PROJECTIONS OF MUKAI VARIETIES

MICHAŁ KAPUSTKA

Abstract

This note is an answer to a problem proposed by Iliev and Ranestad. We prove that the projections of general nodal linear sections of suitable dimension of Mukai varieties M_{g} are linear sections of M_{g-1}.

1. Introduction

In [10] Mukai gave a description of general canonical curves, K3 surfaces and Fano threefolds of sectional genus $g \leq 10$ in terms of linear sections of appropriate varieties. For prime Fano threefolds of index 1 the description may be summarized in the Table 1. The table gives a classification of prime Fano threefolds of index 1 and genus $g \leq 10$ up to two exceptions. For $g=6$ there exist also smooth prime Fano manifolds which are obtained as intersections of a cone over a linear section of the Grassmannian $G(2,5)$ with a quadric not passing through the vertex. Whereas for $g=3$ there exist double covers of \mathbb{P}^{3} branched in quadric hypersurfaces. These are not included in the list, but are degenerations of the general cases below. Furthermore, there is only one more family of general prime Fano threefolds of index 1. It corresponds to the case $g=12$.

In the table we use the notation $X_{i_{1}, \ldots, i_{n}}$ for the generic complete intersection of given degree. The variety Q_{2} is a generic quadric hypersurface. The notation $G(2, n)$ stands for the Grassmannians of lines in projective $n-1$-space in their Plücker embeddings. The variety $O G(5,10)$ is the orthogonal Grassmannian. It is a component of the set of linear spaces of dimension 4 contained in a smooth eight dimensional quadric hypersurface in \mathbb{P}^{9} in its spinor embedding. The variety $L G(3,6)$ is the Lagrangian Grassmannian, it is a linear section of $G(3,6)$ in its Plücker embedding parametrizing 3-dimensional vector spaces isotropic with respect to a chosen generic symplectic form. The variety G_{2} is a linear section of $G(5,7)$ in its Plücker embedding parametrizing 5-dimensional vector subspaces of a 7-dimensional vector space isotropic with respect to a chosen generic four-form. The notation M_{g} and the name Mukai varieties has

[^0]Table 1. Anti-canonical model of prime Fano threefolds of index 1 and given genus.

Genus	Model
2	$X_{6} \subset \mathbb{P}\left(1^{4}, 3\right)$
3	$X_{4} \subset \mathbb{P}^{4}$
4	$X_{2,3} \subset \mathbb{P}^{5}$
5	$X_{2,2,2} \subset \mathbb{P}^{6}$
6	$X_{1,1} \subset Q_{2} \cap G(2,5)=: M_{6}^{5}$
7	$X_{1,1,1,1,1,1,1} \subset O G(5,10)=: M_{7}^{10}$
8	$X_{1,1,1,1} \subset G(2,6)=: M_{8}^{8}$
9	$X_{1,1,1} \subset L G(3,6)=: M_{9}^{6}$
10	$X_{1,1} \subset G_{2}=: M_{10}^{5}$

become common in this context. The upper index used in the table stands for the dimension of the variety and will be omitted from now on. We shall describe these varieties more precisely in Section 3.

It is now a natural problem to relate these Fano varieties by means of standard constructions such as, for example, projections. In particular the following problem was considered in [13], [4]. It concerns proper linear sections of Mukai varieties i.e. intersections of Mukai varieties with linear spaces whose codimension is equal to the codimension of the linear space.

Problem 1.1. For given $7 \leq g \leq 10$, what is the highest n such that there exists a proper linear section H of dimension n of M_{g} admitting a single ordinary double point p as singularity and such that the projection of H from p is linearly isomorphic to a proper linear section of M_{g-1} ?

The justification for proposing this problem is the observation that taking the projection of a nodal Fano manifold (K3 surface or canonical curve) of sectional genus g from the node we still get a Fano manifold (K3 surface or canonical curve) but with sectional genus reduced by 1, hence the result should appear as a section of M_{g-1}. The only problem arising is that the resulting variety might again be (and in fact, by Proposition 5.4, in dimension at least 3 will always be) singular and not prime (i.e. the Weil divisors class group is not generated by the canonical class) in which case Mukai's result does not work.

As evidence in [13] it was observed that the statement is true for $n=1$ i.e. the projection of a nodal curve which is a linear section of M_{g} is always a proper linear section of M_{g-1}. Moreover an upper bound for n was given, by computing the maximal dimension of quadrics contained in M_{g-1} and observing that the result of the considered projection must contain a quadric
divisor as the exceptional divisor of the projection.
Observe first that n can be arbitrarily large for an analogous problem formulated for $g \leq 5$. More precisely we have the following observation:

Observation 1.2. For $3 \leq g \leq 5$ and $n \in \mathbb{N}$ there exists a complete intersection M of type M_{g} (i.e. as in the Table) and dimension n in a corresponding weighted projective space such that M admits a single ordinary double point as singularity. Moreover for any such M the projection from the node is linearly isomorphic to a complete intersection of type M_{g-1}. Conversely a generic complete intersection of type M_{g-1} containing a smooth quadric as a codimension 1 subvariety can be obtained in such a way.

Similarly for $g=6$.
Observation 1.3. There exists a quadric Q such that $G(2,5) \cap Q$ has a single node. Moreover for any such intersection the projection from the node is linearly isomorphic to a complete intersection of type $X_{2,2,2}$. Conversely a generic complete intersection $X_{2,2,2}$ containing a smooth quadric as a codimension 1 subvariety can be obtained in such a way.

Indeed these are examples of standard Kustin-Miller unprojections, see [12, §4].

The case $g=9$ was the main result of [4]. Before we state the theorem let us observe that the general singular hyperplane section of $L G(3,6)$ has a single node as singularity. Let now L be any nodal hyperplane section of $L G(3,6)$ and p its unique singularity.

Theorem 1.4. The projection of Lfrom the node p is a proper codimension 3 linear section of $G(2,6)$, containing a 4-dimensional quadric. Conversely a general 5-dimensional linear section of $G(2,6)$ that contains a 4-dimensional quadric arises in this way.

The proof proposed in [4] is based on the construction of an appropriate bundle on the resolution of a nodal hyperplane section of $L G(3,6)$.

In this note we reprove Theorem 1.4 and solve the remaining cases in purely algebraic terms by analysis of equations of considered varieties in terms of natural representations appearing on the linear spaces they span. We understand that such arguments are unsatisfactory from the point of view of understanding the geometry of the relations involved. We believe however that in further investigations, in particular in applications, having an explicit form of the equations and the isomorphisms involved will be very helpful.

The original motivation of [13], [4] for studying Problem 1.1 was the construction of non-abelian Brill-Noether loci in moduli spaces of bundles over Mukai varieties.

Our main focus will be put on the understanding of the geometry of the constructions presented with a view toward future applications in the theory of Mirror Symmetry and Landau-Ginzburg models. For this reason in Section 5 we concentrate on the case of Fano 3-folds. We prove that for a Fano 3-fold of genus g admitting a single node its projection from the node is a Fano 3 -fold of genus $g-1$ with also only nodes as singularities. We factorize the projection into a blow up of the node and a small contraction of lines and count the number of nodes obtained in each case. In this way we connect families of Fano 3-folds of genus g in the simplest way from the point of view of the theory of Landau-Ginzburg models.

The analogue of this in the case of Calabi-Yau threefolds is a cascade of geometric bitransitions connecting Calabi-Yau threefolds from the list of Borcea (see $[6, \S 6]$).

2. Statements

The main results of the paper may be summarized as follows
THEOREM 2.1. The subscheme of $G(11,16)$ parametrizing codimension 5 singular linear sections of M_{7} is irreducible. The general element of this subscheme corresponds to a 5-dimensional linear section L of M_{7} admitting a single node. The projection of L from the node is isomorphic to a proper intersection $G(2,5) \cap Q$, where Q is a quadric in \mathbb{P}^{9} such that $G(2,5) \cap Q$ contains a smooth 4-dimensional quadric. Moreover a generic variety $G(2,5) \cap Q^{\prime}$ containing a smooth 4-dimensional quadric arises in this way.

Theorem 2.2. The general element of the projective dual variety of $G(2,6)$ defines a hyperplane section L of $G(2,6)$ of dimension 7 admitting a single node as singularity. The projection of L from the node is then a proper codimension 3 linear section of $O G(5,10)$, containing a smooth 6-dimensional quadric. Moreover a generic codimension 3 linear section of $O G(5,10)$ containing a smooth 6-dimensional quadric arises in this way.

Theorem 2.3. The general element of the projective dual variety to G_{2} defines a hyperplane section L of G_{2} admitting a single node as singularity. Let L be any hyperplane section of G_{2} admitting a single node. Then the projection of L from the node is a proper linear section of $L G(3,6)$, containing a smooth 3-dimensional quadric. Moreover a generic linear section of $L G(3,6)$ containing a smooth 3 dimensional quadric arises in this way.

The proof of Theorems 2.1, 2.2, 1.4 and 2.3 is based on analyzing representations appearing on the linear sections involved and comparing the equations of the varieties involved.

3. Descriptions of Mukai varieties, their tangents and projective duals

In this section we recall the known descriptions of Mukai varieties and their projective duals. As reference for the descriptions contained in this section we suggest [10], [11], [14], [15].

We start with the general description of the Grassmannian $G(2, n)$.

3.1. The Grassmannian $G(2, n)$

Let V be a n-dimensional vector space with $n \geq 2$. The Grassmannian $G(2, V)$ is then the subvariety of $\mathbb{P}\left(\bigwedge^{2} V\right)$ consisting of decomposable forms. It is scheme theoretically the zero locus of the quadratic form:

$$
s q_{V}: \bigwedge^{2} V \ni \omega \mapsto \omega \wedge \omega \in \bigwedge^{4} V
$$

The Grassmannian is also a homogeneous space of $G L(V)$. In this language if V is the standard representation of $G L(V)$ then $G(2, V)$ is the unique closed orbit of the projectivized representation $\mathbb{P}\left(\bigwedge^{2} V\right)$. Let us now fix a point p in $G(2, V)$ i.e. a two-dimensional subspace $V_{2} \in V$. The stabilizer subgroup of p is the parabolic subgroup P of $G L(V)$ consisting of automorphisms preserving V_{2}. By standard Lie theory P has a decomposition into a semi-direct product of a reductive Lie group and a solvable ideal. Such a reductive Lie group is called a Levi subgroup of P. It is also known that all Levi subgroups of the same type are conjugate. In our case a choice of Levi subgroup of P corresponds to a choice of decomposition $V=V_{2} \oplus V_{n-2}$, then the Levi subgroup is the direct product $G L\left(V_{2}\right) \times G L\left(V_{n-2}\right)$. The representation $\bigwedge^{2} V$ restricted to the Levi subgroup decomposes into

$$
\bigwedge^{2} V_{2} \oplus\left(V_{2} \otimes V_{n-2}\right) \oplus \bigwedge^{2} V_{n-2}
$$

Let us consider the quadratic form $s q_{V}$ with respect to the above decomposition. To do this we first observe that $\bigwedge^{4} V$ restricted to our Levi subgroup also decomposes:

$$
\bigwedge^{4} V=\left(\bigwedge^{2} V_{2} \otimes \bigwedge^{2} V_{n-2}\right) \oplus\left(V_{2} \otimes \bigwedge^{3} V_{n-2}\right) \oplus \bigwedge^{4}\left(V_{n-2}\right)
$$

Now

$$
s q_{V}:\left(\omega_{2}, \varphi, \omega_{n-2}\right) \mapsto\left(\varphi \wedge \varphi+2 \omega_{2} \otimes \omega_{n-2}, 2 \varphi \wedge \omega_{n-2}, \omega_{n-2} \wedge \omega_{n-2}\right)
$$

It follows that the invariant subspace $\mathbb{P}\left(\bigwedge^{2} V_{2} \oplus\left(V_{2} \otimes V_{n-2}\right)\right)$ is the embedded tangent space of the Grassmannian $G(2, V)$ in the point p.

