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ON DECAY CENTRALITY IN GRAPHS

J. CORONIČOVÁ HURAJOVÁ, S. GAGO and T. MADARAS∗

Abstract
The decay centrality of a vertex v in a graph G with respect to a parameter δ ∈ (0, 1) is a
polynomial in δ such that for fixed k the coefficient of δk is equal to the number of vertices of G

at distance k from v. This invariant (introduced independently by Jackson and Wolinsky in 1996
and Dangalchev in 2011) is considered as a replacement for the closeness centrality for graphs,
however its unstability was pointed out by Yang and Zhuhadar in 2011. We explore mathematical
properties of decay centrality depending on the choice of parameter δ and the stability of vertex
ranking based on this centrality index.

1. Introduction

Throughout this paper, we consider graphs without loops or multiple edges; we
use the standard graph terminology as used in [4]. Given a graph G, the symbols
V (G), E(G) stand for the vertex set and the edge set of G, respectively. The
distance d(x, y) between vertices x, y ∈ V (G) is the length of a shortest
x−y-path (if no x−y-path exists in G, we set d(x, y) = +∞); the value
e(x) = maxy∈V (G) d(x, y) is called the eccentricity of x, and the maximum of
eccentricities of vertices of G is the diameter of G (denoted by diam(G)).

Among fundamental questions discussed in the analysis of social networks
of relations between actors, an important task is to identify the actors which
play a key role within that network. The usual way to express a measure of
their importance involves the centrality index, formally defined, for a graph
G, as a function c: V (G) → R which is invariant under graph isomorphism
(for interpretation purposes, the vertices of G with higher centrality values
correspond to more important actors of the network modelled by G). The most
frequently used centrality indices are vertex degree, eccentricity, betweenness
and, particularly, the closeness, which is defined as

CC(x) = 1∑
y∈V (G)

d(x, y)
.
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For the detailed discussion on their properties and usage, see Chapters 3, 4,
and 5 in [2].

In search for other approaches in the area of centrality research, several new
centrality indices were defined. One of them is reciprocal distances centrality
(see [9], [8]) defined as

CR(x) =
∑

y∈V (G)\{x}

1

d(x, y)

and another one is the decay centrality defined in [6] (see also [7]) and inde-
pendently in [3] (under the name “generalized closeness”) as

Cδ(x, G) =
∑

y∈V (G)\{x}
δd(x,y)

(if G is known from context, we just write Cδ(x)) where δ ∈ (0, 1) is a
parameter (often set to 1

2 , see the Section 5 of [3] for a discussion on the
choice of δ). These indices overcome the known deficiency of the closeness:
the zero value for all vertices of disconnected graphs. On the other hand, [13]
argue that CR and Cδ cannot be considered as replacements of the closeness for
disconnected graphs, because, for connected graphs, they lead to rankings of
vertices which are not mutually consistent – they show that, for the complete
binary tree T of height two, the closeness centrality ranks its root (that is, the
vertex of degree 2 in T ) as the unique most central vertex while the reciprocal
distance centrality ranks, as the most central vertices, two vertices of T that
have degree 3. Furthermore, using the generalized closeness for δ = 1

2 , one
obtains that all three non-pendant vertices of T are the most central.

Rather than advocating either opinion, we present an opinion that the rank-
ing order anomaly reported in [13] is a new kind of phenomenon intrinsically
connected with properties of decay centrality. In order to formally describe this
phenomenon, for a graph G with V (G) = {v1, . . . , vn} and a general centrality
index c: V (G) → R, define the c-ranking of G in the following way: let π a the
permutation of {1, . . . , n} such that (c(vπ(1)), . . . , c(vπ(n))) is a non-increasing
sequence (in other words, it sorts the vertices starting from the highest cent-
rality) with � blocks

(
c(vπ(1)), . . . , c(vπ(k1))

)
,
(
c(vπ(k1+1)), . . . , c(vπ(k2))

)
, . . . ,(

c(vπ(k�−1+1)), . . . , c(vπ(n))
)
; in this sequence, distinct blocks contain distinct

values whereas the values within a block are the same. Then the c-ranking of
G is the sequence(

vπ(1), . . . , vπ(k1), vπ(k1+1), . . . , vπ(k2), . . . , vπ(k�−1+1), . . . , vπ(n)

)
(the lines over vertices indicate the fact that centralities of vertices within the
same group are equal). In the case of c = Cδ , the c-ranking of a graph depends
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Figure 1. Graphs of decay centralities for the complete binary tree of height 2.

