 1.4. The projection of L from the node p is a proper codimension 3
linear section of G(2, 6), containing a 4-dimensional quadric. Conversely a
general 5-dimensional linear section of G(2, 6) that contains a 4-dimensional
quadric arises in this way.

The proof proposed in [4] is based on the construction of an appropriate
bundle on the resolution of a nodal hyperplane section of LG(3, 6).

In this note we reprove Theorem 1.4 and solve the remaining cases in purely
algebraic terms by analysis of equations of considered varieties in terms of
natural representations appearing on the linear spaces they span. We understand
that such arguments are unsatisfactory from the point of view of understanding
the geometry of the relations involved. We believe however that in further
investigations, in particular in applications, having an explicit form of the
equations and the isomorphisms involved will be very helpful.

The original motivation of [13], [4] for studying Problem 1.1 was the con-
struction of non-abelian Brill-Noether loci in moduli spaces of bundles over
Mukai varieties.
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Our main focus will be put on the understanding of the geometry of the
constructions presented with a view toward future applications in the theory of
Mirror Symmetry and Landau-Ginzburg models. For this reason in Section 5
we concentrate on the case of Fano 3-folds. We prove that for a Fano 3-fold
of genus g admitting a single node its projection from the node is a Fano
3-fold of genus g − 1 with also only nodes as singularities. We factorize the
projection into a blow up of the node and a small contraction of lines and count
the number of nodes obtained in each case. In this way we connect families
of Fano 3-folds of genus g in the simplest way from the point of view of the
theory of Landau-Ginzburg models.

The analogue of this in the case of Calabi-Yau threefolds is a cascade of geo-
metric bitransitions connecting Calabi-Yau threefolds from the list of Borcea
(see [6, §6]).

2. Statements

The main results of the paper may be summarized as follows

Theorem 2.1. The subscheme of G(11, 16) parametrizing codimension 5
singular linear sections of M7 is irreducible. The general element of this sub-
scheme corresponds to a 5-dimensional linear section L of M7 admitting a
single node. The projection of L from the node is isomorphic to a proper inter-
section G(2, 5)∩Q, where Q is a quadric inP9 such that G(2, 5)∩Q contains
a smooth 4-dimensional quadric. Moreover a generic variety G(2, 5)∩Q′ con-
taining a smooth 4-dimensional quadric arises in this way.

Theorem 2.2. The general element of the projective dual variety of G(2, 6)

defines a hyperplane section L of G(2, 6) of dimension 7 admitting a single
node as singularity. The projection of L from the node is then a proper codi-
mension 3 linear section of OG(5, 10), containing a smooth 6-dimensional
quadric. Moreover a generic codimension 3 linear section of OG(5, 10) con-
taining a smooth 6-dimensional quadric arises in this way.

Theorem 2.3. The general element of the projective dual variety to G2

defines a hyperplane section L of G2 admitting a single node as singularity.
Let L be any hyperplane section of G2 admitting a single node. Then the pro-
jection of L from the node is a proper linear section of LG(3, 6), containing a
smooth 3-dimensional quadric. Moreover a generic linear section of LG(3, 6)

containing a smooth 3 dimensional quadric arises in this way.

The proof of Theorems 2.1, 2.2, 1.4 and 2.3 is based on analyzing represent-
ations appearing on the linear sections involved and comparing the equations
of the varieties involved.
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3. Descriptions of Mukai varieties, their tangents and projective duals

In this section we recall the known descriptions of Mukai varieties and their
projective duals. As reference for the descriptions contained in this section we
suggest [10], [11], [14], [15].

We start with the general description of the Grassmannian G(2, n).

3.1. The Grassmannian G(2, n)

Let V be a n-dimensional vector space with n ≥ 2. The Grassmannian G(2, V )

is then the subvariety of P
(∧2

V
)

consisting of decomposable forms. It is
scheme theoretically the zero locus of the quadratic form:

sqV :
2∧

V � ω 	→ ω ∧ ω ∈
4∧

V.

The Grassmannian is also a homogeneous space of GL(V ). In this language if
V is the standard representation of GL(V ) then G(2, V ) is the unique closed
orbit of the projectivized representation P

(∧2
V

)
. Let us now fix a point p in

G(2, V ) i.e. a two-dimensional subspace V2 ∈ V . The stabilizer subgroup of p

is the parabolic subgroup P of GL(V ) consisting of automorphisms preserving
V2. By standard Lie theory P has a decomposition into a semi-direct product of
a reductive Lie group and a solvable ideal. Such a reductive Lie group is called
a Levi subgroup of P . It is also known that all Levi subgroups of the same
type are conjugate. In our case a choice of Levi subgroup of P corresponds
to a choice of decomposition V = V2 ⊕ Vn−2, then the Levi subgroup is the
direct product GL(V2) × GL(Vn−2). The representation

∧2
V restricted to the

Levi subgroup decomposes into

2∧
V2 ⊕ (V2 ⊗ Vn−2) ⊕

2∧
Vn−2.

Let us consider the quadratic form sqV with respect to the above decomposition.
To do this we first observe that

∧4
V restricted to our Levi subgroup also

decomposes:

4∧
V =

( 2∧
V2 ⊗

2∧
Vn−2

)
⊕

(
V2 ⊗

3∧
Vn−2

)
⊕

4∧
(Vn−2).

Now

sqV : (ω2, ϕ, ωn−2) 	→ (ϕ ∧ ϕ + 2ω2 ⊗ ωn−2, 2ϕ ∧ ωn−2, ωn−2 ∧ ωn−2).

It follows that the invariant subspace P
(∧2

V2 ⊕(V2 ⊗Vn−2)
)

is the embedded
tangent space of the Grassmannian G(2, V ) in the point p.



196 M. KAPUSTKA

The projective dual variety of the Grassmannian G(2, V ) (see [8]) is the
closure of the maximal not open orbit of the representation

∧2
V ∗. As such it is

described by the condition on forms
∧2

V ∗ to be of non-maximal rank. More
precisely, the projective dual is the zero locus of the symmetric [n/2]-form

pf n
V :

2∧
V ∗ � ω 	→ ω ∧ · · · ∧ ω ∈

2[n/2]∧
V ∗.

It follows that the projective dual variety of G(2, V ) is a hypersurface for n

even or is of codimension 3 for n odd.

3.2. The orthogonal Grassmannian OG(5, 10)

(Cf. [14, §6] and references therein.) Let us start with some generalities about
the variety OG(n, 2n). To define this space we start with a 2n-dimensional
vector space V2n endowed with a non-degenerate quadratic form q. Consider
the variety S of n-subspaces of V2n isotropic with respect to q. It is a sub-
variety of the Grassmannian G(n, 2n) having two components Sev and Sodd.
They are called the even and odd orthogonal Grassmannians and are denoted
by OG(n, 2n). The orthogonal Grassmannian is a homogeneous variety of the
group SOq(V2n). In this paper we are interested in the so-called spinor embed-
dings of these varieties. A convenient way to get the description of the image
of these embeddings is to start with a point p ∈ OG(n, 2n) i.e. a subspace Vn

isotropic with respect to q and a decomposition V2n = Vn ⊕ V ∗
n in which q is

given by the matrix (
0 In

In 0

)
.

The parabolic subgroup of SOq(V2n) of elements preserving Vn has as Levi
subgroup GL(Vn). It is however more convenient to write the spinor embedding
as an invariant variety in terms of the SL(Vn) representation:

P

( ev∧
Vn

)
,

the projectivization of the even part of the exterior algebra of the standard
representation Vn. The even orthogonal Grassmannian in its spinor embedding
is then described in this space as the closure of the image of the exponential
map:

exp:
2∧

Vn � ω 	−→
[

1 +
�n/2�∑
i=1

1

i!
ω∧i

]
∈ P

( ev∧
Vn

)
.
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In our case n = 5 and

P

( ev∧
V5

)
= P

(
C⊕

2∧
V5 ⊕

4∧
V5

)
.