The projective dual variety of the Grassmannian $G(2, V)$ (see [8]) is the closure of the maximal not open orbit of the representation $\bigwedge^{2} V^{*}$. As such it is described by the condition on forms $\bigwedge^{2} V^{*}$ to be of non-maximal rank. More precisely, the projective dual is the zero locus of the symmetric [$n / 2$]-form

$$
p f_{V}^{n}: \bigwedge^{2} V^{*} \ni \omega \mapsto \omega \wedge \cdots \wedge \omega \in \bigwedge^{2[n / 2]} V^{*}
$$

It follows that the projective dual variety of $G(2, V)$ is a hypersurface for n even or is of codimension 3 for n odd.

3.2. The orthogonal Grassmannian $O G(5,10)$

(Cf. [14, §6] and references therein.) Let us start with some generalities about the variety $O G(n, 2 n)$. To define this space we start with a $2 n$-dimensional vector space $V_{2 n}$ endowed with a non-degenerate quadratic form q. Consider the variety S of n-subspaces of $V_{2 n}$ isotropic with respect to q. It is a subvariety of the Grassmannian $G(n, 2 n)$ having two components $S^{\text {ev }}$ and $S^{\text {odd }}$. They are called the even and odd orthogonal Grassmannians and are denoted by $O G(n, 2 n)$. The orthogonal Grassmannian is a homogeneous variety of the group $S O_{q}\left(V_{2 n}\right)$. In this paper we are interested in the so-called spinor embeddings of these varieties. A convenient way to get the description of the image of these embeddings is to start with a point $p \in O G(n, 2 n)$ i.e. a subspace V_{n} isotropic with respect to q and a decomposition $V_{2 n}=V_{n} \oplus V_{n}^{*}$ in which q is given by the matrix

$$
\left(\begin{array}{cc}
0 & I_{n} \\
I_{n} & 0
\end{array}\right)
$$

The parabolic subgroup of $\mathrm{SO}_{q}\left(V_{2 n}\right)$ of elements preserving V_{n} has as Levi subgroup $G L\left(V_{n}\right)$. It is however more convenient to write the spinor embedding as an invariant variety in terms of the $S L\left(V_{n}\right)$ representation:

$$
\mathbb{P}\left(\bigwedge^{\mathrm{ev}} V_{n}\right)
$$

the projectivization of the even part of the exterior algebra of the standard representation V_{n}. The even orthogonal Grassmannian in its spinor embedding is then described in this space as the closure of the image of the exponential map:

$$
\exp : \bigwedge^{2} V_{n} \ni \omega \longmapsto\left[1+\sum_{i=1}^{\lfloor n / 2\rfloor} \frac{1}{i!} \omega^{\wedge i}\right] \in \mathbb{P}\left(\bigwedge^{\mathrm{ev}} V_{n}\right)
$$

In our case $n=5$ and

$$
\mathbb{P}\left(\bigwedge^{\mathrm{ev}} V_{5}\right)=\mathbb{P}\left(\mathbb{C} \oplus \bigwedge^{2} V_{5} \oplus \bigwedge^{4} V_{5}\right)
$$

To get a set of equations in an intrinsic way we use the identification of $S L\left(V_{5}\right)$ representations $\mathbb{C}=\operatorname{det} V_{5}$ and $\bigwedge^{4} V_{5}=V_{5}^{*}$. The orthogonal Grassmannian is now scheme theoretically the zero locus of the quadratic form:

$$
\begin{align*}
\operatorname{det} V_{5} \oplus \bigwedge^{2} V_{5} \oplus V_{5}^{*} & \ni(x, A, v) \\
& \longmapsto(x(v)+A \wedge A, A(v)) \in \bigwedge^{4} V_{5} \oplus V_{5} \tag{3.1}
\end{align*}
$$

Finally observe that the above form is invariant with respect to the $G L\left(V_{5}\right)$ action on det $V_{5} \oplus \bigwedge^{2} V_{5} \oplus V_{5}^{*}$, hence $O G(5,10)$ is a $G L\left(V_{5}\right)$ invariant subvariety in $\mathbb{P}\left(\operatorname{det} V_{5} \oplus \bigwedge^{2} V_{5} \oplus V_{5}^{*}\right)$. In fact, one checks easily that it is the closure of one orbit.

The embedded tangent space to $O G(5,10)$ in the point $p=\mathbb{P}\left(\operatorname{det} V_{5}\right)$ is clearly the space $\mathbb{P}\left(\operatorname{det} V_{5} \oplus \bigwedge^{2} V_{5}\right)$. Moreover, it is a well-known theorem (see for example $[2, \S 4]$) that the variety $O G\left(5, V_{10}\right)$ in its spinor embedding is self dual. More precisely, its dual variety is $O G\left(5, V_{10}^{*}\right)$ embedded via its spinor embedding in $\mathbb{P}\left(\operatorname{det} V_{5}^{*} \oplus \bigwedge^{2} V_{5}^{*} \oplus V_{5}\right)=\mathbb{P}\left(\operatorname{det} V_{5} \oplus \bigwedge^{2} V_{5} \oplus V_{5}^{*}\right)^{*}$.

3.3. The Lagrangian Grassmannian $\operatorname{LG}(3,6)$

For a chosen vector space $V_{2 n}$ of dimension $2 n$ and a non-degenerate 2-form $\omega \in \bigwedge^{2} V_{2 n}^{*}$ the variety $L G\left(n, V_{2 n}\right):=L G_{\omega}\left(n, V_{2 n}\right)$ is the subvariety of the Grassmannian $G\left(n, V_{2 n}\right)$ parametrizing n-spaces isotropic with respect to the form ω. In this way $L G_{\omega}\left(n, V_{2 n}\right)$ is a non-proper linear section of the Grassmannian $G\left(n, V_{2 n}\right)$. The embedding that we consider is the one coming from the Plücker embedding of the Grassmannian. The variety $L G\left(n, V_{2 n}\right)$ is a homogeneous variety of the simple Lie group $S p_{\omega}\left(V_{2 n}\right)$ of automorphisms of $V_{2 n}$ preserving the form ω.

From now on, to avoid technicalities we concentrate on the case $n=3$. As in the previous case, to get a suitable description of our variety, it is convenient to fix a point $p \in L G\left(3, V_{6}\right)$ i.e. a subspace V_{3} isotropic with respect to ω and a decomposition $V_{6}=V_{3} \oplus V_{3}^{*}$ such that ω is given by the matrix:

$$
\left(\begin{array}{rr}
0 & I_{3} \\
-I_{3} & 0
\end{array}\right)
$$

Then $\bigwedge^{3} V_{6}=\operatorname{det} V_{3} \oplus\left(\bigwedge^{2} V_{3} \otimes V_{3}^{*}\right) \oplus\left(\bigwedge^{2} V_{3}^{*} \otimes V_{3}\right) \oplus \operatorname{det} V_{3}^{*}$. Now, we observe that: $\bigwedge^{2} V_{3} \otimes V_{3}^{*}=\left(S^{2} V_{3}^{*} \otimes \operatorname{det} V_{3}\right) \oplus V_{3}$ and the span of the

Lagrangian Grassmannian is the subspace:

$$
\begin{align*}
\bigwedge^{\langle 3\rangle} V_{3} & :=\left\{\alpha \in \bigwedge^{3} V_{3} \mid \alpha(\omega)=0\right\} \tag{3.2}\\
& =\operatorname{det} V_{3} \oplus\left(S^{2} V_{3}^{*} \otimes \operatorname{det} V_{3}\right) \oplus\left(S^{2} V_{3} \otimes \operatorname{det} V_{3}^{*}\right) \oplus \operatorname{det} V_{3}^{*}
\end{align*}
$$

Before we pass to the equations describing $L G\left(3, V_{6}\right)$, let us introduce some notation. As usual, the evaluation map will be denoted by

$$
\operatorname{det}\left(V_{3}\right) \otimes \operatorname{det}\left(V_{3}\right)^{*} \ni a \otimes b \mapsto a(b)=b(a) \in \mathbb{C}
$$

as well as any map based on this evaluation as for instance:

$$
\left(S^{2} V_{3} \otimes \operatorname{det}\left(V_{3}\right)^{*}\right) \otimes \operatorname{det}\left(V_{3}\right) \ni B \otimes x \mapsto B(x) \in S^{2} V_{3}
$$

and

$$
\left(S^{2} V_{3}^{*} \otimes \operatorname{det}\left(V_{3}\right)\right) \otimes \operatorname{det}\left(V_{3}^{*}\right) \ni A \otimes y \mapsto A(y) \in S^{2} V_{3}^{*}
$$

We moreover have the natural projection

$$
S^{2}\left(S^{2} V_{3} \otimes \operatorname{det} V_{3}^{*}\right)=\left(S^{4} V_{3} \otimes\left(\operatorname{det} V_{3}^{*}\right)^{2}\right) \oplus S^{2} V_{3}^{*} \xrightarrow{\pi} S^{2} V_{3}^{*}
$$

and on the dual space

$$
S^{2}\left(S^{2} V_{3}^{*} \otimes \operatorname{det} V_{3}\right)=\left(S^{4} V_{3}^{*} \otimes\left(\operatorname{det} V_{3}\right)^{2}\right) \oplus S^{2} V_{3} \xrightarrow{\pi^{\prime}} S^{2} V_{3} .
$$

Finally we have two projections from
$\left(S^{2} V_{3} \otimes \operatorname{det} V_{3}^{*}\right) \otimes\left(S^{2} V_{3}^{*} \otimes \operatorname{det} V_{3}\right)=S^{2} V_{3} \otimes S^{2} V_{3}^{*}=\Sigma^{\lambda_{2,0,-2}} V_{3} \oplus \Sigma^{\lambda_{1,0,-1}} V_{3} \oplus \mathbb{C}$
onto $\Sigma^{\lambda_{1,0,-1}} V_{3}$ and \mathbb{C} which we shall denote by η_{1} and η_{0} respectively. Here the notation $\Sigma^{\lambda_{i}} V_{3}$ stands for the representation of $G L(3)$ with highest weight vector (i).