on δ; taking
(
n

2

)
polynomials Cδ(vi) − Cδ(vj ) for all i, j ∈ {1, . . . , n}, their

roots in (0, 1) are called decay thresholds of G.
Now, if we denote the root of the above mentioned tree T as u1, its neigh-

bours as u2, u5 and the neighbours of u2 and u5 as u3, u4 and u6, u7, respect-
ively, we can observe that T has the unique decay threshold at 1

2 and Cδ-ranking
of T is (

u2, u5, u1, u3, u4, u6, u7
)

for 0 ≤ δ < 1
2 ,(

u1, u2, u5, u3, u4, u6, u7
)

for δ = 1
2 ,

and
(
u1, u2, u5, u3, u4, u6, u7

)
for 1

2 < δ < 1

(see Figure 1 for graphs of Cδ).
Hence, Cδ-ranking may vary, in general, with different values of δ; its

behaviour and general properties are explored in a detail in Section 2.
On the other hand, there are graphs for which Cδ-ranking does not change;

we will call these graphs as decay-stable and discuss their properties in Sec-
tion 3. We show that the decay ranking of vertices is preserved within graphs
of various graph products, and, also, within graphs of diameter two. However,
we also exhibit several real-world networks whose decay rankings are highly
unstable. These findings suggest that the decay centrality, although having
some advantages over the closeness centrality, is perhaps not a good choice
for analyzing real data.
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2. General properties

The decay centrality of a vertex v of a graph G is a polynomial of degree
k = e(v); its coefficients are equal to terms of the distance degree sequence
DDSG(v) of v which is the sequence (1, d1, . . . , dk) where di is the number of
vertices of the distance i from v (see [1]). It is easy to see that, in graphs whose
vertices have the same distance degree sequences (distance degree regular
graphs or DDR graphs for short), all vertices have the same decay centrality.
Conversely, if G is a graph such that, for any pair x, y of its vertices, Cδ(x) =
Cδ(y) for all δ ∈ (0, 1), then G is a DDR graph. Note also that the vertices
of each DDR graph have the same closeness; the converse, however, is not
true, as seen on the graph C×

12 constructed from a 12-cycle v1v2 . . . v12 by
adding new edges v1v3, v2v4, v5v7, v6v8, v9v11 and v10v12: its vertices have
two different DDS sequences (hence, two different decay centralities), but the
same closeness.

Lemma 2.1. A vertex adjacent to every other vertex of a graph has, for any
δ ∈ (0, 1), the maximum decay centrality among all vertices.

Proposition 2.2. Let G be a graph and x, y be its vertices such that
DDSG(x) = (1, x1, . . . , xk), DDSG(y) = (1, y1, . . . , yr) and, for each j ∈
{1, 2, . . . , k}, ∑j

i=1 xi ≥ ∑j

i=1 yi holds. Then, for all δ ∈ (0, 1), Cδ(x) ≥
Cδ(y). Moreover, if there exists j ∈ {1, 2, . . . , k} such that

∑j

i=1 xi >
∑j

i=1 yi ,
then the inequality is sharp.

Proof. Since
∑j

i=1 xi ≥ ∑j

i=1 yi for all j ∈ {1, 2, . . . , k}, we get k ≤ r

and

Cδ(x) − Cδ(y) =
k∑

i=1

(xi − yi)δ
i −

r∑
i=k+1

yiδ
i ≥

k∑
i=1

(xi − yi)δ
k −

r∑
i=k+1

yiδ
i

=
( k∑

i=1

xi −
k∑

i=1

yi

)
δk −

r∑
i=k+1

yiδ
i =

r∑
i=k+1

yiδ
k −

r∑
i=k+1

yiδ
i

= δk

r∑
i=k+1

yi(1 − δi−k) ≥ 0.

Now if
∑j

i=1 xi >
∑j

i=1 yi for some integer j , then we obtain r > k and
therefore δk

∑r
i=k+1 yi(1 − δi−k) > 0 which means that Cδ(x) > Cδ(y) for all

δ ∈ (0, 1).