To get a set of equations in an intrinsic way we use the identification of SL(V5)

representations C = det V5 and
∧4

V5 = V ∗
5 . The orthogonal Grassmannian

is now scheme theoretically the zero locus of the quadratic form:

det V5 ⊕
2∧

V5 ⊕ V ∗
5 � (x, A, v)

	−→ (x(v) + A ∧ A, A(v)) ∈
4∧

V5 ⊕ V5. (3.1)

Finally observe that the above form is invariant with respect to the GL(V5) ac-
tion on det V5 ⊕∧2

V5 ⊕V ∗
5 , hence OG(5, 10) is a GL(V5) invariant subvariety

in P
(
det V5 ⊕ ∧2

V5 ⊕ V ∗
5

)
. In fact, one checks easily that it is the closure of

one orbit.
The embedded tangent space to OG(5, 10) in the point p = P(det V5) is

clearly the space P
(
det V5 ⊕ ∧2

V5
)
. Moreover, it is a well-known theorem

(see for example [2, §4]) that the variety OG(5, V10) in its spinor embedding
is self dual. More precisely, its dual variety is OG(5, V ∗

10) embedded via its
spinor embedding in P

(
det V ∗

5 ⊕ ∧2
V ∗

5 ⊕ V5
) = P

(
det V5 ⊕ ∧2

V5 ⊕ V ∗
5

)∗
.

3.3. The Lagrangian Grassmannian LG(3, 6)

For a chosen vector space V2n of dimension 2n and a non-degenerate 2-form
ω ∈ ∧2

V ∗
2n the variety LG(n, V2n) := LGω(n, V2n) is the subvariety of the

Grassmannian G(n, V2n) parametrizing n-spaces isotropic with respect to the
form ω. In this way LGω(n, V2n) is a non-proper linear section of the Grass-
mannian G(n, V2n). The embedding that we consider is the one coming from
the Plücker embedding of the Grassmannian. The variety LG(n, V2n) is a ho-
mogeneous variety of the simple Lie group Spω(V2n) of automorphisms of V2n

preserving the form ω.
From now on, to avoid technicalities we concentrate on the case n = 3. As

in the previous case, to get a suitable description of our variety, it is convenient
to fix a point p ∈ LG(3, V6) i.e. a subspace V3 isotropic with respect to ω and
a decomposition V6 = V3 ⊕ V ∗

3 such that ω is given by the matrix:
(

0 I3

−I3 0

)
.

Then
∧3

V6 = det V3 ⊕ (∧2
V3 ⊗ V ∗

3

) ⊕ (∧2
V ∗

3 ⊗ V3
) ⊕ det V ∗

3 . Now,
we observe that:

∧2
V3 ⊗ V ∗

3 = (S2V ∗
3 ⊗ det V3) ⊕ V3 and the span of the
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Lagrangian Grassmannian is the subspace:

∧〈3〉
V3 :=

{
α ∈

3∧
V3

∣∣∣∣ α(ω) = 0

}

= det V3 ⊕ (S2V ∗
3 ⊗ det V3) ⊕ (S2V3 ⊗ det V ∗

3 ) ⊕ det V ∗
3 .

(3.2)

Before we pass to the equations describing LG(3, V6), let us introduce some
notation. As usual, the evaluation map will be denoted by

det(V3) ⊗ det(V3)
∗ � a ⊗ b 	→ a(b) = b(a) ∈ C,

as well as any map based on this evaluation as for instance:

(S2V3 ⊗ det(V3)
∗) ⊗ det(V3) � B ⊗ x 	→ B(x) ∈ S2V3,

and
(S2V ∗

3 ⊗ det(V3)) ⊗ det(V ∗
3 ) � A ⊗ y 	→ A(y) ∈ S2V ∗

3 .

We moreover have the natural projection

S2(S2V3 ⊗ det V ∗
3 ) = (S4V3 ⊗ (det V ∗

3 )2) ⊕ S2V ∗
3

π−→ S2V ∗
3 ,

and on the dual space

S2(S2V ∗
3 ⊗ det V3) = (S4V ∗

3 ⊗ (det V3)
2) ⊕ S2V3

π ′−→ S2V3.

Finally we have two projections from

(S2V3⊗det V ∗
3 )⊗(S2V ∗

3 ⊗det V3) = S2V3⊗S2V ∗
3 = �λ2,0,−2V3⊕�λ1,0,−1V3⊕C

onto �λ1,0,−1V3 and C which we shall denote by η1 and η0 respectively. Here
the notation �λ�V3 stands for the representation of GL(3) with highest weight
vector (�).

With the above notation the Lagrangian Grassmannian LG(3, V6) is defined
as the zero locus of the form

det V3 ⊕ (S2V ∗
3 ⊗ det V3) ⊕ (S2V3 ⊗ det V ∗

3 ) ⊕ det V ∗
3 � (x, A, B, y)

	→ (η1(A ⊗ B), y(x) − η0(A ⊗ B), π(A) − B(x), π ′(B) − A(y))

∈ �λ1,0,−1V3 ⊕ C⊕ S2V3 ⊕ S2V ∗
3 .

For a more detailed analysis of these equations we refer to [4]. Let us
however write down also an explicit version of the equations in appropriate



PROJECTIONS OF MUKAI VARIETIES 199

coordinates which will be used in subsequent proofs. Let us choose coordinates
(x, A, B, y) for

det V3 ⊕ S2V3 ⊗ det V ∗
3 ⊕ S2V ∗

3 ⊗ det(V3) ⊕ det V ∗
3

such that A, B are interpreted as symmetric matrices:

A =
⎛
⎝

a1,1 a1,2 a1,3

a1,2 a2,2 a2,3

a1,3 a2,3 a3,3

⎞
⎠ , B =

⎛
⎝

b1,1 b1,2 b1,3

b1,2 b2,2 b2,3

b1,3 b2,3 b3,3

⎞
⎠ ,

then the above equations defining LG(3, 6) are:

A · B = x · y · id, ∧2A = x · B, ∧2B = A · y.

The embedded tangent space to LG(3, V6) in the point p is the space

det V3 ⊕ (S2V ∗
3 ⊗ det V3).

Finally, the projective dual variety to LG(3, V6) is an irreducible quartic
hypersurface. For a more detailed description of the quartic and the type of
singularities corresponding to orbits in its stratification we send the reader to
[4, §2.5]. We shall use the fact that there is a unique orbit giving nodal sections,
and it is the open orbit of the quartic.

3.4. The adjoint G2 variety

Hereafter we describe the variety G2; for more details on the subject we refer
to [15, Ex. 30]. Let V7 be a vector space of dimension 7 understood as a standard
representation under the action of the group GL(V7). Then the representation∧4

V7 admits an open orbit (see [1, §5]). Choose a 4-form ω ∈ ∧4
V7 from

this open orbit. The variety G2 is the subvariety of the Grassmannian G(2, V7),
consisting of those 2-spaces U ⊂ V7 such that

∧2
U ∧ ω = 0. To see it

as a homogeneous variety observe that the stabilizer subgroup of ω in the
representation

∧4
V7 is a simple Lie group called G2. Let us also consider the

group G̃2 ⊂ GL(V7) preserving [ω] ∈ P
(∧4

V7
)
. The representation of G2

on V7 is irreducible and called the standard representation of G2. By abuse of
notation we shall denote it by V7. Now

∧2
V7 decomposes into V7 ⊕ AdG2 ,

where AdG2 denotes the adjoint representation of the groupG2. In this case the
space AdG2 = {α ∈ ∧2

V7 | α ∧ ω = 0}. The variety G2 is therefore obtained
as the intersection P(AdG2) ∩ G(2, V7) and thus is the unique closed orbit of
the projectivized adjoint representation of the group G2. In particular, G2 is a
homogeneous variety under the action of the group G2 or G̃2.
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For an intrinsic way to get the equations, let us fix a point p ∈ G2 i.e. a
subspace V2 of dimension 2 such that

∧2
V2 ∧ω = 0. The stabilizer subgroup

in G̃2 of the point p ∈ G2 contains GL(2) embedded in such a way that
V7 = V2 ⊕ V ∗

2 ⊕ (S2V2 ⊗ det V ∗
2 ). After restriction we have

2∧
V7 = V2 ⊕ V ∗

2 ⊕ (S2V2 ⊗ det V ∗
2 ) ⊕ det V2 ⊕ (S3V2 ⊗ det V ∗

2 )

⊕ (S2V2 ⊗ det V ∗
2 ) ⊕ C⊕ (S3V ∗

2 ⊗ det V2) ⊕ det V ∗
2 , (3.3)

and

AdG2 = det V2 ⊕ (S3V2 ⊗ det V ∗
2 ) ⊕ (S2V2 ⊗ det V ∗

2 )

⊕ C⊕ (S3V ∗
2 ⊗ det V2) ⊕ det V ∗

2 .