With the above notation the Lagrangian Grassmannian $L G\left(3, V_{6}\right)$ is defined as the zero locus of the form

$$
\begin{gathered}
\operatorname{det} V_{3} \oplus\left(S^{2} V_{3}^{*} \otimes \operatorname{det} V_{3}\right) \oplus\left(S^{2} V_{3} \otimes \operatorname{det} V_{3}^{*}\right) \oplus \operatorname{det} V_{3}^{*} \ni(x, A, B, y) \\
\mapsto\left(\eta_{1}(A \otimes B), y(x)-\eta_{0}(A \otimes B), \pi(A)-B(x), \pi^{\prime}(B)-A(y)\right) \\
\in \Sigma^{\lambda_{1,0,-1}} V_{3} \oplus \mathbb{C} \oplus S^{2} V_{3} \oplus S^{2} V_{3}^{*}
\end{gathered}
$$

For a more detailed analysis of these equations we refer to [4]. Let us however write down also an explicit version of the equations in appropriate
coordinates which will be used in subsequent proofs. Let us choose coordinates (x, A, B, y) for

$$
\operatorname{det} V_{3} \oplus S^{2} V_{3} \otimes \operatorname{det} V_{3}^{*} \oplus S^{2} V_{3}^{*} \otimes \operatorname{det}\left(V_{3}\right) \oplus \operatorname{det} V_{3}^{*}
$$

such that A, B are interpreted as symmetric matrices:

$$
A=\left(\begin{array}{lll}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{1,2} & a_{2,2} & a_{2,3} \\
a_{1,3} & a_{2,3} & a_{3,3}
\end{array}\right), \quad B=\left(\begin{array}{lll}
b_{1,1} & b_{1,2} & b_{1,3} \\
b_{1,2} & b_{2,2} & b_{2,3} \\
b_{1,3} & b_{2,3} & b_{3,3}
\end{array}\right)
$$

then the above equations defining $L G(3,6)$ are:

$$
A \cdot B=x \cdot y \cdot \mathrm{id}, \wedge^{2} A=x \cdot B, \wedge^{2} B=A \cdot y
$$

The embedded tangent space to $L G\left(3, V_{6}\right)$ in the point p is the space

$$
\operatorname{det} V_{3} \oplus\left(S^{2} V_{3}^{*} \otimes \operatorname{det} V_{3}\right)
$$

Finally, the projective dual variety to $L G\left(3, V_{6}\right)$ is an irreducible quartic hypersurface. For a more detailed description of the quartic and the type of singularities corresponding to orbits in its stratification we send the reader to [4, §2.5]. We shall use the fact that there is a unique orbit giving nodal sections, and it is the open orbit of the quartic.

3.4. The adjoint G_{2} variety

Hereafter we describe the variety G_{2}; for more details on the subject we refer to [15, Ex. 30]. Let V_{7} be a vector space of dimension 7 understood as a standard representation under the action of the group $G L\left(V_{7}\right)$. Then the representation $\bigwedge^{4} V_{7}$ admits an open orbit (see $[1, \S 5]$). Choose a 4-form $\omega \in \bigwedge^{4} V_{7}$ from this open orbit. The variety G_{2} is the subvariety of the Grassmannian $G\left(2, V_{7}\right)$, consisting of those 2 -spaces $U \subset V_{7}$ such that $\bigwedge^{2} U \wedge \omega=0$. To see it as a homogeneous variety observe that the stabilizer subgroup of ω in the representation $\bigwedge^{4} V_{7}$ is a simple Lie group called \mathbb{G}_{2}. Let us also consider the group $\tilde{\mathbb{G}}_{2} \subset G L\left(V_{7}\right)$ preserving $[\omega] \in \mathbb{P}\left(\bigwedge^{4} V_{7}\right)$. The representation of \mathbb{G}_{2} on V_{7} is irreducible and called the standard representation of \mathbb{G}_{2}. By abuse of notation we shall denote it by V_{7}. Now $\bigwedge^{2} V_{7}$ decomposes into $V_{7} \oplus \mathrm{Ad}_{\mathbb{G}_{2}}$, where $\mathrm{Ad}_{\mathbb{G}_{2}}$ denotes the adjoint representation of the group \mathbb{G}_{2}. In this case the space $\operatorname{Ad}_{\mathbb{G}_{2}}=\left\{\alpha \in \bigwedge^{2} V_{7} \mid \alpha \wedge \omega=0\right\}$. The variety G_{2} is therefore obtained as the intersection $\mathbb{P}\left(\mathrm{Ad}_{\mathbb{G}_{2}}\right) \cap G\left(2, V_{7}\right)$ and thus is the unique closed orbit of the projectivized adjoint representation of the group \mathbb{G}_{2}. In particular, G_{2} is a homogeneous variety under the action of the group \mathbb{G}_{2} or $\tilde{\mathbb{G}}_{2}$.

For an intrinsic way to get the equations, let us fix a point $p \in G_{2}$ i.e. a subspace V_{2} of dimension 2 such that $\bigwedge^{2} V_{2} \wedge \omega=0$. The stabilizer subgroup in $\tilde{\mathbb{G}}_{2}$ of the point $p \in G_{2}$ contains $G L(2)$ embedded in such a way that $V_{7}=V_{2} \oplus V_{2}^{*} \oplus\left(S^{2} V_{2} \otimes \operatorname{det} V_{2}^{*}\right)$. After restriction we have

$$
\begin{array}{r}
\bigwedge^{2} V_{7}=V_{2} \oplus V_{2}^{*} \oplus\left(S^{2} V_{2} \otimes \operatorname{det} V_{2}^{*}\right) \oplus \operatorname{det} V_{2} \oplus\left(S^{3} V_{2} \otimes \operatorname{det} V_{2}^{*}\right) \\
\oplus\left(S^{2} V_{2} \otimes \operatorname{det} V_{2}^{*}\right) \oplus \mathbb{C} \oplus\left(S^{3} V_{2}^{*} \otimes \operatorname{det} V_{2}\right) \oplus \operatorname{det} V_{2}^{*} \tag{3.3}
\end{array}
$$

and

$$
\begin{aligned}
\operatorname{Ad}_{\mathbb{G}_{2}}=\operatorname{det} V_{2} \oplus\left(S^{3} V_{2} \otimes \operatorname{det} V_{2}^{*}\right) \oplus & \left(S^{2} V_{2} \otimes \operatorname{det} V_{2}^{*}\right) \\
& \oplus \mathbb{C} \oplus\left(S^{3} V_{2}^{*} \otimes \operatorname{det} V_{2}\right) \oplus \operatorname{det} V_{2}^{*}
\end{aligned}
$$

In fact, the decomposition can be read also directly from the root vectors of the group \mathbb{G}_{2}. By the description above, the variety G_{2} being the intersection $\mathbb{P}\left(\mathrm{Ad}_{\mathbb{G}_{2}}\right) \cap G\left(2, V_{7}\right)$ is described as the zero locus of the form: $\mathrm{Ad}_{\mathbb{G}_{2}} \ni A \mapsto$ $A \wedge A \in \Lambda^{4} V_{7}$.

Since our arguments related to G_{2} are based on equations, we need to be very explicit. Let us write down the equations of G_{2} in coordinates. According to the above, to get a description of G_{2} we start with a 7-dimensional vector space V_{7} with coordinates v_{1}, \ldots, v_{7} and a general 4-form $\omega \in \bigwedge^{4} V_{7}$. From [1, Figure 1] by suitable change of coordinates we may assume:

$$
\begin{aligned}
\omega=v_{1} \wedge v_{2} \wedge v_{3} \wedge v_{7}+v_{4} \wedge & v_{5} \wedge v_{6} \wedge v_{7}+v_{1} \wedge v_{2} \wedge v_{4} \wedge v_{5} \\
& +v_{1} \wedge v_{3} \wedge v_{4} \wedge v_{6}+v_{2} \wedge v_{3} \wedge v_{5} \wedge v_{6}
\end{aligned}
$$

Now, G_{2} is obtained as a linear section of $G\left(2, V_{7}\right)$ by the linear space $\operatorname{Ad}_{\mathbb{G}_{2}, \omega}=\left\{\alpha \in \bigwedge^{2} V_{7} \mid \alpha \wedge \omega=0\right\}$ which itself is defined by 7 linear equations of the form $\alpha \wedge \omega \wedge v_{i}=0$. Putting the coordinates of the 2 -form α in the shape of a skew-symmetric matrix the subspace $\mathrm{Ad}_{\mathbb{G}_{2}, \omega}$ is parametrized by coordinates (a, \ldots, n) of some \mathbb{P}^{13} in the following way:

$$
M_{G_{2}}=\left(\begin{array}{ccccccc}
0 & -f & e & g & h & i & a \\
f & 0 & -d & j & k & \ell & b \\
-e & d & 0 & m & n & -g-k & c \\
-g & -j & -m & 0 & c & -b & d \\
-h & -k & -n & -c & 0 & a & e \\
-i & -\ell & g+k & b & -a & 0 & f \\
-a & -b & -c & -d & -e & -f & 0
\end{array}\right)
$$

The variety $G_{2}=G\left(2, V_{7}\right) \cap \mathrm{Ad}_{\mathbb{G}_{2}, \omega}$ is then defined in $\mathrm{Ad}_{\mathbb{G}_{2}, \omega}$ by 4×4 Pfaffians of this matrix.

In our coordinates, one can also recover the decomposition (3.3) corresponding to a chosen subspace $V_{2} \subset V_{7}$:

$$
\begin{aligned}
\operatorname{Ad}_{\mathbb{G}_{2}}=\operatorname{det} V_{2} \oplus\left(S^{3} V_{2} \otimes \operatorname{det} V_{2}^{*}\right) \oplus & \left(S^{2} V_{2} \otimes \operatorname{det} V_{2}^{*}\right) \\
& \oplus \mathbb{C} \oplus\left(S^{3} V_{2}^{*} \otimes \operatorname{det} V_{2}\right) \oplus \operatorname{det} V_{2}^{*},
\end{aligned}
$$

as given by $h,(m, i, a, e),(c, f, g+k), g,(b, d, n, \ell), j$.
The following lemma provides us a classification of orbits of hyperplanes in the projectivization of the adjoint representation $\operatorname{Ad}\left(\mathbb{G}_{2}\right)$ giving rise to singular sections of the variety G_{2}. Recall that in [7, Lemma 1] a classification of all orbits of the co-adjoint representation lying outside the dual variety of the subvariety G_{2} is given in terms of a family of sextic hypersurfaces. In the lemma below we complete this classification with known results concerning orbits contained in the projective dual variety.

Lemma 3.1. The projective dual variety to the variety G_{2} under the action of the simple Lie group \mathbb{G}_{2} is a sextic hypersurface which admits a decomposition into the following orbits:

- an open orbit O_{12} of dimension 12,
- one orbit O_{11} of dimension 11 being an open subset of the base locus of sextic hypersurfaces,
- one orbit O_{10} of dimension 10 being an open subset of the singular locus of the projective dual sextic hypersurface,
- one orbit O_{9} in dimension 9 being an open subset of the intersection of $\overline{O_{11}} \cap \overline{O_{10}}$,
- one orbit O_{7} of dimension 7,
- one orbit O_{5} of dimension 5 corresponding to the variety G_{2} in the coadjoint representation being isomorphic to the adjoint representation by the Killing form.