In the following, we explore the relation between decay thresholds and de-
cay order of vertices. If u, v are vertices of a graph G and δ1, δ2 ∈ (0, 1), δ1 �=



ON DECAY CENTRALITY IN GRAPHS 43

δ2 such that Cδ1(u) > Cδ1(v) but Cδ2(u) < Cδ2(v), then G has a decay threshold
in (δ1, δ2) (this follows from the intermediate value theorem used on the func-
tion Cδ(u)−Cδ(v)). However, in general, the converse is not true. To illustrate
this, we will use the following observation on decay centralities of end vertices
of cut edges in graphs. Let G be a graph with a cut edge uv, and let G1, G2

be two components of G−uv; let DDSG1(u) = (1, d1, . . . , dk), DDSG2(v) =
(1, t1, . . . , t�). Without loss of generality, let k ≥ � and (1, h1, . . . , hk) be a
sequence of length k such that, for each i = 1, . . . , �, hi = ti and hj = 0 for
j = � + 1, . . . , k. Then

DDSG(u) = (1, d1 + 1, d2 + h1, . . . , di + hi−1, . . . , dk + hk−1, hk)

= (1, d1, . . . , dk, 0) + (0, 1, h1, . . . , hk),

DDSG(v) = (1, h1 + 1, h2 + d1, . . . , hi + di−1, . . . , hk + dk−1, dk)

= (1, h1, . . . , hk, 0) + (0, 1, d1, . . . , dk)

and

Cδ(u, G) − Cδ(v, G)

=
[ k∑

i=1

diδ
i + 1 · δ +

k∑
i=1

hiδ
i+1

]
−

[ k∑
i=1

hiδ
i + 1 · δ +

k∑
i=1

diδ
i+1

]

= Cδ(u, G1) − Cδ(v, G2) − δ

( k∑
i=1

diδ
i −

k∑
i=1

hiδ
i

)

= (1 − δ)(Cδ(u, G1) − Cδ(v, G2)).

Thus, Cδ(u, G) − Cδ(v, G) has a root α ∈ (0, 1) if and only if α is the root of
Cδ(u, G1) − Cδ(v, G2).

We use this observation to construct connected graphs containing a pair of
adjacent vertices showing arbitrary behaviour of their decay centralities. Given
non-negative integers n1, n2, choose n1 + n2 rational numbers q1, . . . , qn1 ,
r1, . . . , rn2 ∈ (0, 1) and a positive integer A in such a way that the polynomial
P(x) = Ax

∏n1
i=1(x − qi)

2 ∏n2
j=1(x − rj ) = a2n1+n2x

2n1+n2 + · · · + a1 has
integer coefficients. Next, for i = 1, . . . , 2n1 + n2, choose positive integers
bi, ci such that ai = bi − ci , and construct disjoint connected graphs G1, G2

such that there is a vertex u of G1 with DDSG1(u) = (1, b1, . . . , b2n1+n2) and
a vertex v of G2 with DDSG2(v) = (1, c1, . . . , c2n1+n2) (G1 and G2 may be
chosen as rooted trees of height 2n1 + n2 with roots u and v having bi and
ci vertices at i-th level). Now, let G be a graph obtained from G1 and G2 by
adding a new edge uv. It follows that, in G, the difference of decay centralities
of u and v is equal to P(δ)(1 − δ), hence q1, . . . , qn1 , r1, . . . , rn2 are decay
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v
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Figure 2. An example of graph with two thresholds of different nature.

thresholds of G. Observe that, for thresholds qi, . . . , qn1 , a small local change
of the parameter δ in their neighbourhoods preserves decay ordering of u, v

whereas, for a local change of δ in neighbourhoods of thresholds r1, . . . , rn2 ,
the order of u and v is always reversed.

Example 2.3. Consider q1 = 1
2 , r1 = 1

3 . Then one can set P(x) to be equal

to 12x
(
x − 1

2

)2(
x − 1

3

) = 12x4 − 16x3 + 7x2 − x, hence, a4 = 12, a3 = −16,
a2 = 7, a1 = −1 and we can choose b1 = 1, c1 = 2, b2 = 8, c2 = 1, b3 = 1,
c3 = 17, b4 = 13, c4 = 1. An example of a graph realizing these parameters is
on Figure 2; it is easy to see that the decay centralities of vertices u and v are
2δ+10δ2 +2δ3 +30δ4 +δ5 and 3δ+2δ2 +25δ3 +2δ4 +13δ5, respectively, and
their difference is δ − 8δ2 + 23δ3 − 28δ4 + 12δ5 = δ(δ − 1)(3δ − 1)(2δ − 1)2

yielding the roots 0, 1, 1
3 (single root) and 1

2 (double root).

From the above examples, one can conclude that the decay centrality, al-
though being well defined for disconnected graphs, may sometimes lead, in
these and other graphs, to “unpleasant” issues involving relation between decay
order of vertices and decay thresholds.