In fact, the decomposition can be read also directly from the root vectors of
the group G2. By the description above, the variety G2 being the intersection
P(AdG2) ∩ G(2, V7) is described as the zero locus of the form: AdG2 � A 	→
A ∧ A ∈ ∧4

V7.
Since our arguments related to G2 are based on equations, we need to be

very explicit. Let us write down the equations of G2 in coordinates. According
to the above, to get a description of G2 we start with a 7-dimensional vector
space V7 with coordinates v1, . . . , v7 and a general 4-form ω ∈ ∧4

V7. From
[1, Figure 1] by suitable change of coordinates we may assume:

ω = v1 ∧ v2 ∧ v3 ∧ v7 + v4 ∧ v5 ∧ v6 ∧ v7 + v1 ∧ v2 ∧ v4 ∧ v5

+ v1 ∧ v3 ∧ v4 ∧ v6 + v2 ∧ v3 ∧ v5 ∧ v6.

Now, G2 is obtained as a linear section of G(2, V7) by the linear space
AdG2,ω = {α ∈ ∧2

V7 | α ∧ ω = 0} which itself is defined by 7 linear
equations of the form α ∧ ω ∧ vi = 0. Putting the coordinates of the 2-form α

in the shape of a skew-symmetric matrix the subspace AdG2,ω is parametrized
by coordinates (a, . . . , n) of some P13 in the following way:

MG2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −f e g h i a

f 0 −d j k 	 b

−e d 0 m n −g − k c

−g −j −m 0 c −b d

−h −k −n −c 0 a e

−i −	 g + k b −a 0 f

−a −b −c −d −e −f 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The variety G2 = G(2, V7)∩AdG2,ω is then defined in AdG2,ω by 4×4 Pfaffians
of this matrix.

In our coordinates, one can also recover the decomposition (3.3) corres-
ponding to a chosen subspace V2 ⊂ V7:

AdG2 = det V2 ⊕ (S3V2 ⊗ det V ∗
2 ) ⊕ (S2V2 ⊗ det V ∗

2 )

⊕ C⊕ (S3V ∗
2 ⊗ det V2) ⊕ det V ∗

2 ,

as given by h, (m, i, a, e), (c, f, g + k), g, (b, d, n, 	), j .
The following lemma provides us a classification of orbits of hyperplanes in

the projectivization of the adjoint representation Ad(G2) giving rise to singular
sections of the variety G2. Recall that in [7, Lemma 1] a classification of all
orbits of the co-adjoint representation lying outside the dual variety of the
subvariety G2 is given in terms of a family of sextic hypersurfaces. In the
lemma below we complete this classification with known results concerning
orbits contained in the projective dual variety.

Lemma 3.1. The projective dual variety to the variety G2 under the action of
the simple Lie groupG2 is a sextic hypersurface which admits a decomposition
into the following orbits:

• an open orbit O12 of dimension 12,

• one orbit O11 of dimension 11 being an open subset of the base locus of
sextic hypersurfaces,

• one orbit O10 of dimension 10 being an open subset of the singular locus
of the projective dual sextic hypersurface,

• one orbit O9 in dimension 9 being an open subset of the intersection of
O11 ∩ O10,

• one orbit O7 of dimension 7,

• one orbit O5 of dimension 5 corresponding to the variety G2 in the co-
adjoint representation being isomorphic to the adjoint representation by
the Killing form.

Proof. We follow the same argument as in [7, lem. 1] to get a classifica-
tion of all orbits of P(Ad(G2)). Recall that the Jordan decomposition for Lie
groups implies that there are three types of orbits of the adjoint representation:
nilpotent orbits, semi-simple orbits and mixed orbits. In [7, lem. 1] all semi-
simple orbits have been classified. In particular, the orbit O10 is the image in
the projectivization of the semi-simple orbit corresponding to long root vectors
of Cartan sub-algebras. Furthermore it was observed that there are only two
types of mixed orbits: associated to the short root vectors, or to the long root
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vectors. Finally it was proven that there is a unique orbit of mixed type asso-
ciated to short root vectors. Repeating the argument for long root vectors one
proves the uniqueness of the mixed orbit associated to the long root vectors
and that it’s projectivization is O12. To complete our classification of all orbits
we need to recall the classical classification of nilpotent orbits of Bala-Carter
applied to G2. Their list can be found for example in [3, app. A, table 2]. The
projectivizations of the nilpotent orbits are O11, O9, O7, O5, which are distin-
guished by their dimensions. The geometric interpretation of O9, O7, O5 can
be found in [9, sec. 6], whereas the geometry of O11 follows from the fact that
the base locus of sextics is clearly invariant and decomposes into a union of
finitely many orbits; one of them must have dimension 11.

3.5. Quadrics in Mukai varieties

Let us provide here a classification of maximal dimensional quadrics contained
in above Mukai varieties.

Proposition 3.2. Let Yg ⊂ Png , for 6 ≤ g ≤ 9 be the homogeneous variety
related to the Mukai variety Mg , so that Y6 := G(2, 5) and Yg := Mg for
7 ≤ g ≤ 9. Then the maximal dimension of a quadric contained in Yg for
g = 6, 7, 8, 9 is equal to 4, 6, 4, 3 respectively.

Proof. Let us call a non-special quadric in Yg a quadric which is not
contained in a linear space contained in Yg . Let us first classify maximal
non-special quadrics in Yg . For this, consider the rational map φg:Png ���
P(H 0(IYg

(2))) defined by the system of quadrics through Yg . Since Yg is
scheme theoretically defined by quadrics the map is well defined on Png \ Yg

and factors through the blow up of Yg in Png . Note that for two points p1, p2 ∈
Png \ Yg we have φg(p1) = φg(p2) if and only if the line p1p2 intersects Yg

in a scheme of length 2. In particular, if two points p1, p2 ∈ Png \ Yg are in
the same fiber then the line connecting them is in the closure of this fiber. It
follows that the closures of fibers of φg are linear spaces. By restricting our
linear system to such a fiber closure we conclude that the closure of a fiber
of φg is either a point or is spanned by a maximal non-special quadric in Yg .
To see that, first note that by definition the fiber closure of φg is not contained
in Yg . Then observe that the space of quadrics defining Yg restricted to a fiber
closure is one-dimensional, hence the intersection of a fiber closure with Yg is a
quadric. Conversely, each linear space that meets Yg in a quadric hypersurface
is contracted by φg (or more precisely its intersection with Png \ Yg is con-
tracted). Such linear space is hence contained in a fiber closure. It follows that
maximal non-special quadrics appear exactly as intersections of fiber closures
of φg . To classify maximal quadrics in Yg we thus need only to understand the
restriction of φg to Sec(Yg) the secant variety to Yg . We have:
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(1) For g = 6 we have φ6(ω) = ω ∧ ω and its image is P5 with all fibers
being 5-dimensional linear spaces spanned by 4-dimensional quadrics.