Proof. We follow the same argument as in [7, lem. 1] to get a classification of all orbits of $\mathbb{P}\left(\operatorname{Ad}\left(\mathbb{G}_{2}\right)\right)$. Recall that the Jordan decomposition for Lie groups implies that there are three types of orbits of the adjoint representation: nilpotent orbits, semi-simple orbits and mixed orbits. In [7, lem. 1] all semisimple orbits have been classified. In particular, the orbit O_{10} is the image in the projectivization of the semi-simple orbit corresponding to long root vectors of Cartan sub-algebras. Furthermore it was observed that there are only two types of mixed orbits: associated to the short root vectors, or to the long root
vectors. Finally it was proven that there is a unique orbit of mixed type associated to short root vectors. Repeating the argument for long root vectors one proves the uniqueness of the mixed orbit associated to the long root vectors and that it's projectivization is O_{12}. To complete our classification of all orbits we need to recall the classical classification of nilpotent orbits of Bala-Carter applied to \mathbb{G}_{2}. Their list can be found for example in [3, app. A, table 2]. The projectivizations of the nilpotent orbits are $O_{11}, O_{9}, O_{7}, O_{5}$, which are distinguished by their dimensions. The geometric interpretation of O_{9}, O_{7}, O_{5} can be found in [9, sec. 6], whereas the geometry of O_{11} follows from the fact that the base locus of sextics is clearly invariant and decomposes into a union of finitely many orbits; one of them must have dimension 11.

3.5. Quadrics in Mukai varieties

Let us provide here a classification of maximal dimensional quadrics contained in above Mukai varieties.

Proposition 3.2. Let $Y_{g} \subset \mathbb{P}^{n_{g}}$, for $6 \leq g \leq 9$ be the homogeneous variety related to the Mukai variety M_{g}, so that $Y_{6}:=G(2,5)$ and $Y_{g}:=M_{g}$ for $7 \leq g \leq 9$. Then the maximal dimension of a quadric contained in Y_{g} for $g=6,7,8,9$ is equal to $4,6,4,3$ respectively.

Proof. Let us call a non-special quadric in Y_{g} a quadric which is not contained in a linear space contained in Y_{g}. Let us first classify maximal non-special quadrics in Y_{g}. For this, consider the rational map $\phi_{g}: \mathbb{P}^{n_{g}} \rightarrow$ $\mathbb{P}\left(H^{0}\left(I_{Y_{g}}(2)\right)\right)$ defined by the system of quadrics through Y_{g}. Since Y_{g} is scheme theoretically defined by quadrics the map is well defined on $\mathbb{P}^{n_{g}} \backslash Y_{g}$ and factors through the blow up of Y_{g} in $\mathbb{P}^{n_{g}}$. Note that for two points $p_{1}, p_{2} \in$ $\mathbb{P}^{n_{g}} \backslash Y_{g}$ we have $\phi_{g}\left(p_{1}\right)=\phi_{g}\left(p_{2}\right)$ if and only if the line $p_{1} p_{2}$ intersects Y_{g} in a scheme of length 2 . In particular, if two points $p_{1}, p_{2} \in \mathbb{P}^{n_{g}} \backslash Y_{g}$ are in the same fiber then the line connecting them is in the closure of this fiber. It follows that the closures of fibers of ϕ_{g} are linear spaces. By restricting our linear system to such a fiber closure we conclude that the closure of a fiber of ϕ_{g} is either a point or is spanned by a maximal non-special quadric in Y_{g}. To see that, first note that by definition the fiber closure of ϕ_{g} is not contained in Y_{g}. Then observe that the space of quadrics defining Y_{g} restricted to a fiber closure is one-dimensional, hence the intersection of a fiber closure with Y_{g} is a quadric. Conversely, each linear space that meets Y_{g} in a quadric hypersurface is contracted by ϕ_{g} (or more precisely its intersection with $\mathbb{P}^{n_{g}} \backslash Y_{g}$ is contracted). Such linear space is hence contained in a fiber closure. It follows that maximal non-special quadrics appear exactly as intersections of fiber closures of ϕ_{g}. To classify maximal quadrics in Y_{g} we thus need only to understand the restriction of ϕ_{g} to $\operatorname{Sec}\left(Y_{g}\right)$ the secant variety to Y_{g}. We have:
(1) For $g=6$ we have $\phi_{6}(\omega)=\omega \wedge \omega$ and its image is \mathbb{P}^{5} with all fibers being 5 -dimensional linear spaces spanned by 4-dimensional quadrics.
(2) For $g=7$ the $\operatorname{map} \phi_{7}$ was studied in [14] and maps $\mathbb{P}^{15}=\operatorname{Sec}(O G(5,10))$ to a quadric in \mathbb{P}^{9}. Its fibers are 7-dimensional linear spaces spanned by 6-dimensional quadrics.
(3) For $g=8$ we again have $\phi_{8}(\omega)=\omega \wedge \omega$ and hence the image of $\operatorname{Sec}(G(2,6))$ is $G(4,6)$ with all fibers being linear spaces of dimension 5 spanned by 4-dimensional quadrics.
(4) For $g=9$ the situation is slightly more complicated. The secant variety of $L G(3,6)$ is the whole \mathbb{P}^{13}. Furthermore, see [9, Prop 5.10 and 5.11], there are exactly 4 orbits of the representation of $S p(6)$ on the \mathbb{P}^{13}. These are: the open orbit; a hypersurface discriminant type orbit; the variety $\sigma_{+}(L G(3,6))$ of points lying on more than one secant; and $L G(3,6)$. Through a point in $\mathbb{P}^{13} \backslash \sigma_{+}(L G(3,6))$ there is a unique secant and hence the corresponding fiber of ϕ_{9} is a line. However, for any point $p \in \sigma_{+}(L G(3,6)) \backslash L G(3,6)$ the fiber of the image of p is a linear space of dimension 4 spanned by a Lagrangian flag variety $\operatorname{LF}\left(B, 3, B^{\perp}\right)$ for some one-dimensional subspace B of the vector 6 -space. More precisely $L F\left(B, 3, B^{\perp}\right)$ denotes the subvariety of $L G(3,6)$ parametrising those Lagrangian 3-spaces which contain B and are contained in B^{\perp}. The latter Lagrangian flag variety is a quadric of dimension 3.
It remains to consider maximal special quadrics, these are related to maximal dimensional linear spaces in Y_{g}. To classify such linear spaces we observe that in every Grassmannian $G\left(n, V_{m}\right)$ there are two types of maximal linear spaces, these are: $F\left(n, V_{n+1}, V_{m}\right)$ and $F\left(V_{n-1}, n, V_{m}\right)$ which are of dimensions n and $m-n$ respectively. Here our notation is $F(n, V, W)=G(n, V)$ and $F(V, n, W)$ is the flag variety of n-spaces containing V and contained in W, furthermore the indices denote the dimensions of the corresponding subspaces that we fix. By applying that to our Y_{g} we conclude that the highest dimensional quadrics in Y_{g} are non-special.

4. The proofs

The idea of the proofs is the following. We start with the fact that each of our Mukai varieties appears as an orbit of a representation of a suitable Lie Group on a projective space. Now, on one hand we consider the representation corresponding to M_{g} restricted to a suitable subgroup preserving a singular hyperplane section on the other we have the representation corresponding to M_{g-1} restricted to a subgroup preserving a linear space of suitable dimension containing a quadric. Finally, we identify these restricted representations which induces an isomorphism between studied varieties.

Proof of Theorem 2.1. Since the condition for a linear space to intersect $O G(5,10)$ in a singular variety is equivalent to intersecting a tangent space to $O G(5,10)$ non-transversally we obtain the irreducibility of the family of singular hyperplane sections. For the remaining part of the proof we use the description and notation introduced in Section 3.2 replacing V_{5} by V. We observe that a hyperplane containing the tangent space of $O G(5,10)$ in the point p is given by choosing a hyperplane U corresponding to a point in the summand V of the decomposition $\operatorname{det} V^{*} \oplus \bigwedge^{2} V^{*} \oplus V$ of the dual space $\bigwedge^{\mathrm{ev}} V^{*}$. A Levi subgroup of the stabilizer of such a hyperplane is isomorphic to $G L(1) \times G L(4)$ and corresponds to decompositions

$$
V=U \oplus \mathbb{C}, \quad V^{*}=U^{*} \oplus \mathbb{C}
$$

We consider only the $G L(4)$ representations, where by abuse of notation U is now the standard representation of $G L(4)$. We shall denote t and t^{*} the coordinates corresponding to the respective trivial summands above. The $G L(4)$ representation on the tangent hyperplane is thus $T_{p}=\mathbb{P}\left(\operatorname{det} U \oplus \bigwedge^{2} U \oplus U \oplus U^{*}\right)$, hence on the projection from p we have the representation $\mathbb{P}\left(\bigwedge^{2} U \oplus U \oplus U^{*}\right)$. Denote the coordinates corresponding to this decomposition by $\left(B, u, u^{*}\right)$.

Claim. The equations describing the projection are $B \wedge B=0, B\left(u^{*}\right)=0$ and $u\left(u^{*}\right)=0$.

Indeed we have: $A=B+t \wedge u, v^{*}=u^{*}+t^{*}, v=u+t$ and $x=x^{\prime} \wedge t$ for x^{\prime} the coordinate representing the component $\operatorname{det} U$ of T_{p}. The equations of $O G(5,10)$ in these coordinates are:
$\left(x^{\prime} \wedge t\right)\left(u^{*}+t^{*}\right)+(B+t \wedge u) \wedge(B+t \wedge u)=0, \quad(B+t \wedge u)\left(u^{*}+t^{*}\right)=0$.
Expanding these we get:
$\left(-x^{\prime}\left(u^{*}\right)-2 B \wedge u\right) \wedge t+t\left(t^{*}\right) x^{\prime}+B \wedge B=0, \quad B\left(u^{*}\right)-t\left(t^{*}\right) u^{*}+t \wedge u\left(u^{*}\right)=0$.
Since the equations are in $\bigwedge^{4} V=\bigwedge^{4} U \oplus\left(\bigwedge^{3} U \otimes \mathbb{C}\right)$ and $V=U \oplus \mathbb{C}$ we decompose them accordingly getting:

$$
\begin{gathered}
\left(-x^{\prime}\left(u^{*}\right)-2 B \wedge u\right)=0, \quad t\left(t^{*}\right) x^{\prime}+B \wedge B=0 \\
B\left(u^{*}\right)-t\left(t^{*}\right) u^{*}=0, \quad u\left(u^{*}\right)=0
\end{gathered}
$$

Now, the hyperplane section is given by $t^{*}=0$ giving:

$$
\begin{equation*}
\left(-x^{\prime}\left(u^{*}\right)-2 B \wedge u\right)=0, \quad B \wedge B=0, \quad B\left(u^{*}\right)=0, \quad u\left(u^{*}\right)=0 \tag{4.1}
\end{equation*}
$$

The equations are now given by those elements in the ideal that do not involve x^{\prime} (i.e. such elements which define hypersurfaces which are cones
centered in the point with coordinates $x^{\prime}=1$ and the rest 0) which proves the claim.

In particular, the projection is the intersection of a cone over a Grassmannian $G(2,5)$ with vertex a \mathbb{P}^{3} with a hyperplane and a quadric of rank 4 . Furthermore, we deduce from equations (4.1) that a general codimension 4 linear section of the hyperplane section $t^{*}=0$ containing p has a unique node as singularity. This proves the second assertion of the theorem.