3. Decay-stable graphs

We start our search for decay-stable graphs with several examples of graphs
from simple yet nontrivial classes (note that since each vertex-transitive graph
is also DDR graph and therefore decay-stable, we concentrate on classes of
nontransitive graphs).

Proposition 3.1. All paths are decay-stable.

Proof. Let Pn = v1v2 . . . vn be an n-vertex path. For integer k, 1 ≤ k ≤
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⌊
n
2

⌋
, we have

Cδ(vk) = Cδ(vn−k+1) = 2
k−1∑
i=1

δi +
n−k∑
i=k

δi = δk + δn−k+1 − 2δ

δ − 1
.

Now, for fixed n and δ ∈ (0, 1), the function c(x) = (δx + δn−x+1 − 2δ)/

(δ − 1) is increasing on
(
1, n

2

)
because c′(x) = (ln δ(δx − δn−x+1))/(δ − 1) >

0; thus, for 1 ≤ p < q ≤ ⌊
n
2

⌋
, we have Cδ(vp) < Cδ(vq) which proves the

claim.

In search for decay-stable trees, we checked, with the help of the Maple
computer algebra system, all trees up to 20 vertices. The numbers of decay-
stable trees are given in Table 1.

Table 1. Numbers of decay-stable trees with a given number of vertices.

Vertices 4 5 6 7 8 9 10 11 12 13 14

Decay-stable trees 2 3 6 9 19 20 40 49 88 102 191
All trees 2 3 6 11 23 47 106 235 551 1301 3159

Vertices 15 16 17 18 19 20

Decay-stable trees 207 356 391 678 731 1265
All trees 7741 19320 48629 123867 317955 823065

These numbers suggest that, from the asymptotic point of view, the following
conjecture is true:

Conjecture 3.2. Almost every tree is decay-unstable.

It is not easy to find a particular graph constructions producing decay-
stable graphs from smaller graphs, as the most common graph operations
yield, in general, negative results even for decay-stable operands. We illustrate
this for several graph products, namely, the Cartesian, tensor, strong and the
lexicographic product (the definition and properties of these graph operations
can be found in [5]). For example, the graphs K1,3, K+

1,3 (that is, K1,3 with an
extra edge between its nonadjacent vertices), P3, P4 and P5 are decay-stable,
but the Cartesian product K1,5 � P5 has unique threshold

1

15
· 3

√
918 + 30

√
921 + 8

5
3
√

918 + 30
√

921
− 1

5
.= 0.7460547439,
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the strong product K1,3 � P4 and the tensor product K+
1,3 × P4 have unique

threshold 1
2 , and the lexicographic product P5[P3] has unique threshold 1

3 (see
Figure 3 for detailed visualization of decay curves and their intersections).
Nevertheless, for particular factors of these graph products, one can obtain
decay stability of the result; we show this by several different examples:

Theorem 3.3. If G is decay-stable, then, for any positive integer n, G � Kn

is also decay-stable.

Proof. Letube a vertex ofG, DDS(u) = (1, d1, . . . , dk)where k = eG(u),
and let [u, v] be any vertex of G � Kn which lies in a copy of the factor Kn

that covers u in a copy of G in the product. Note that for each vertex [w, z] of
G � Kn (with w ∈ V (G), z ∈ V (Kn)), the distance of [u, v], [w, z] is equal
to d(u, w) + 1; this implies that DDS([u, v]) = (1, d1 + n − 1, d2 + (n −
1)d1, . . . , dk +(n−1)dk−1, (n−1)dk). Hence, for any vertex [w, z] of G � Kn

with DDSG(w) = (1, d ′
1, . . . , d

′
�), � = ecG(w) (without loss of generality, let

k ≤ �), we obtain

Cδ([w, z]) − Cδ([u, v]) =
k−1∑
i=0

(d ′
i+1 + (n − 1)d ′

i − (di+1 + (n − 1)di))δ
i+1

+ (d ′
k+1 + (n − 1)d ′

k − (n − 1)dk)δ
k+1

+
�−1∑

i=k+2

(d ′
i+1 + (n − 1)d ′

i )δ
i + (n − 1)d ′

�δ
�

= (Cδ(u) − Cδ(w))(δ(n − 1) + 1).

Since G is decay-stable, Cδ(u) − Cδ(w) has no real root in (0, 1), thus
Cδ([u, v]) − Cδ([w, z]) has no real root in (0, 1) either, which proves the
claim.