(2) For g = 7 the map φ7 was studied in [14] and mapsP15 = Sec(OG(5,10))

to a quadric in P9. Its fibers are 7-dimensional linear spaces spanned by
6-dimensional quadrics.

(3) For g = 8 we again have φ8(ω) = ω ∧ ω and hence the image of
Sec(G(2, 6)) is G(4, 6) with all fibers being linear spaces of dimension
5 spanned by 4-dimensional quadrics.

(4) For g = 9 the situation is slightly more complicated. The secant variety
of LG(3, 6) is the whole P13. Furthermore, see [9, Prop 5.10 and 5.11],
there are exactly 4 orbits of the representation of Sp(6) on theP13. These
are: the open orbit; a hypersurface discriminant type orbit; the variety
σ+(LG(3, 6)) of points lying on more than one secant; and LG(3, 6).
Through a point in P13 \ σ+(LG(3, 6)) there is a unique secant and
hence the corresponding fiber of φ9 is a line. However, for any point
p ∈ σ+(LG(3, 6))\LG(3, 6) the fiber of the image of p is a linear space
of dimension 4 spanned by a Lagrangian flag variety LF(B, 3, B⊥) for
some one-dimensional subspace B of the vector 6-space. More precisely
LF(B, 3, B⊥) denotes the subvariety of LG(3, 6) parametrising those
Lagrangian 3-spaces which contain B and are contained in B⊥. The latter
Lagrangian flag variety is a quadric of dimension 3.

It remains to consider maximal special quadrics, these are related to maximal
dimensional linear spaces in Yg . To classify such linear spaces we observe
that in every Grassmannian G(n, Vm) there are two types of maximal linear
spaces, these are: F(n, Vn+1, Vm) and F(Vn−1, n, Vm) which are of dimensions
n and m − n respectively. Here our notation is F(n, V, W) = G(n, V ) and
F(V, n, W) is the flag variety of n-spaces containing V and contained in W ,
furthermore the indices denote the dimensions of the corresponding subspaces
that we fix. By applying that to our Yg we conclude that the highest dimensional
quadrics in Yg are non-special.

4. The proofs

The idea of the proofs is the following. We start with the fact that each of
our Mukai varieties appears as an orbit of a representation of a suitable Lie
Group on a projective space. Now, on one hand we consider the representation
corresponding to Mg restricted to a suitable subgroup preserving a singular
hyperplane section on the other we have the representation corresponding to
Mg−1 restricted to a subgroup preserving a linear space of suitable dimension
containing a quadric. Finally, we identify these restricted representations which
induces an isomorphism between studied varieties.
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Proof of Theorem 2.1. Since the condition for a linear space to intersect
OG(5, 10) in a singular variety is equivalent to intersecting a tangent space
to OG(5, 10) non-transversally we obtain the irreducibility of the family of
singular hyperplane sections. For the remaining part of the proof we use the
description and notation introduced in Section 3.2 replacing V5 by V . We
observe that a hyperplane containing the tangent space of OG(5, 10) in the
point p is given by choosing a hyperplane U corresponding to a point in the
summand V of the decomposition det V ∗ ⊕ ∧2

V ∗ ⊕ V of the dual space∧ev
V ∗. A Levi subgroup of the stabilizer of such a hyperplane is isomorphic

to GL(1) × GL(4) and corresponds to decompositions

V = U ⊕ C, V ∗ = U ∗ ⊕ C.

We consider only the GL(4) representations, where by abuse of notation U is
now the standard representation of GL(4). We shall denote t and t∗ the coordin-
ates corresponding to the respective trivial summands above. The GL(4) rep-
resentation on the tangent hyperplane is thus Tp = P

(
det U⊕∧2

U⊕U⊕U ∗),
hence on the projection from p we have the representationP

(∧2
U ⊕U ⊕U ∗).

Denote the coordinates corresponding to this decomposition by (B, u, u∗).

Claim. The equations describing the projection are B ∧B = 0, B(u∗) = 0
and u(u∗) = 0.

Indeed we have: A = B + t ∧ u, v∗ = u∗ + t∗, v = u + t and x = x ′ ∧ t

for x ′ the coordinate representing the component det U of Tp. The equations
of OG(5, 10) in these coordinates are:

(x ′ ∧ t)(u∗ + t∗)+ (B + t ∧u)∧ (B + t ∧u) = 0, (B + t ∧u)(u∗ + t∗) = 0.

Expanding these we get:

(−x ′(u∗)−2B∧u)∧t+t (t∗)x ′+B∧B = 0, B(u∗)−t (t∗)u∗+t∧u(u∗) = 0.

Since the equations are in
∧4

V = ∧4
U ⊕ (∧3

U ⊗ C
)

and V = U ⊕ C we
decompose them accordingly getting:

(−x ′(u∗) − 2B ∧ u) = 0, t (t∗)x ′ + B ∧ B = 0,

B(u∗) − t (t∗)u∗ = 0, u(u∗) = 0.

Now, the hyperplane section is given by t∗ = 0 giving:

(−x ′(u∗) − 2B ∧ u) = 0, B ∧ B = 0, B(u∗) = 0, u(u∗) = 0. (4.1)

The equations are now given by those elements in the ideal that do not
involve x ′ (i.e. such elements which define hypersurfaces which are cones
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centered in the point with coordinates x ′ = 1 and the rest 0) which proves the
claim.

In particular, the projection is the intersection of a cone over a Grassman-
nian G(2, 5) with vertex a P3 with a hyperplane and a quadric of rank 4.
Furthermore, we deduce from equations (4.1) that a general codimension 4
linear section of the hyperplane section t∗ = 0 containing p has a unique node
as singularity. This proves the second assertion of the theorem.

Consider now on the other hand the following GL(4) representation

P

(( 2∧
(U ∗ ⊕ C)

)
⊕ U

)
= P

( 2∧
U ∗ ⊕ U ∗ ⊕ U

)
.

Denote the coordinates corresponding to the above decomposition by (B ′, w′∗,
w′). Clearly, the cone G with vertex the linear space P(U) spanned over the
Grassmannian G(2, U ∗⊕C) and the quadric Q′ of rank 8 given by w′∗(w′) = 0
are invariant under the GL(4) action. The variety G ∩ Q′ is then defined by
the equations

B ′ ∧ B ′ = 0, B ′ ∧ w′∗ = 0, w′∗(w′) = 0.

We now clearly see that by choosing an element in det U giving us an
isomorphism

∧2
U ∗ → ∧2

U we get the desired isomorphism between the
projection of a general singular hyperplane section of OG(5, 10) and the inter-
section of the cone spanned over G(2, 5) (with vertex the linear space P(U))
with the quadric Q′ defined above. We now need only to observe that the pro-
jection of a general one-nodal codimension 5 section from its node is a general
section of the variety obtained above. It follows that it is isomorphic to the
intersection of G(2, V ) with a quadric Q containing a linear space L5 (given
by w′∗ = 0 on our linear section) isomorphic to P5 and meeting the Grass-
mannian G(2, V ) in some four-dimensional quadric corresponding to some
G(2, V4) for V4 ⊂ V5 a 4-dimensional vector subspace of V .

For the converse, let G(2, V ) ∩ Q be an intersection containing a four-
dimensional quadric Q4. Then, by our classification of quadrics in G(2, V )

(cf. 3.5), we know that Q4 must be equal to G(2, V4) ⊂ G(2, V ) for V4 ⊂ V

a 4-dimensional vector subspace of V . Let L5 � P5 be the span of Q4 then
L5 ∩ G(2, V ) = Q4 ⊂ Q. It follows that there exists a Plücker quadric QPl

containing G(2, V ) ⊂ P
(∧2

V
)

such that QPl ∩ L5 = Q ∩ L5. Hence, there
exists a quadric Q̃ such that Q̃ ∩ G(2, V ) = Q ∩ G(2, V ) and Q̃ ⊃ L5. It is
now easy to see that such an intersection can be embedded as a linear section
of G ∩ Q′. Thus Q̃ ∩ G(2, V ) = G(2, V ) ∩ Q is a projection of a singular
section of OG(5, 10). Taking a general intersection G(2, V5) ∩ Q containing
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a four-dimensional quadric Q4 ensures us that the latter projection will be
performed from a node.