Consider now on the other hand the following $G L(4)$ representation

$$
\mathbb{P}\left(\left(\bigwedge^{2}\left(U^{*} \oplus \mathbb{C}\right)\right) \oplus U\right)=\mathbb{P}\left(\bigwedge^{2} U^{*} \oplus U^{*} \oplus U\right)
$$

Denote the coordinates corresponding to the above decomposition by ($B^{\prime}, w^{* *}$, $\left.w^{\prime}\right)$. Clearly, the cone G with vertex the linear space $\mathbb{P}(U)$ spanned over the Grassmannian $G\left(2, U^{*} \oplus \mathbb{C}\right)$ and the quadric Q^{\prime} of rank 8 given by $w^{\prime *}\left(w^{\prime}\right)=0$ are invariant under the $G L(4)$ action. The variety $G \cap Q^{\prime}$ is then defined by the equations

$$
B^{\prime} \wedge B^{\prime}=0, B^{\prime} \wedge w^{*}=0, w^{* *}\left(w^{\prime}\right)=0
$$

We now clearly see that by choosing an element in det U giving us an isomorphism $\bigwedge^{2} U^{*} \rightarrow \bigwedge^{2} U$ we get the desired isomorphism between the projection of a general singular hyperplane section of $O G(5,10)$ and the intersection of the cone spanned over $G(2,5)$ (with vertex the linear space $\mathbb{P}(U)$) with the quadric Q^{\prime} defined above. We now need only to observe that the projection of a general one-nodal codimension 5 section from its node is a general section of the variety obtained above. It follows that it is isomorphic to the intersection of $G(2, V)$ with a quadric Q containing a linear space L_{5} (given by $w^{*}=0$ on our linear section) isomorphic to \mathbb{P}^{5} and meeting the Grassmannian $G(2, V)$ in some four-dimensional quadric corresponding to some $G\left(2, V_{4}\right)$ for $V_{4} \subset V_{5}$ a 4-dimensional vector subspace of V.

For the converse, let $G(2, V) \cap Q$ be an intersection containing a fourdimensional quadric Q_{4}. Then, by our classification of quadrics in $G(2, V)$ (cf. 3.5), we know that Q_{4} must be equal to $G\left(2, V_{4}\right) \subset G(2, V)$ for $V_{4} \subset V$ a 4-dimensional vector subspace of V. Let $L_{5} \simeq \mathbb{P}^{5}$ be the span of Q_{4} then $L_{5} \cap G(2, V)=Q_{4} \subset Q$. It follows that there exists a Plücker quadric Q_{Pl} containing $G(2, V) \subset \mathbb{P}\left(\bigwedge^{2} V\right)$ such that $Q_{\mathrm{Pl}} \cap L_{5}=Q \cap L_{5}$. Hence, there exists a quadric \tilde{Q} such that $\tilde{Q} \cap G(2, V)=Q \cap G(2, V)$ and $\tilde{Q} \supset L_{5}$. It is now easy to see that such an intersection can be embedded as a linear section of $G \cap Q^{\prime}$. Thus $\tilde{Q} \cap G(2, V)=G(2, V) \cap Q$ is a projection of a singular section of $O G(5,10)$. Taking a general intersection $G\left(2, V_{5}\right) \cap Q$ containing
a four-dimensional quadric Q_{4} ensures us that the latter projection will be performed from a node.

We proceed similarly with Theorem 2.2. The argument is due to L. Manivel.
Proof. Consider a point $p \in G(2,6)$. A Levi subgroup of its stabilizer is $G L(2) \times G L(4)$ and the representation involved is $\bigwedge^{2} V_{2} \oplus\left(V_{2} \otimes V_{4}\right) \oplus \bigwedge^{2} V_{4}$. Denote the corresponding coordinates (p, v, \tilde{A}). The tangent space to $G(2,6)$ in the fixed point is given by $\tilde{A}=0$. Hence choosing a hyperplane tangent to $G(2,6)$ at p relies on choosing an element $\omega \in \bigwedge^{2} V_{4}^{*}$. The subgroup of $G L(4)$ fixing ω is the symplectic group $S p(4)$ and we have a representation of $S p(4)$ on the ambient space of the image of the projection given by $V_{4} \oplus V_{4} \oplus \bigwedge^{(2)} V_{4}$, where $\bigwedge^{\langle 2\rangle} V_{4}$ is the representation of $\operatorname{Sp}(4)$ on the invariant hyperplane in $\bigwedge^{2} V_{4}$ corresponding to $\omega \in \bigwedge^{2} V_{4}^{*}$ (cf. (3.2)). We shall denote coordinates on this space by $\left(v_{1}, v_{2}, A\right)$.

Observe that we recover the same representation on the space spanned by the intersection of $O G(5,10)$ with a linear space as follows. As in the previous theorem consider $O G(5,10)$ as invariant under the action of $G L(5)$ in the representation $\mathbb{P}\left(\operatorname{det}\left(V_{5}^{*}\right) \oplus \bigwedge^{2} V_{5}^{*} \oplus V_{5}\right)$, take a decomposition of $V_{5}=V_{4} \oplus \mathbb{C}$. The corresponding representation of $G L(4)$ is $\mathbb{P}\left(\operatorname{det}\left(V_{4}^{*}\right) \oplus\right.$ $\left.\bigwedge^{2} V_{4}^{*} \oplus V_{4}^{*} \oplus V_{4} \oplus \mathbb{C}\right)$. If we now fix a symplectic form ω^{\prime} on V_{4} we get a representation of $S p(4)$ given by $V_{4} \oplus V_{4}^{*} \oplus \bigwedge^{\langle 2\rangle} V_{4} \oplus \operatorname{det} V_{4} \oplus 2 \mathbb{C}$. Consider the component $V_{4} \oplus V_{4}^{*} \oplus \bigwedge^{(2)} V_{4}$ and denote the corresponding coordinates by $\left(w_{1}, w_{2}, B\right)$. Note that $V_{4} \simeq V_{4}^{*}$ canonically via ω^{\prime} and we recognize the same representation as above.

Let us now compare the equations defining the corresponding varieties. To determine the equations of the projection of the considered singular section of $G(2,6)$ from the singular point corresponding to the coordinate p we start with the equations of the Grassmannian in the coordinates $\left(p, v_{1}, v_{2}, \tilde{A}\right)$. We get

$$
\begin{aligned}
& s q_{\left(V_{2} \oplus V_{4}\right)}\left(p, v_{1}, v_{2}, \tilde{A}\right)=\left(\tilde{A} \wedge \tilde{A}, \tilde{A} \wedge\left(v_{1}, v_{2}\right), p \wedge \tilde{A}-v_{1} \wedge v_{2}\right) \\
& \quad \in \bigwedge^{4} V_{4} \oplus\left(V_{2} \otimes \bigwedge^{3} V_{4}\right) \oplus\left(\bigwedge^{2} V_{2} \otimes \bigwedge^{2} V_{4}\right)=\bigwedge^{4}\left(V_{2} \oplus V_{4}\right)
\end{aligned}
$$

The hyperplane given by ω is $\omega(\tilde{A})=0$. This means that applying ω to $p \wedge \tilde{A}-v_{1} \wedge v_{2}=0$ we get the equation $\omega\left(v_{1} \wedge v_{2}\right)=0$ not involving p. Furthermore, the equations of the projection are exactly $A \wedge A=0, A \wedge v_{1}=0$, $A \wedge v_{2}=0, \omega\left(v_{1} \wedge v_{2}\right)=0$.

For the section of $O G(5,10)$ restricting equations (3.1) to our subspace we have $B \wedge w_{1}=0, B\left(w_{2}\right)=0, B \wedge B=0, w_{1}\left(w_{2}\right)=0$. It is clear that these
varieties are isomorphic after taking into account the isomorphism $V_{4} \simeq V_{4}^{*}$ induced by ω^{\prime}. Furthermore, they both contain a quadric of dimension 6 (given by $w_{1}\left(w_{2}\right)=0$ in the space corresponding to $\left.B=0\right)$.

For the converse, observe that in the $G L(4)$ representation $\mathbb{P}\left(\operatorname{det}\left(V_{4}^{*}\right) \oplus\right.$ $\left.\bigwedge^{2} V_{4}^{*} \oplus V_{4}^{*} \oplus V_{4} \oplus \mathbb{C}\right)$ the space $\mathbb{P}\left(V_{4} \oplus V_{4}^{*}\right)$ is a \mathbb{P}^{7} meeting $O G(5,10)$ in a quadric of dimension 6, but all such quadrics are equivalent under the action of $S O_{q}\left(V_{10}\right)$ (see Section 3.5). Hence, we may assume that the quadric is the considered quadric of dimension 6 in $O G(5,10)$. Restricting to the $S L(4)$ action we get a representation: $\mathbb{P}\left(\mathbb{C} \oplus \bigwedge^{2} V_{4} \oplus V_{4} \oplus V_{4} \oplus \mathbb{C}\right)$. We take a general codimension 3 linear section containing $\mathbb{P}\left(V_{4} \oplus V_{4}^{*}\right)$. Such a codimension 3 linear space is a graph of a linear map from $V_{4} \oplus V_{4} \oplus$ $H \rightarrow \mathbb{C}^{3}$ for some hyperplane $H \subset \bigwedge^{2} V_{4}$ corresponding to some $\omega_{H} \in$ $\bigwedge^{2} V_{4}^{*}$. Restricting to the subgroup $S p(4) \subset S L(4)$ preserving ω_{H} we get a representation $\mathbb{P}\left(\bigwedge^{(2\rangle} V_{4} \oplus V_{4} \oplus V_{4} \oplus 3 \mathbb{C}\right)$. By suitable change of coordinates the codimension 3 linear space is $\mathbb{P}\left(V_{4} \oplus V_{4} \oplus \bigwedge^{\langle 2\rangle} V_{4}\right)$ and we conclude as above.

Let us approach similarly Theorem 1.4 looking for an alternative to the proof given in [4].