Theorem 3.4. If G with δ(G) ≥ 1 is decay-stable and H is a regular graph,
then G[H ] is decay-stable.

Proof. Let H be an r-regular graph on s vertices, v be a vertex of H

and let u be a vertex of G with ec(u) = k, DDSG(u) = (1, d1, . . . , dk). Then
DDSG[H ]([u, v]) = (1, d1s+r, d2s+s−r−1, d3s, . . . , dks) = s ·DDSG(u)+
(1 − s − r, r, s − r − 1, 0, . . . , 0). Hence, for any two vertices [u, v], [w, z]
of G[H ], the difference of their decay centralities is

Cδ([u, v]) − Cδ([w, z])

= s · (Cδ(u) − Cδ(w)) + (r − r)δ + (s − r − 1 − (s − r − 1))δ2

= s · (Cδ(u) − Cδ(w)).
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Figure 3. Examples of decay-unstable graph products.
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Again, G is decay-stable, thus, Cδ(u)−Cδ(w) has no real root in (0, 1) as well
as Cδ([u, v]) − Cδ([w, z]); this proves the claim.

It seems that also the following is true:

Conjecture 3.5. For all positive integers �, k1, . . . , k�, the �-dimensional
grid Pk1 � · · · � Pk�

is decay-stable.

Conjecture 3.6. The strong product Pk �P� is decay-stable for all positive
integers k, �.

Before exploring another large set of decay-stable graphs, we prove auxili-
ary result concerning relative stability of two vertices whose distance profiles
do not differ much:

Lemma 3.7. Let G be a graph and x, y ∈ V (G). If DDSG(x) and DDSG(y)

differ in exactly two terms, then, for all δ ∈ (0, 1), Cδ(x) �= Cδ(y).

Proof. By contradiction. Let G be a graph with two vertices x, y with ec-
centricities e(x), e(y) such that DDSG(x) = (1, x1, . . . , xe(x)) and
DDSG(y) = (1, y1, . . . , ye(y)) differ exactly in i-th and j -th terms, i < j . Put
k = max{e(x), e(y)}. Then

∑k
�=1 x� = ∑k

�=1 y�, which gives xi−yi = yj −xj .
Assume that there exists a δ ∈ (0, 1) such that Cδ(x) = Cδ(y). This implies
that xiδ

i + xj δ
j = yiδ

i + yj δ
j , hence xi − yi = (yj − xj )δ

j−i . Thus δj−i = 1,
a contradiction.

Considering now a graph of diameter 2, the degree distance sequences of
every two vertices are the same or differ in two terms; thus, we obtain the
following

Corollary 3.8. All graphs of diameter 2 are decay-stable.

This also shows that – in probabilistic sense involving the concept of random
graphs – almost every graph is decay-stable, as well as all joins of graphs.
Furthermore, each strongly regular graph (that is, a regular graph with the
property that every two adjacent vertices have λ common neighbours and every
two nonadjacent vertices have μ common neighbours) has diameter 2, thus, it
is decay-stable. By [12], every finite group A can serve as an automorphism
group of some strongly regular graph, and hence of a decay-stable graph.

Corollary 3.9. All regular graphs of diameter 3 are decay-stable.

Note that there are nonregular graphs of diameter 3 which are not decay-
stable, for example, the graph on Figure 4. Also, there are regular graphs of
diameter at least 4 which are not decay stable – for example, the cubic graph
on Figure 5 has decay threshold 1

2 . Hence, the assumptions of both above
corollaries are best possible.
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Figure 4. An example of decay-unstable graph of diameter 3.

Figure 5. An example of decay-unstable regular graph of diameter 4.

On the other hand, it seems that most of real-world networks are decay-
unstable. We have checked this property for several well-known networks (the
data files are found at http://www-personal.umich.edu/̃ mejn/netdata/):
the network of Zachary karate club (see [14]; describing friendships between
34 members of a karate club at a US university in the 1970s), the dolphin
social network (see [10]) of frequent associations between 62 dolphins in a
community living off Doubtful Sound, New Zealand, and the Padgett’s net-
work (see [11]) of marriages between Florentine medieval families. These net-
works have high numbers of decay thresholds – using Maple computer algebra
system, we have determined that the Padgett’s network has seven thresholds
while Zachary karate club network and the dolphin social network have 35
and 372(!) thresholds, respectively. It would be interesting to compare these
numbers with statistical characteristics of threshold numbers of random graphs
with main parameters (number of vertices and edges, diameter) being the same
as for real-world networks.
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