We proceed similarly with Theorem 2.2. The argument is due to L. Manivel.

Proof. Consider a point p ∈ G(2, 6). A Levi subgroup of its stabilizer is
GL(2)×GL(4) and the representation involved is

∧2
V2 ⊕(V2 ⊗V4)⊕∧2

V4.
Denote the corresponding coordinates (p, v, Ã). The tangent space to G(2, 6)

in the fixed point is given by Ã = 0. Hence choosing a hyperplane tangent to
G(2, 6) at p relies on choosing an element ω ∈ ∧2

V ∗
4 . The subgroup of GL(4)

fixing ω is the symplectic group Sp(4) and we have a representation of Sp(4) on
the ambient space of the image of the projection given by V4 ⊕ V4 ⊕ ∧〈2〉

V4,
where

∧〈2〉
V4 is the representation of Sp(4) on the invariant hyperplane in∧2

V4 corresponding to ω ∈ ∧2
V ∗

4 (cf. (3.2)). We shall denote coordinates
on this space by (v1, v2, A).

Observe that we recover the same representation on the space spanned
by the intersection of OG(5, 10) with a linear space as follows. As in the
previous theorem consider OG(5, 10) as invariant under the action of GL(5)

in the representation P
(
det(V ∗

5 ) ⊕ ∧2
V ∗

5 ⊕ V5
)
, take a decomposition of

V5 = V4 ⊕ C. The corresponding representation of GL(4) is P
(
det(V ∗

4 ) ⊕∧2
V ∗

4 ⊕ V ∗
4 ⊕ V4 ⊕ C

)
. If we now fix a symplectic form ω′ on V4 we get a

representation of Sp(4) given by V4 ⊕ V ∗
4 ⊕ ∧〈2〉

V4 ⊕ det V4 ⊕ 2C. Consider
the component V4 ⊕ V ∗

4 ⊕ ∧〈2〉
V4 and denote the corresponding coordinates

by (w1, w2, B). Note that V4 � V ∗
4 canonically via ω′ and we recognize the

same representation as above.
Let us now compare the equations defining the corresponding varieties. To

determine the equations of the projection of the considered singular section
of G(2, 6) from the singular point corresponding to the coordinate p we start
with the equations of the Grassmannian in the coordinates (p, v1, v2, Ã). We
get

sq(V2⊕V4)
(p, v1, v2, Ã) = (

Ã ∧ Ã, Ã ∧ (v1, v2), p ∧ Ã − v1 ∧ v2
)

∈
4∧

V4 ⊕
(

V2 ⊗
3∧

V4

)
⊕

( 2∧
V2 ⊗

2∧
V4

)
=

4∧
(V2 ⊕ V4).

The hyperplane given by ω is ω(Ã) = 0. This means that applying ω to
p ∧ Ã − v1 ∧ v2 = 0 we get the equation ω(v1 ∧ v2) = 0 not involving p.
Furthermore, the equations of the projection are exactly A∧A = 0, A∧v1 = 0,
A ∧ v2 = 0, ω(v1 ∧ v2) = 0.

For the section of OG(5, 10) restricting equations (3.1) to our subspace we
have B ∧ w1 = 0, B(w2) = 0, B ∧ B = 0, w1(w2) = 0. It is clear that these
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varieties are isomorphic after taking into account the isomorphism V4 � V ∗
4

induced by ω′. Furthermore, they both contain a quadric of dimension 6 (given
by w1(w2) = 0 in the space corresponding to B = 0).

For the converse, observe that in the GL(4) representation P
(
det(V ∗

4 ) ⊕∧2
V ∗

4 ⊕ V ∗
4 ⊕ V4 ⊕ C

)
the space P(V4 ⊕ V ∗

4 ) is a P7 meeting OG(5, 10)

in a quadric of dimension 6, but all such quadrics are equivalent under the
action of SOq(V10) (see Section 3.5). Hence, we may assume that the quadric
is the considered quadric of dimension 6 in OG(5, 10). Restricting to the
SL(4) action we get a representation: P

(
C ⊕ ∧2

V4 ⊕ V4 ⊕ V4 ⊕ C
)
. We

take a general codimension 3 linear section containing P(V4 ⊕ V ∗
4 ). Such

a codimension 3 linear space is a graph of a linear map from V4 ⊕ V4 ⊕
H → C3 for some hyperplane H ⊂ ∧2

V4 corresponding to some ωH ∈∧2
V ∗

4 . Restricting to the subgroup Sp(4) ⊂ SL(4) preserving ωH we get a
representation P

(∧〈2〉
V4 ⊕V4 ⊕V4 ⊕ 3C

)
. By suitable change of coordinates

the codimension 3 linear space is P
(
V4 ⊕ V4 ⊕ ∧〈2〉

V4
)

and we conclude as
above.

Let us approach similarly Theorem 1.4 looking for an alternative to the
proof given in [4].

Proof. We use notation and description from Section 3.3. We have seen
that the projective tangent space Tp is the subspace given by B = 0, y = 0.
Next, we observe that a choice of hyperplane containing Tp is equivalent to
choosing an element Q ofP((S2V3⊗det V ∗

3 ⊕det V ∗
3 )∗). Consider the isotropy

subgroup of GL(3) fixing Q. For a generic choice of Q it contains SL(2) in
such a way that the corresponding SL(2) representation on V3 is S2V2. The
SL(2) representation on the ambient space of LG(3, 6) is then

det(S2V2) + S2(S2V2) ⊗ det(S2V ∗
2 ) + S2(S2V ∗

2 ) ⊗ det(S2V2) + det(S2V ∗
2 ).

Now using
S2(S2V2) = S4V2 ⊕ C

and
det(S2V2) = C,

and V2 = V ∗
2 , we get the representation on the ambient space of LG(3, 6) as

C1 ⊕ (S4V2 ⊕ C2) ⊕ (S4V2 ⊕ C3) ⊕ C4.

Here, we added indices to the one-dimensional representations to have a way
distinguish their corresponding coordinates. The hyperplane section is given
by a linear form on the subspace generated by C3,C4. In fact, since all nodal
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hyperplane section are in the same orbit (see [4]) on the dual space, we may
assume that the hyperplane is given by the vanishing of the coordinate corres-
ponding to C3. We hence get the following representation on the hyperplane
section:

C1 ⊕ (S4V2 ⊕ C2) ⊕ S4V2 ⊕ C4.

Now the representation on the projection of the hyperplane from p is

S4V2 ⊕ C2 ⊕ S4V2 ⊕ C4.

On the other hand, consider a G(2, V4) in G(2, V6) together with a de-
composition V6 = V4 ⊕ V2 and the associated GL(2) × GL(4) representation:∧2

V2 ⊕ (V2 ⊗ V4) ⊕ ∧2
V4. Next, consider a general codimension 3 linear

space H̃3 in V2 ⊗ V4. Note that the choice of V2 and H̃3 determines a general
codimension three section containing G(2, V4). The latter is the projectiviza-
tion of:

H3 :=
2∧

V2 ⊕ H3 ⊕
2∧

V4 ⊂
2∧

V6.

We now observe that there is a subgroup of GL(2)×GL(4) which is isomorphic
to SL(2) which fixes H3. Indeed, geometrically, P(H3) on gives a general
codimension 3 section of the closed Segre orbit P1 × P3 ⊂ P(V2 ⊗ V4) i.e.
a rational normal quartic. The latter is a graph of the Veronese embedding
P1 → P3 and hence is preserved by a subgroup SL(2) ⊂ GL(2) × GL(4)

which must hence also preserve H3. Moreover, it follows that the associated
SL(2) representation on V6 is V2 ⊕ S3V2 and hence on

∧2
V6 is

C⊕ V2 ⊗ S3V2 ⊕
2∧

(S3V2).