Proof. We use notation and description from Section 3.3. We have seen that the projective tangent space T_{p} is the subspace given by $B=0, y=0$. Next, we observe that a choice of hyperplane containing T_{p} is equivalent to choosing an element Q of $\mathbb{P}\left(\left(S^{2} V_{3} \otimes \operatorname{det} V_{3}^{*} \oplus \operatorname{det} V_{3}^{*}\right)^{*}\right)$. Consider the isotropy subgroup of $G L(3)$ fixing Q. For a generic choice of Q it contains $S L(2)$ in such a way that the corresponding $S L(2)$ representation on V_{3} is $S^{2} V_{2}$. The $S L(2)$ representation on the ambient space of $L G(3,6)$ is then
$\operatorname{det}\left(S^{2} V_{2}\right)+S^{2}\left(S^{2} V_{2}\right) \otimes \operatorname{det}\left(S^{2} V_{2}^{*}\right)+S^{2}\left(S^{2} V_{2}^{*}\right) \otimes \operatorname{det}\left(S^{2} V_{2}\right)+\operatorname{det}\left(S^{2} V_{2}^{*}\right)$.
Now using

$$
S^{2}\left(S^{2} V_{2}\right)=S^{4} V_{2} \oplus \mathbb{C}
$$

and

$$
\operatorname{det}\left(S^{2} V_{2}\right)=\mathbb{C}
$$

and $V_{2}=V_{2}^{*}$, we get the representation on the ambient space of $L G(3,6)$ as

$$
\mathbb{C}_{1} \oplus\left(S^{4} V_{2} \oplus \mathbb{C}_{2}\right) \oplus\left(S^{4} V_{2} \oplus \mathbb{C}_{3}\right) \oplus \mathbb{C}_{4}
$$

Here, we added indices to the one-dimensional representations to have a way distinguish their corresponding coordinates. The hyperplane section is given by a linear form on the subspace generated by $\mathbb{C}_{3}, \mathbb{C}_{4}$. In fact, since all nodal
hyperplane section are in the same orbit (see [4]) on the dual space, we may assume that the hyperplane is given by the vanishing of the coordinate corresponding to \mathbb{C}_{3}. We hence get the following representation on the hyperplane section:

$$
\mathbb{C}_{1} \oplus\left(S^{4} V_{2} \oplus \mathbb{C}_{2}\right) \oplus S^{4} V_{2} \oplus \mathbb{C}_{4}
$$

Now the representation on the projection of the hyperplane from p is

$$
S^{4} V_{2} \oplus \mathbb{C}_{2} \oplus S^{4} V_{2} \oplus \mathbb{C}_{4}
$$

On the other hand, consider a $G\left(2, V_{4}\right)$ in $G\left(2, V_{6}\right)$ together with a decomposition $V_{6}=V_{4} \oplus V_{2}$ and the associated $G L(2) \times G L(4)$ representation: $\bigwedge^{2} V_{2} \oplus\left(V_{2} \otimes V_{4}\right) \oplus \bigwedge^{2} V_{4}$. Next, consider a general codimension 3 linear space \tilde{H}_{3} in $V_{2} \otimes V_{4}$. Note that the choice of V_{2} and \tilde{H}_{3} determines a general codimension three section containing $G\left(2, V_{4}\right)$. The latter is the projectivization of:

$$
H_{3}:=\bigwedge^{2} V_{2} \oplus H_{3} \oplus \bigwedge^{2} V_{4} \subset \bigwedge^{2} V_{6} .
$$

We now observe that there is a subgroup of $G L(2) \times G L(4)$ which is isomorphic to $S L(2)$ which fixes H_{3}. Indeed, geometrically, $\mathbb{P}\left(H_{3}\right)$ on gives a general codimension 3 section of the closed Segre orbit $\mathbb{P}^{1} \times \mathbb{P}^{3} \subset \mathbb{P}\left(V_{2} \otimes V_{4}\right)$ i.e. a rational normal quartic. The latter is a graph of the Veronese embedding $\mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$ and hence is preserved by a subgroup $S L(2) \subset G L(2) \times G L(4)$ which must hence also preserve H_{3}. Moreover, it follows that the associated $S L(2)$ representation on V_{6} is $V_{2} \oplus S^{3} V_{2}$ and hence on $\bigwedge^{2} V_{6}$ is

$$
\mathbb{C} \oplus V_{2} \otimes S^{3} V_{2} \oplus \bigwedge^{2}\left(S^{3} V_{2}\right)
$$

We now observe that

$$
V_{2} \otimes S^{3} V_{2}=S^{4} V_{2} \oplus S^{2} V_{2}
$$

and

$$
\bigwedge^{2}\left(S^{3} V_{2}\right)=S^{4} V_{2} \oplus \mathbb{C}
$$

Hence, we get

$$
\bigwedge^{2} V_{6}=\mathbb{C} \oplus S^{4} V_{2} \oplus S^{2} V_{2} \oplus S^{4} V_{2} \oplus \mathbb{C}
$$

then $H_{3}=\operatorname{Ker}\left(\bigwedge^{2} V_{6} \rightarrow S^{2} V_{2}\right)$. Then the representation on H_{3} is

$$
H_{3}=\mathbb{C} \oplus S^{4} V_{2} \oplus S^{4} V_{2} \oplus \mathbb{C}
$$

The coordinates corresponding to the decompositions above give us a hint on the isomorphism between any nodal hyperplane section of $L G\left(3, V_{6}\right)$ and a generic codimension 3 section of $G\left(2, V_{6}\right)$ containing some $G\left(2, V_{4}\right)$ i.e. a generic quadric $Q \subset G\left(2, V_{6}\right)$ of dimension 4 . Note however that the decomposition does not provide any uniquely determined isomorphism. In fact, our group is too small to determine an isomorphism. To provide the correct isomorphism in this case, we will investigate explicit descriptions and use the above decomposition only as a hint. Let us hence write the equations explicitly: Let v and u be coordinates corresponding to the two one-dimensional components of H_{3} and let x_{0}, \ldots, x_{4} and y_{0}, \ldots, y_{4} be the natural coordinates of the two $S^{4} V_{2}$ components of H_{3}. In these coordinates, by the above discussion, the section is defined by 4×4 Pfaffians of the matrix:

$$
\left(\begin{array}{cccccc}
0 & v & x_{0} & x_{1} & x_{2} & x_{3} \\
-v & 0 & x_{1} & x_{2} & x_{3} & x_{4} \\
-x_{0} & -x_{1} & 0 & y_{0} & y_{1} & u-y_{2} \\
-x_{1} & -x_{2} & -y_{0} & 0 & y_{2} & y_{3} \\
-x_{2} & -x_{3} & -y_{1} & -y_{2}-u & 0 & y_{4} \\
-x_{3} & -x_{4} & -y_{2} & -y_{3} & -y_{4} & 0
\end{array}\right)
$$

For the projection of the section of the Lagrangian Grassmannian, let v^{\prime} and u^{\prime} be coordinates corresponding to the two one-dimensional representations and let $x_{0}^{\prime}, \ldots, x_{4}^{\prime}$ and $y_{0}^{\prime}, \ldots, y_{4}^{\prime}$ be the coordinates of the two $S^{4} V_{2}$ in the projection of the hyperplane section of $L G(3,6)$, such that the section of $L G(3,6)$ is given by:

$$
\left(t,\left(\begin{array}{lll}
y_{0}^{\prime} & y_{1}^{\prime} & y_{2}^{\prime} \\
y_{1}^{\prime} & u^{\prime} & y_{3}^{\prime} \\
y_{2}^{\prime} & y_{3}^{\prime} & y_{4}^{\prime}
\end{array}\right),\left(\begin{array}{lll}
x_{0}^{\prime} & x_{1}^{\prime} & x_{2}^{\prime} \\
x_{1}^{\prime} & x_{2}^{\prime} & x_{3}^{\prime} \\
x_{2}^{\prime} & x_{3}^{\prime} & x_{4}^{\prime}
\end{array}\right), v^{\prime}\right)
$$

where t is the coordinate corresponding to the projection. The isomorphism is then given by:

$$
\begin{aligned}
&\left(v^{\prime}, x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}, x_{4}^{\prime}, y_{0}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}, y_{4}^{\prime}, u^{\prime}\right) \\
&=\left(v, x_{4},-x_{3},-x_{2}, x_{1}, x_{0}, y_{0}, y_{1}, y_{2},-y_{3}, y_{4}, u\right)
\end{aligned}
$$

The fact that this is indeed an isomorphism between our sections is easily but tediously checked by comparing equations. The presentation of such an

Listing 1. Macaulay 2 script confirming isomorphism.

```
R=QQ[u,v,x_0 ..x_4,y_0..y_4,t]
W=matrix{
    {0,v,x_0,x_1,x_2,x_3},
    {-v,0,x_1,x_2,x_3,x_4},
    {-x_0,-x_1,0,y_0,y_1,u-y_2},
    {-x_1,-x_2,-y_0,0,y_2,y_3},
    {-x_2,-x_3,-y_1,-y_2,0,y_4},
    {-x_3,-x_4,y_2-u,-y_3,-y_4,0}}
G26=pfaffians(4,W);
A=matrix {{y_0,y_1,-y_2 },{y_1,u,-y_3},{-y_2,-y_3,y_4}};
B=matrix {{x_4,-x_3,-x_2},{-x_3,x_2 ,x_1},{-x_2, x_1, x_0}};
adjugate=MM -> matrix( for ii from 0 to 2 list
    (for jj from 0 to 2 list
    (-1)^(ii+jj)*det(submatrix'(MM,{ii},{jj})) ));
LG=(xx,AA,BB,zz) -> ideal(AA*BB-xx*zz,
    adjugate(AA)-xx*BB,adjugate(BB)-zz*AA);
PLG=eliminate(LG(t,A,B,v), t)
PLG==G26
```

argument is impossible so we provide a simple Macaulay 2 script, Listing 1, that permits us to quickly confirm our computations.

The situation in Theorem 2.3 is even more complicated. Indeed, as the involved representation of \mathbb{G}_{2} is the adjoint one and the general singular section appears on an orbit of codimension 1 we have a one-dimensional subgroup of \mathbb{T}_{2} acting on the general singular hyperplane section. Hence we are left with the comparison of representations of \mathbb{C}^{*} which does not give any hint on the isomorphism between the varieties.

Theorem 2.3 is however still true and will be proved by guessing the isomorphism for one representative of each orbit of the dual variety giving a nodal section of G_{2}. The correctness of the guessed isomorphism has tediously been checked by hand by the author, however for ease of presentation we provide a simple script in Macaulay 2 performing the check. We are aware that this does not shed light on the geometry of the construction but we believe that the theorem itself has interesting geometric consequences.

We shall compare, using Macaulay 2, nodal hyperplane sections of G_{2} with codimension 2 sections of $L G(3,6)$ containing a 3 -dimensional quadric.

Proof of Theorem 2.3. Passing to the proof we check that we have exactly two orbits of nodal hyperplane sections of G_{2}. Using the description
from Lemma 3.1 and the Killing form (see [7, proof of lem 1]) given by:

$$
Q=48(a d+b e+c f)+16\left(g^{2}+k^{2}+(g+k)^{2}+j h+i m+n \ell\right)
$$

to identify the space $\mathbb{P}\left(\operatorname{Ad}_{G_{2}, \omega}\right)$ with its dual, we can choose the following singular hyperplane sections as representatives of the orbits from Lemma 3.1:
(1) $j=c+f$ in the 12 -dimensional orbit;
(2) $f=m$ in the 11-dimensional orbit;
(3) $g+k=0$ in the 10 -dimensional orbit;
(4) $h=f$ in the 9-dimensional orbit;
(5) $f=0$ in the 7-dimensional orbit;
(6) $h=0$ in the 5-dimensional orbit.

Only the following two among these sections are nodal hyperplane sections:

- The section given by $j=c+f$ is a representative of the open orbit O_{12} of the projective dual variety to G_{2}. It is singular at the point with only nonzero coordinate $h=1$.
- The section given by $f=m$ is also nodal at the point with only nonzero coordinate $h=1$ but corresponds to a hyperplane represented in the dual space by a point which lies in the intersection of the dual variety with the quadric defined by the Killing form i.e. is an element of the 11-dimensional orbit O_{11}.
The first part of the theorem now amounts to finding an embedding of the projection of the two above sections of G_{2} from the point with only nonzero coordinate $h=1$ (being their node) into $L G(3,6)$ as a proper linear section.

We start by considering both cases at once using the pencil $f=t m+(1-$ $t)(j-c)$ parametrized by t. Then the image of the projection in the space with natural coordinates $(a, b, c, d, e, g, i, j, k, \ell, m, n)$ is given by all Pfaffians of the matrix $M_{G_{2}}$ not involving h (with the substitution $f=t m+(1-t)(j-c)$ made) and the quadric Q_{t} being the difference of the Pfaffian $\mathrm{Pf}_{h f}$ involving $h f$ and the combination $t \mathrm{Pf}_{h m}+(1-t)\left(\mathrm{Pf}_{h j}-\mathrm{Pf}_{h c}\right)$ of $\operatorname{Pfaffians} \mathrm{Pf}_{h m}, \mathrm{Pf}_{h j}, \mathrm{Pf}_{h c}$ involving $h m, h j$ and $h c$ respectively.

Now for $t=1$ consider the following embedding of the projection of the hyperplane $f=m$ from the coordinate point with only nonzero coordinate $h=1$:

$$
\begin{aligned}
& \left(x, a_{1,1}, a_{1,2}, a_{1,3}, a_{2,2}, a_{2,3}, a_{3,3}, b_{1,1}, b_{1,2}, b_{1,3}, b_{2,2}, b_{2,3}, b_{3,3}, y\right) \\
& =(n, f, c,-g-k, e, a, c+i, g,-d,-f, \ell,-b,-d, j)
\end{aligned}
$$

and check directly that ideal of the image of G_{2} under the projection coincides with the ideal of the pre-image of $L G(3,6)$ via this embedding. In other terms the equations of the projection are restrictions of equations of $L G(3,6)$ to

$$
(x, A, B, z)=\left(n,\left(\begin{array}{ccc}
-f & c & -g-k \\
c & e & a \\
-g-k & a & c+i
\end{array}\right),\left(\begin{array}{ccc}
g & -d & -m \\
-d & \ell & -b \\
-m & -b & -d
\end{array}\right), j\right)
$$

Note that the ideal of the projection contains the quadric $a^{2}+n g-e(c+i)=$ $b=c=d=f=\ell=j=g+k=0$, which is a 3-dimensional linear section of the quadric Q_{1}.

In the example corresponding to $t=0$ i.e. $j=c+f$, which is the general case, the equations of the projected variety define the same ideal as the equations of $L G(3,6)$ restricted to

$$
\begin{aligned}
(x, A, B, z)=(a-d, & \left(\begin{array}{ccc}
i+e+b & d & -g \\
d & -b & c \\
-g & c & -e-m
\end{array}\right) \\
& \left.\left(\begin{array}{ccc}
-d & -m & -j \\
-m & -a+n+d & g+k \\
-j & g+k & d-\ell
\end{array}\right), m+b\right)
\end{aligned}
$$

i.e. the projection is isomorphic to a codimension 2 linear section of the Lagrangian Grassmannian containing the 3-dimensional quadric defined by $m=b=c=d=f=g+k=\ell=a(a-n)-g^{2}-e(i+e)=0$ which is also a linear section of the quadric Q_{0}.

The equality of the above ideals can be easily checked by hand, writing each equation of one variety as a linear combination of equations defining the other. To save space we wont write down all the equations here, instead we provide a simple Macaulay 2 script, Listing 2, performing the computations. Note that the previous script needs to be compiled for this script to work.

For the other direction we observed that all maximal dimensional quadrics in $L G(3,6)$ are equivalent by the action of the symplectic group. We can also observe that two general codimension 2 sections containing a fixed quadric are linearly isomorphic. Indeed, we have a 5-dimensional family of 3-dimensional quadrics and each of them spans a $\mathbb{P}^{4} \subset \mathbb{P}^{13}$ hence is contained in a $G(2,9)$ of codimension 2 spaces. This means that the family of codimension two sections containing a quadric is of dimension 19. Take the representation of $\operatorname{Sp}(6, \mathbb{C})$ acting on the space $\mathbb{P}\left(\bigwedge^{2}\left(\bigwedge^{\langle 3\rangle} V_{6}^{*}\right)\right)$ containing the Grassmannian of 2-spaces orthogonal to codimension 2 sections of $L G\left(3, V_{6}\right)$. Now, consider the orbit of the line orthogonal to the codimension 2 section of $L G(3,6)$. To

Listing 2. Macaulay 2 script checking equality of ideals.

```
R=QQ[a,b,c,d,e,f,g,h,i,j,k,l,m,n,t];
M=matrix{{0,-f,e,g,h,i,a},{f,0,-d,j,k,l,b},
    {-e,d,0,m,n,-g-k,c},{-g,-j,-m,0,c,-b,d},
    {-h,-k,-n,-c,0,a,e},{-i,-l,g+k,b,-a,0,f},
    {-a,-b,-c,-d,-e,-f,0}};
G2=pfaffians(4,M);
H=G2+ideal(t*m+(1-t)*(j-c)-f);
pr=saturate eliminate(h,H);
ProjectionG2=substitute(pr,f=>t*m+(1-t)*(j-c));
x1=n;
A1=matrix {{-m,c,-g-k},{c,e,a},{-g-k,a,c+i}};
B1=matrix {{g,-d,-m},{-d,l,-b},{-m,-b,-d}};
z1=j;
LG1=LG(x1,A1,B1,z1);
LG1==sub(ProjectionG2,t=>1)
x2=a-d;
A2=matrix {{i+e+b,d,-g},{d,-b,c},{-g,c,-e-m}};
B2=matrix {{-d,-m,-j},{-m,-a+n+d,g+k},{-j,g+k,d-l}};
z2=m+b;
LG0=LG(x2,A2,B2,z2);
LG0==sub(ProjectionG2,t=>0)
```

compute the dimension of the orbit it is enough to compute the dimension of its stabilizer. For simplicity of calculations, we can perform the computation on the Lie algebra representation. We use the representation of $\mathfrak{s p}(6, \mathbb{C})+\mathfrak{g l}(1)$ where the $\mathfrak{g l}(1)$ represents the \mathbb{C}^{*} action corresponding to the projectivization. The representation ϕ on V_{6}^{*} induces a representation on $\bigwedge^{3} V_{6}^{*}$ and further on $\bigwedge^{2}\left(\bigwedge^{3} V_{6}^{*}\right)$. The space $\bigwedge^{2}\left(\bigwedge^{\langle 3\rangle} V_{6}^{*}\right)$ is a subset of the latter hence for stabilizer computation we can perform the computation in the bigger space. For that, we choose $V_{1}, V_{2} \in \bigwedge^{\langle 3\rangle} V_{6}^{*}$ corresponding to two linear equations cutting from $L G(3,6)$ the result of the projection above. We write down the coefficients of the action of the Lie algebra on the 2-vector $V_{1} \wedge V_{2} \in \bigwedge^{2}\left(\bigwedge^{\langle 3\rangle} V_{6}^{*}\right)$. The tangent to the stabilizer of the action of $\operatorname{Sp}(6) \times \mathbb{C}^{*}$ on $V_{1} \wedge V_{2} \in \bigwedge^{2}\left(\bigwedge^{\langle 3\rangle} V_{6}^{*}\right)$ is given by the vanishing of all those coefficients. We conclude by the fact that the dimension of the latter stabilizer is equal to the dimension of the stabilizer of $\left[V_{1} \wedge V_{2}\right]$ under the $S p(6)$ action on $\mathbb{P}\left(\bigwedge^{2}\left(\bigwedge^{\langle 3\rangle} V_{6}^{*}\right)\right)$. The computation is performed by the script Listing 3 .

We deduce that the dimension of the stabilizer of this line is 2 i.e. the orbit is of dimension $\operatorname{dim}(\operatorname{Sp}(6, \mathbb{C}))-2=21-2=19$. It follows that the orbit of the codimension 2 section described in the general case is open and

Listing 3. Macauly 2 script computing dimension of stabiliser.

```
R=QQ[a_1..a_9,b_1..b__6,c_1..c_6,d]
M=matrix{{a_1+d,a_2,a_3,b_1,b_2,b_3},
    {a_4,a_5+d,a_6,b_2,b_4,b_5},
    {a_7,a_8,a_9+d,b_3,b_5,b_6},
    {c_1,c_2 ,c_3,-a_1+d,-a_4,-a_7},
    {c_2,c_4,c_5,-a_2,-a_5+d,-a_8},
    {c_3,c_5,c_6,-a_3,-a_6,-a_9+d}}
S=R[x_1..x_6, SkewCommutative => true]
phi=map(S,S,transpose(M*transpose(vars(S))))
phi(x_1)*x_4+x_1*phi(x_4)+phi(x_2)*x_5+x_2*phi(x_5)+
    phi(x_3)*x_6+x_3*phi(x_6)
V1=-x_2*x_5*x_6+x_1*x_4*x_6+2*x_2 *x_3*x_4
V2=2*x_2*x_4*x_6+x_2*x_3*x_5-x_1*x_3*x_4-2*x__1*x_2*x_3
PHIV1=
    -phi(x_2)*x_5*x_6-x_2*phi(x_5)*x_6-x_2*x_5*phi(x_6)+
    phi(x_1)*x_4*x_6+x_1*phi(x_4)*x_6+x_1*x_4*phi(x_6)+
    2*phi(x_2)*x_3*x_4+2*x_2*phi(x_3)*x_4+2*x_2*x_3*phi(x_4)
PHIV2=
    2*phi(x_2)*x_4*x_6+phi(x_2)*x_3*x_5-phi(x_1)*x_3*x_4-
    2*phi(x_1)*x_2*x_3+2*x_2*phi(x_4)*x_6+x_2*phi(x_3)*x_5-
    x_1*phi(x_3)*x_4-2*x_1*phi(x_2)*x_3+2*x_2*x_4*phi(x_6)+
    x_2*x_3*phi (x_5)-x_1*x_3*phi(x_4)-2*x_1*x_2*phi(x_3)
VAR3=mingensideal(vars(S)**vars(S)**vars(S))
phiv1=(coefficients(PHIV1,Monomials=> VAR3))_1
v1=(coefficients(V1,Monomials=>VAR3))_1
phiv2=(coefficients(PHIV2,Monomials=> VAR3))_1
v2=(coefficients(V2,Monomials=> VAR3))_1
LL=exteriorPower(2,v1|phiv2)+exteriorPower(2,phiv1|v2)
STAB= (map(R,S))(ideal(LL))
dim STAB
```

dense in the variety of all codimension 2 sections of $L G(3,6)$ containing a three-dimensional quadric.