We now observe that

V2 ⊗ S3V2 = S4V2 ⊕ S2V2

and
2∧

(S3V2) = S4V2 ⊕ C.

Hence, we get

2∧
V6 = C⊕ S4V2 ⊕ S2V2 ⊕ S4V2 ⊕ C
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then H3 = Ker
(∧2

V6 → S2V2
)
. Then the representation on H3 is

H3 = C⊕ S4V2 ⊕ S4V2 ⊕ C.

The coordinates corresponding to the decompositions above give us a hint
on the isomorphism between any nodal hyperplane section of LG(3, V6) and
a generic codimension 3 section of G(2, V6) containing some G(2, V4) i.e.
a generic quadric Q ⊂ G(2, V6) of dimension 4. Note however that the de-
composition does not provide any uniquely determined isomorphism. In fact,
our group is too small to determine an isomorphism. To provide the correct
isomorphism in this case, we will investigate explicit descriptions and use the
above decomposition only as a hint. Let us hence write the equations expli-
citly: Let v and u be coordinates corresponding to the two one-dimensional
components of H3 and let x0, . . . , x4 and y0, . . . , y4 be the natural coordin-
ates of the two S4V2 components of H3. In these coordinates, by the above
discussion, the section is defined by 4 × 4 Pfaffians of the matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 v x0 x1 x2 x3

−v 0 x1 x2 x3 x4

−x0 −x1 0 y0 y1 u − y2

−x1 −x2 −y0 0 y2 y3

−x2 −x3 −y1 −y2 − u 0 y4

−x3 −x4 −y2 −y3 −y4 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For the projection of the section of the Lagrangian Grassmannian, let v′ and u′
be coordinates corresponding to the two one-dimensional representations and
let x ′

0, . . . , x
′
4 and y ′

0, . . . , y
′
4 be the coordinates of the two S4V2 in the projec-

tion of the hyperplane section of LG(3, 6), such that the section of LG(3, 6) is
given by: ⎛

⎝t,

⎛
⎝

y ′
0 y ′

1 y ′
2

y ′
1 u′ y ′

3

y ′
2 y ′

3 y ′
4

⎞
⎠ ,

⎛
⎝

x ′
0 x ′

1 x ′
2

x ′
1 x ′

2 x ′
3

x ′
2 x ′

3 x ′
4

⎞
⎠ , v′

⎞
⎠ ,

where t is the coordinate corresponding to the projection. The isomorphism is
then given by:

(v′, x ′
0, x

′
1, x

′
2, x

′
3, x

′
4, y

′
0, y

′
1, y

′
2, y

′
3, y

′
4, u

′)
= (v, x4, −x3, −x2, x1, x0, y0, y1, y2, −y3, y4, u).

The fact that this is indeed an isomorphism between our sections is easily
but tediously checked by comparing equations. The presentation of such an
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Listing 1. Macaulay 2 script confirming isomorphism.

R=QQ[u,v,x_0..x_4,y_0..y_4,t]
W=matrix{ 
  {0,v,x_0,x_1,x_2,x_3},
  {-v,0,x_1,x_2,x_3,x_4},
  {-x_0,-x_1,0,y_0,y_1,u-y_2},
  {-x_1,-x_2,-y_0,0,y_2,y_3},
  {-x_2,-x_3,-y_1,-y_2,0,y_4},
  {-x_3,-x_4,y_2-u,-y_3,-y_4,0}}
G26=pfaffians(4,W);
A=matrix{{y_0,y_1,-y_2},{y_1,u,-y_3},{-y_2,-y_3,y_4}};
B=matrix{{x_4,-x_3,-x_2},{-x_3,x_2,x_1},{-x_2,x_1,x_0}};
adjugate=MM -> matrix( for ii from 0 to 2 list
  (for jj from 0 to 2 list
  (-1)^(ii+jj)*det(submatrix'(MM,{ii},{jj})) ));
LG=(xx,AA,BB,zz) -> ideal(AA*BB-xx*zz, 
  adjugate(AA)-xx*BB,adjugate(BB)-zz*AA);
PLG=eliminate(LG(t,A,B,v), t)
PLG==G26

argument is impossible so we provide a simple Macaulay 2 script, Listing 1,
that permits us to quickly confirm our computations.

The situation in Theorem 2.3 is even more complicated. Indeed, as the
involved representation ofG2 is the adjoint one and the general singular section
appears on an orbit of codimension 1 we have a one-dimensional subgroup of
G2 acting on the general singular hyperplane section. Hence we are left with
the comparison of representations of C∗ which does not give any hint on the
isomorphism between the varieties.

Theorem 2.3 is however still true and will be proved by guessing the iso-
morphism for one representative of each orbit of the dual variety giving a nodal
section of G2. The correctness of the guessed isomorphism has tediously been
checked by hand by the author, however for ease of presentation we provide
a simple script in Macaulay 2 performing the check. We are aware that this
does not shed light on the geometry of the construction but we believe that the
theorem itself has interesting geometric consequences.

We shall compare, using Macaulay 2, nodal hyperplane sections of G2 with
codimension 2 sections of LG(3, 6) containing a 3-dimensional quadric.

Proof of Theorem 2.3. Passing to the proof we check that we have
exactly two orbits of nodal hyperplane sections of G2. Using the description
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from Lemma 3.1 and the Killing form (see [7, proof of lem 1]) given by:

Q = 48(ad + be + cf ) + 16(g2 + k2 + (g + k)2 + jh + im + n	)

to identify the space P(AdG2,ω) with its dual, we can choose the following
singular hyperplane sections as representatives of the orbits from Lemma 3.1:

(1) j = c + f in the 12-dimensional orbit;

(2) f = m in the 11-dimensional orbit;

(3) g + k = 0 in the 10-dimensional orbit;

(4) h = f in the 9-dimensional orbit;

(5) f = 0 in the 7-dimensional orbit;

(6) h = 0 in the 5-dimensional orbit.

Only the following two among these sections are nodal hyperplane sections:

• The section given by j = c +f is a representative of the open orbit O12

of the projective dual variety to G2. It is singular at the point with only
nonzero coordinate h = 1.

• The section given by f = m is also nodal at the point with only nonzero
coordinate h = 1 but corresponds to a hyperplane represented in the
dual space by a point which lies in the intersection of the dual variety
with the quadric defined by the Killing form i.e. is an element of the
11-dimensional orbit O11.

The first part of the theorem now amounts to finding an embedding of the
projection of the two above sections of G2 from the point with only nonzero
coordinate h = 1 (being their node) into LG(3, 6) as a proper linear section.

We start by considering both cases at once using the pencil f = tm + (1 −
t)(j −c) parametrized by t . Then the image of the projection in the space with
natural coordinates (a, b, c, d, e, g, i, j, k, 	, m, n) is given by all Pfaffians of
the matrix MG2 not involving h (with the substitution f = tm+ (1− t)(j − c)

made) and the quadric Qt being the difference of the Pfaffian Pfhf involving hf

and the combination t Pfhm +(1 − t)(Pfhj − Pfhc) of Pfaffians Pfhm,Pfhj ,Pfhc

involving hm, hj and hc respectively.
Now for t = 1 consider the following embedding of the projection of the

hyperplane f = m from the coordinate point with only nonzero coordinate
h = 1:

(x, a1,1, a1,2, a1,3, a2,2, a2,3, a3,3, b1,1, b1,2, b1,3, b2,2, b2,3, b3,3, y)

= (n, f, c, −g − k, e, a, c + i, g, −d, −f, 	, −b, −d, j)
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and check directly that ideal of the image of G2 under the projection coincides
with the ideal of the pre-image of LG(3, 6) via this embedding. In other terms
the equations of the projection are restrictions of equations of LG(3, 6) to

(x, A, B, z) =
⎛
⎝n,

⎛
⎝

−f c −g − k

c e a

−g − k a c + i

⎞
⎠ ,

⎛
⎝

g −d −m

−d 	 −b

−m −b −d

⎞
⎠ , j

⎞
⎠ .