5. Geometric transitions

In this section, we shall see that Theorems 2.1, 2.2, 1.4 and 2.3 provide a very concrete and geometrically simple way to connect different families of prime Fano threefolds of index 1 and genus ≤ 10. These connections are natural from the point of view of Mirror Symmetry and analogous to the so-called conifold transitions well known in the context of Calabi-Yau threefolds. Let us give more details of the theory here. A geometric transition between two

Calabi-Yau threefolds is a transformation consisting of a contraction morphism followed by a flat deformation. More precisely:

Definition 5.1. A geometric transition from a smooth Calabi-Yau threefold X to a smooth Calabi-Yau threefold Y is a pair consisting of a birational morphism $f: X \rightarrow Z$ and a flat family over a disc with central fiber Z and some other fiber Y. Here, Z is a singular Calabi-Yau threefold. In this context, the latter deformation is called a smoothing of Z or a degeneration of Y depending on the direction from which we look. A geometric transition is a conifold transition if the singularities of Z are only ordinary double points and $f: X \rightarrow$ Z is a small resolution.

Conifold transitions are the most natural transformation from the point of view of mirror symmetry, in particular they admit interpretations in terms of physics. It is conjectured that any two Calabi-Yau manifold can be connected by a sequence of geometric transitions. It is moreover conjectured that, if two Calabi-Yau threefolds are connected by a geometric transitions then their mirrors are connected by a dual geometric transition.

Since it is not possible to connect two Calabi-Yau manifolds of Picard number one by a single geometric transition (varieties with Picard number one do not admit any nontrivial birational morphisms) the most natural in their context is to study pairs of geometric transitions, we call them geometric bitransitions:

Definition 5.2. We say that two Calabi-Yau threefolds are connected by a geometric bitransition if there exists a Calabi-Yau threefold T such that there are geometric transitions both from T to X and from T to Y.

Notice now that there is a list of Calabi-Yau manifolds of Picard number one related to Mukai varieties. Namely these are Calabi-Yau threefolds which appear as sections of Mukai 4-folds by quadric hypersurfaces. These CalabiYau manifolds were extensively studied by Borcea and are called after him. In our context, Theorems 2.1, 2.2, 1.4 and 2.3 provide a way to connect all Borcea Calabi-Yau threefolds by means of a chain of geometric bitransitions that we suggestively call a cascade. More details of this constructions are given in [6, $\sec 6]$.

In this section, we concentrate on an analogous construction in the case of prime Fano threefolds of index 1. Knowing that the theory of Landau-Ginzburg models for Fano manifolds is parallel to that of mirror symmetry for CalabiYau manifolds, we extend our notions to the context of Fano varieties. We first observe that the definitions of geometric and conifold transitions as well as bitransitions can be literally repeated for Fano manifolds just by replacing
the words Calabi-Yau with Fano. Their importance in the study of LandauGinzburg models of Fano manifolds is expected to be similar to that of geometric and conifold transitions in classical mirror symmetry. Trying to make a step towards the understanding of mirror symmetry for Fano threefolds we explain how Theorems 2.1, 2.2, 1.4 and 2.3 give rise to geometric bitransitions between prime Fano threefolds of index 1, arranging them into a sequence that we shall again call a cascade.

Let F_{g} be a general Fano threefold of genus g in its anti-canonical embedding. By Mukai's linear section theorem, F_{g} is a transverse linear section of M_{g}. It is hence clear that F_{g} admits a flat deformation to a nodal Fano threefold F_{g}^{\prime} being a transverse linear section of a nodal linear section L of M_{g} studied in this paper.

Lemma 5.3. Let π be a linear projection of a one nodal proper linear section of M_{g} from its node, as in Theorems 2.1, 2.2, 1.4 and 2.3, then π is a birational map onto its image.

Proof. From the fact that Mukai varieties are generated by quadrics and are not cones we know that their projection from a point lying on them is a birational morphism contracting the tangent cone to its base. To conclude we need only to observe that the considered projections are restrictions of these projections to nodal hyperplane sections which are not cones.

By Theorems 2.1, 2.2, 1.4, 2.3 and Lemma 5.3 the projection of F_{g}^{\prime} from its node is a possibly singular Fano threefold \hat{F}_{g-1} containing a quadric surface and obtained as a special proper linear section of M_{g-1}. Using Mukai's linear section theorem, by moving the latter section to a general transversal section of M_{g-1}, we obtain a flat family with \hat{F}_{g-1} as special fiber and general Fano threefolds of genus $g-1$ as general fibers. We hence get the following diagram connecting two general Fano 3-folds F_{g} and F_{g-1} of genus g and $g-1$ respectively.

Here π is the birational projection which factorizes through the blow up p of the node and a contraction morphism ϕ, whereas \mathscr{F} and \mathscr{G} represent deformation families with the arrows going from the special to the general fiber. To complete the picture we describe also the singularities of \hat{F}_{g-1}.

Proposition 5.4. If F_{g} is a general three-dimensional one-nodal proper linear section of M_{g} then all singularities of its projection \hat{F}_{g-1} from the node are again nodes. Moreover the number of nodes on \hat{F}_{g-1} is 5, 4, 4, 3 for $g=7,8,9,10$ respectively.

Proof. Observe that by Lemma 5.3 the singularities of \hat{F}_{g-1} are exactly the images of the lines contracted by the projection. Note that the projection factors through a blow up of the node with exceptional divisor a smooth quadric and a morphism contracting proper transforms of lines passing through the node. The latter maps the exceptional quadric onto a smooth quadric which passes through the images of all contracted lines. Let us now compute the singular locus of \hat{F}_{g-1} being the union of images of contracted lines. To compute it observe that each line contracted is contained in the intersection of $F_{g} \cap T_{p} M_{g}$ where p is the center of projection and $T_{p} M_{g}$ is the projective tangent space to M_{g} in p. We now observe that $M_{g} \cap T_{p} M_{g}$ is one of the following:

- a cone over a Grassmannian $G(2,5)$ for $g=7$,
- a cone over a product $\mathbb{P}^{1} \times \mathbb{P}^{3}$ for $g=8$,
- a cone over a Veronese surface for $g=9$,
- a cone over a twisted cubic for $g=10$ (note that the cone spans only a \mathbb{P}^{4} in the tangent which is a $\left.\mathbb{P}^{5}\right)$.
Now, we observe that it is always a variety of codimension 3 in $T_{p} M_{g}$, hence $F_{g} \cap T_{p} M_{g}$ is a union of as many lines as the degree of corresponding cone i.e. $5,4,4,3$ for $g=7,8,9,10$ respectively. Thus \hat{F}_{g-1} has isolated singularities whose number is given in the assertion.

Finally, we claim that all singularities of \hat{F}_{g-1} as well as F_{g}^{\prime} are ordinary double points. Since we have only a few cases to consider one can check every singularity of a representative of each orbit of varieties and check their type of singularities on the computer. We shall however use a more general argument. We just observe that the variety \hat{F}_{g-1} is a general proper linear section of M_{g-1} containing a chosen quadric surface. As the quadric surface is a scheme theoretical proper linear section of M_{g-1} one can use the following proposition which is a reformulation of [5, thm 2.1] in a slightly more general context.

Proposition 5.5. Let X be a smooth projective variety of dimension $s+2$. Let $S \subset X$ be a smooth codimension s surface being a scheme theoretical base locus of a linear subsystem $\mathscr{L} \subset\left|\mathcal{O}_{X}(d)\right|$, for some $d \geq 1$. Then the intersection of a set of $s-1$ generic divisors from the system \mathscr{L} is a threefold with only ordinary double points as singularities.

Proof. The proof of [5, thm 2.1] can be reproduced without changes.

Remark 5.6. In the theory of Landau-Ginzburg models, a counterpart to mirror symmetry for Fano threefolds, the above construction provides the simplest possible way to connect two different Fano threefolds such that one can hope to keep track of the Landau-Ginzburg models (mirrors) involved. Not only the bitransition consists of conifolds but it is also related to a single linear projection. We hope that the results presented in this section will contribute to a better understanding of general mirror symmetry for Fano threefolds.

Acknowledgements. The work was initiated during the author's stay at the University of Oslo between 03.2009 and 03.2010 supported by an EEA Scholarship and Training fund in Poland and by MNiSW grant N N201 388834. I would like to especially thank Kristian Ranestad for suggesting me the subject, enlightening discussions and wonderful hospitality. I acknowledge also G. Kapustka, J. Buczyński, V. Przyjalkowski, J. Weyman, L. Manivel and A. Kuznetsov for remarks and advices. Finally, I would like to express my gratitude to the editor Prof. J. Stevens and the anonymous referee for many crucial suggestions and for their patience in processing the paper.

REFERENCES

1. Abo, H., Ottaviani, G., and Peterson, C., Non-defectivity of Grassmannians of planes, J. Algebraic Geom. 21 (2012), no. 1, 1-20.
2. Ein, L., Varieties with small dual varieties. I, Invent. Math. 86 (1986), no. 1, 63-74.
3. de Graaf, W. A., Computing with nilpotent orbits in simple Lie algebras of exceptional type, LMS J. Comput. Math. 11 (2008), 280-297.
4. Iliev, A., and Ranestad, K., Geometry of the Lagrangian Grassmannian LG(3,6) with applications to Brill-Noether loci, Michigan Math. J. 53 (2005), no. 2, 383-417.
5. Kapustka, G., Primitive contractions of Calabi-Yau threefolds. II, J. Lond. Math. Soc. (2) 79 (2009), no. 1, 259-271.
6. Kapustka, M., Geometric transitions between Calabi-Yau threefolds related to Kustin-Miller unprojections, J. Geom. Phys. 61 (2011), no. 8, 1309-1318.
7. Kapustka, M., and Ranestad, K., Vector bundles on Fano varieties of genus ten, Math. Ann. 356 (2013), no. 2, 439-467.
8. Knop, F., and Menzel, G., Duale Varietäten von Fahnenvarietäten, Comment. Math. Helv. 62 (1987), no. 1, 38-61.
9. Landsberg, J. M., and Manivel, L., The projective geometry of Freudenthal's magic square, J. Algebra 239 (2001), no. 2, 477-512.
10. Mukai, S., Curves, K3 surfaces and Fano 3-folds of genus ≤ 10, in "Algebraic geometry and commutative algebra, Vol. I", Kinokuniya, Tokyo, 1988, pp. 357-377.
11. Mukai, S., Curves and Grassmannians, in "Algebraic geometry and related topics (Inchon, 1992)", Conf. Proc. Lecture Notes Algebraic Geom., I, Int. Press, Cambridge, MA, 1993, pp. 19-40.
12. Papadakis, S. A., Kustin-Miller unprojection with complexes, J. Algebraic Geom. 13 (2004), no. 2, 249-268.
13. Ranestad, K., Non-abelian Brill-Noether loci and the Lagrangian Grassmannian LG(3, 6), in "The Fano Conference", Univ. Torino, Turin, 2004, pp. 683-692.
14. Ranestad, K. and Schreyer, F.-O., Varieties of sums of powers, J. Reine Angew. Math. 525 (2000), 147-181.
15. Sato, M., and Kimura, T., A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1-155.

FACULTY OF MATHEMATICS AND INFORMATICS
JAGIELLONIAN UNIVERSITY
UL. ŁOJASIEWICZA 6
30-348 KRAKÓW
POLAND
E-mail: michal.kapustka@uj.edu.pl
UNIVERSITY OF STAVANAGER
NO-4036 STAVANGER
NORWAY
E-mail: michal.kapustka@uis.no

[^0]: Received 12 October 2013, revised 3 August 2015, in final form 30 January 2018.
 DOI: https://doi.org/10.7146/math.scand.a-106223