Note that the ideal of the projection contains the quadric a2 +ng − e(c + i) =
b = c = d = f = 	 = j = g + k = 0, which is a 3-dimensional linear
section of the quadric Q1.

In the example corresponding to t = 0 i.e. j = c + f , which is the
general case, the equations of the projected variety define the same ideal as
the equations of LG(3, 6) restricted to

(x, A, B, z) =
⎛
⎝a − d,

⎛
⎝

i + e + b d −g

d −b c

−g c −e − m

⎞
⎠ ,

⎛
⎝

−d −m −j

−m −a + n + d g + k

−j g + k d − 	

⎞
⎠ , m + b

⎞
⎠ ,

i.e. the projection is isomorphic to a codimension 2 linear section of the
Lagrangian Grassmannian containing the 3-dimensional quadric defined by
m = b = c = d = f = g + k = 	 = a(a − n) − g2 − e(i + e) = 0 which is
also a linear section of the quadric Q0.

The equality of the above ideals can be easily checked by hand, writing
each equation of one variety as a linear combination of equations defining the
other. To save space we wont write down all the equations here, instead we
provide a simple Macaulay 2 script, Listing 2, performing the computations.
Note that the previous script needs to be compiled for this script to work.

For the other direction we observed that all maximal dimensional quadrics
in LG(3, 6) are equivalent by the action of the symplectic group. We can also
observe that two general codimension 2 sections containing a fixed quadric are
linearly isomorphic. Indeed, we have a 5-dimensional family of 3-dimensional
quadrics and each of them spans a P4 ⊂ P13 hence is contained in a G(2, 9)

of codimension 2 spaces. This means that the family of codimension two
sections containing a quadric is of dimension 19. Take the representation of
Sp(6,C) acting on the space P

(∧2(∧〈3〉
V ∗

6

))
containing the Grassmannian

of 2-spaces orthogonal to codimension 2 sections of LG(3, V6). Now, consider
the orbit of the line orthogonal to the codimension 2 section of LG(3, 6). To
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Listing 2. Macaulay 2 script checking equality of ideals.

R=QQ[a,b,c,d,e,f,g,h,i,j,k,l,m,n,t];
M=matrix{{0,-f,e,g,h,i,a},{f,0,-d,j,k,l,b},
    {-e,d,0,m,n,-g-k,c},{-g,-j,-m,0,c,-b,d},
    {-h,-k,-n,-c,0,a,e},{-i,-l,g+k,b,-a,0,f},
    {-a,-b,-c,-d,-e,-f,0}};
G2=pfaffians(4,M);
H=G2+ideal(t*m+(1-t)*(j-c)-f);
pr=saturate eliminate(h,H);
ProjectionG2=substitute(pr,f=>t*m+(1-t)*(j-c));
x1=n;
A1=matrix{{-m,c,-g-k},{c,e,a},{-g-k,a,c+i}};
B1=matrix{{g,-d,-m},{-d,l,-b},{-m,-b,-d}};
z1=j;
LG1=LG(x1,A1,B1,z1);
LG1==sub(ProjectionG2,t=>1)
x2=a-d;
A2=matrix{{i+e+b,d,-g},{d,-b,c},{-g,c,-e-m}};
B2=matrix{{-d,-m,-j},{-m,-a+n+d,g+k},{-j,g+k,d-l}};
z2=m+b;
LG0=LG(x2,A2,B2,z2);
LG0==sub(ProjectionG2,t=>0)

compute the dimension of the orbit it is enough to compute the dimension of its
stabilizer. For simplicity of calculations, we can perform the computation on
the Lie algebra representation. We use the representation of ��(6,C) + ��(1)

where the ��(1) represents the C∗ action corresponding to the projectivization.
The representation φ on V ∗

6 induces a representation on
∧3

V ∗
6 and further

on
∧2(∧3

V ∗
6

)
. The space

∧2(∧〈3〉
V ∗

6

)
is a subset of the latter hence for

stabilizer computation we can perform the computation in the bigger space. For
that, we choose V1, V2 ∈ ∧〈3〉

V ∗
6 corresponding to two linear equations cutting

from LG(3, 6) the result of the projection above. We write down the coefficients
of the action of the Lie algebra on the 2-vector V1 ∧ V2 ∈ ∧2(∧〈3〉

V ∗
6

)
. The

tangent to the stabilizer of the action of Sp(6)×C∗ on V1 ∧V2 ∈ ∧2(∧〈3〉
V ∗

6

)
is given by the vanishing of all those coefficients. We conclude by the fact that
the dimension of the latter stabilizer is equal to the dimension of the stabilizer
of [V1 ∧ V2] under the Sp(6) action on P

(∧2(∧〈3〉
V ∗

6

))
. The computation is

performed by the script Listing 3.

We deduce that the dimension of the stabilizer of this line is 2 i.e. the
orbit is of dimension dim(Sp(6,C)) − 2 = 21 − 2 = 19. It follows that the
orbit of the codimension 2 section described in the general case is open and
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Listing 3. Macauly 2 script computing dimension of stabiliser.

R=QQ[a_1..a_9,b_1..b_6,c_1..c_6,d]
M=matrix{{a_1+d,a_2,a_3,b_1,b_2,b_3},
  {a_4,a_5+d,a_6,b_2,b_4,b_5},
  {a_7,a_8,a_9+d,b_3,b_5,b_6},
  {c_1,c_2,c_3,-a_1+d,-a_4,-a_7},
  {c_2,c_4,c_5,-a_2,-a_5+d,-a_8},
  {c_3,c_5,c_6,-a_3,-a_6,-a_9+d}}
S=R[x_1..x_6, SkewCommutative => true]
phi=map(S,S,transpose(M*transpose(vars(S))))
phi(x_1)*x_4+x_1*phi(x_4)+phi(x_2)*x_5+x_2*phi(x_5)+
  phi(x_3)*x_6+x_3*phi(x_6)
V1=-x_2*x_5*x_6+x_1*x_4*x_6+2*x_2*x_3*x_4
V2=2*x_2*x_4*x_6+x_2*x_3*x_5-x_1*x_3*x_4-2*x_1*x_2*x_3
PHIV1=
  -phi(x_2)*x_5*x_6-x_2*phi(x_5)*x_6-x_2*x_5*phi(x_6)+
  phi(x_1)*x_4*x_6+x_1*phi(x_4)*x_6+x_1*x_4*phi(x_6)+
  2*phi(x_2)*x_3*x_4+2*x_2*phi(x_3)*x_4+2*x_2*x_3*phi(x_4)
PHIV2=
  2*phi(x_2)*x_4*x_6+phi(x_2)*x_3*x_5-phi(x_1)*x_3*x_4-
  2*phi(x_1)*x_2*x_3+2*x_2*phi(x_4)*x_6+x_2*phi(x_3)*x_5-
  x_1*phi(x_3)*x_4-2*x_1*phi(x_2)*x_3+2*x_2*x_4*phi(x_6)+
  x_2*x_3*phi(x_5)-x_1*x_3*phi(x_4)-2*x_1*x_2*phi(x_3)
VAR3=mingensideal(vars(S)**vars(S)**vars(S))
phiv1=(coefficients(PHIV1,Monomials=> VAR3))_1
v1=(coefficients(V1,Monomials=>VAR3))_1
phiv2=(coefficients(PHIV2,Monomials=> VAR3))_1
v2=(coefficients(V2,Monomials=> VAR3))_1
LL=exteriorPower(2,v1|phiv2)+exteriorPower(2,phiv1|v2)
STAB= (map(R,S))(ideal(LL))
dim STAB

dense in the variety of all codimension 2 sections of LG(3, 6) containing a
three-dimensional quadric.

5. Geometric transitions

In this section, we shall see that Theorems 2.1, 2.2, 1.4 and 2.3 provide a very
concrete and geometrically simple way to connect different families of prime
Fano threefolds of index 1 and genus ≤ 10. These connections are natural
from the point of view of Mirror Symmetry and analogous to the so-called
conifold transitions well known in the context of Calabi-Yau threefolds. Let
us give more details of the theory here. A geometric transition between two
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Calabi-Yau threefolds is a transformation consisting of a contraction morphism
followed by a flat deformation. More precisely:

Definition 5.1. A geometric transition from a smooth Calabi-Yau three-
fold X to a smooth Calabi-Yau threefold Y is a pair consisting of a birational
morphism f : X → Z and a flat family over a disc with central fiber Z and some
other fiber Y . Here, Z is a singular Calabi-Yau threefold. In this context, the
latter deformation is called a smoothing of Z or a degeneration of Y depending
on the direction from which we look. A geometric transition is a conifold
transition if the singularities of Z are only ordinary double points and f : X →
Z is a small resolution.

Conifold transitions are the most natural transformation from the point of
view of mirror symmetry, in particular they admit interpretations in terms of
physics. It is conjectured that any two Calabi-Yau manifold can be connected
by a sequence of geometric transitions. It is moreover conjectured that, if
two Calabi-Yau threefolds are connected by a geometric transitions then their
mirrors are connected by a dual geometric transition.

Since it is not possible to connect two Calabi-Yau manifolds of Picard
number one by a single geometric transition (varieties with Picard number
one do not admit any nontrivial birational morphisms) the most natural in
their context is to study pairs of geometric transitions, we call them geometric
bitransitions:

Definition 5.2. We say that two Calabi-Yau threefolds are connected by a
geometric bitransition if there exists a Calabi-Yau threefold T such that there
are geometric transitions both from T to X and from T to Y .

Notice now that there is a list of Calabi-Yau manifolds of Picard number
one related to Mukai varieties. Namely these are Calabi-Yau threefolds which
appear as sections of Mukai 4-folds by quadric hypersurfaces. These Calabi-
Yau manifolds were extensively studied by Borcea and are called after him. In
our context, Theorems 2.1, 2.2, 1.4 and 2.3 provide a way to connect all Borcea
Calabi-Yau threefolds by means of a chain of geometric bitransitions that we
suggestively call a cascade. More details of this constructions are given in [6,
sec 6].

In this section, we concentrate on an analogous construction in the case of
prime Fano threefolds of index 1. Knowing that the theory of Landau-Ginzburg
models for Fano manifolds is parallel to that of mirror symmetry for Calabi-
Yau manifolds, we extend our notions to the context of Fano varieties. We
first observe that the definitions of geometric and conifold transitions as well
as bitransitions can be literally repeated for Fano manifolds just by replacing
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the words Calabi-Yau with Fano. Their importance in the study of Landau-
Ginzburg models of Fano manifolds is expected to be similar to that of geo-
metric and conifold transitions in classical mirror symmetry. Trying to make
a step towards the understanding of mirror symmetry for Fano threefolds we
explain how Theorems 2.1, 2.2, 1.4 and 2.3 give rise to geometric bitransitions
between prime Fano threefolds of index 1, arranging them into a sequence that
we shall again call a cascade.

Let Fg be a general Fano threefold of genus g in its anti-canonical embed-
ding. By Mukai’s linear section theorem, Fg is a transverse linear section of
Mg . It is hence clear that Fg admits a flat deformation to a nodal Fano threefold
F ′

g being a transverse linear section of a nodal linear section L of Mg studied
in this paper.

Lemma 5.3. Let π be a linear projection of a one nodal proper linear section
of Mg from its node, as in Theorems 2.1, 2.2, 1.4 and 2.3, then π is a birational
map onto its image.

Proof. From the fact that Mukai varieties are generated by quadrics and
are not cones we know that their projection from a point lying on them is a
birational morphism contracting the tangent cone to its base. To conclude we
need only to observe that the considered projections are restrictions of these
projections to nodal hyperplane sections which are not cones.

By Theorems 2.1, 2.2, 1.4, 2.3 and Lemma 5.3 the projection of F ′
g from its

node is a possibly singular Fano threefold F̂g−1 containing a quadric surface
and obtained as a special proper linear section of Mg−1. Using Mukai’s linear
section theorem, by moving the latter section to a general transversal section
of Mg−1, we obtain a flat family with F̂g−1 as special fiber and general Fano
threefolds of genus g − 1 as general fibers. We hence get the following dia-
gram connecting two general Fano 3-folds Fg and Fg−1 of genus g and g − 1
respectively.

Xg

Fg Fg F̂g−1 Fg−1
π

φp

G F

Here π is the birational projection which factorizes through the blow up p of the
node and a contraction morphism φ, whereas F and G represent deformation
families with the arrows going from the special to the general fiber. To complete
the picture we describe also the singularities of F̂g−1.



PROJECTIONS OF MUKAI VARIETIES 217

Proposition 5.4. If Fg is a general three-dimensional one-nodal proper
linear section of Mg then all singularities of its projection F̂g−1 from the
node are again nodes. Moreover the number of nodes on F̂g−1 is 5, 4, 4, 3 for
g = 7, 8, 9, 10 respectively.

Proof. Observe that by Lemma 5.3 the singularities of F̂g−1 are exactly the
images of the lines contracted by the projection. Note that the projection factors
through a blow up of the node with exceptional divisor a smooth quadric and
a morphism contracting proper transforms of lines passing through the node.
The latter maps the exceptional quadric onto a smooth quadric which passes
through the images of all contracted lines. Let us now compute the singular
locus of F̂g−1 being the union of images of contracted lines. To compute it
observe that each line contracted is contained in the intersection of Fg ∩TpMg

where p is the center of projection and TpMg is the projective tangent space
to Mg in p. We now observe that Mg ∩ TpMg is one of the following:

• a cone over a Grassmannian G(2, 5) for g = 7,

• a cone over a product P1 × P3 for g = 8,

• a cone over a Veronese surface for g = 9,

• a cone over a twisted cubic for g = 10 (note that the cone spans only a
P4 in the tangent which is a P5).

Now, we observe that it is always a variety of codimension 3 in TpMg , hence
Fg ∩TpMg is a union of as many lines as the degree of corresponding cone i.e.
5, 4, 4, 3 for g = 7, 8, 9, 10 respectively. Thus F̂g−1 has isolated singularities
whose number is given in the assertion.

Finally, we claim that all singularities of F̂g−1 as well as F ′
g are ordinary

double points. Since we have only a few cases to consider one can check every
singularity of a representative of each orbit of varieties and check their type of
singularities on the computer. We shall however use a more general argument.
We just observe that the variety F̂g−1 is a general proper linear section of
Mg−1 containing a chosen quadric surface. As the quadric surface is a scheme
theoretical proper linear section of Mg−1 one can use the following proposition
which is a reformulation of [5, thm 2.1] in a slightly more general context.

Proposition 5.5. Let X be a smooth projective variety of dimension s + 2.
Let S ⊂ X be a smooth codimension s surface being a scheme theoretical
base locus of a linear subsystem L ⊂ |OX(d)|, for some d≥ 1. Then the
intersection of a set of s − 1 generic divisors from the system L is a threefold
with only ordinary double points as singularities.

Proof. The proof of [5, thm 2.1] can be reproduced without changes.
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Remark 5.6. In the theory of Landau-Ginzburg models, a counterpart to
mirror symmetry for Fano threefolds, the above construction provides the
simplest possible way to connect two different Fano threefolds such that one
can hope to keep track of the Landau-Ginzburg models (mirrors) involved. Not
only the bitransition consists of conifolds but it is also related to a single linear
projection. We hope that the results presented in this section will contribute to
a better understanding of general mirror symmetry for Fano threefolds.
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