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ON THE WEAK CONVERGENCE OF STOCHASTIC
PROCESSES

MONROE D. DONSKER!

1. Introduction.

We say a sequence of processes {a¥, te T}, k=1,2,..., converges
weakly to a process {x,, t € T} if for each n and each choice of points
tits, ... t, in T we have at all continuity points of the distribution
function on the right,

lim P{af <A;,af <24, . . .,wfngln} = P{w, <A, %, S Ay, ..., 2, S A},
k—>o00
i.e., if the finite dimensional distributions converge. We consider the
problem of under what further assumptions on the processes involved
it follows that for a large class of functionals G[z],

lim {6241} = E,{Gla]}
k—o0

What is needed then is a function space analogue of the Helly-Bray
theorem. The most general theorem in this direction is that of Pro-
horov (Theorem 2.1 in [6]). In this paper we prove a theorem of Helly—
Bray type in function space using characteristic functionals of processes
and an explicit inversion formula for characteristic functionals recently
obtained in [1]. The resulting theorem is not as general as that obtained by
Prohorov [6] and indeed Theorem 1 in this paper follows from Prohorov’s
theorem referred to above. The proof of Theorem 1 below based on
characteristic functionals is however quite straightforward and the uni-
form compactness condition (1.1), which is more restrictive on the pro-
cesses than the corresponding condition 2.8 in [6], comes in very naturally
as being necessary to justify the interchange in limits involved here.

Let o>} and {x;,0=¢t<1} be a process almost all of whose sample
functions z(t) vanish at {=0 and satisfy a Ho6lder condition of order «,
that is, for all s,t € [0,1],

() —x(s)| = ht—s|*,
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where kb is a constant depending only on z(.). Let {p,0=¢=1} be the
Wiener process, i.e., the Gaussian process with mean 0 and covariance
function min(s,t) almost all of whose sample functions p(t) also vanish
at t=0. We denote the characteristic functional of the process {z,, 0 <t =<1}

by 1
D(p) = K, lexp [ifx(t) dp(t)}}.

0

For the same « as above, let {xf,0<¢t<1},k=1,2,..., be a sequence
of processes each of which has the property that almost all its sample
functions «*(¢) vanish at ¢=0 and satisfy a Holder condition of order .
Let @%(p) be the associated sequence of characteristic functionals. In
the following theorem let S, ; denote the set of sample functions xk(t)
such that for all s,t € [0,1],

k(1) —H(s)| < ple—s]*.

TaEOREM 1. If for each A>0, lim,_, . @*(Ap)=D(Ap) for almost all p(t)
and if for any ¢ >0 there exists an H, independent of k, such that for all k

(1.1) P{Sg it 2 1—¢,

then, for any functional G[x] defined on C[0,1] which is bounded and almost
everywhere continuous in the uniform topology on the sample functions of
{a,, 0 <t <1} as well as on the sample functions of {x¥,0<t<1}, k=1,2,...,
we have
(1.2) lim Ba{Glet)} = By (G}

—>00

Before proving this theorem we make some remarks. The assumption
that for each 1> 0, lim,_,  @¥(Ap)=D(Ap) for almost all p(t) is in essence
the assumption that the sequence of processes {x¥, 0 <¢< 1} converges to
the process {z;, 0 <t < 1} in the usual weak sense, i.e., the finite dimensional
distributions converge. It is clear from the regularity assumptions that
for each k and for any &> 0 there exists an H; such that P{Sy, ,}=1—e.
What we ask in (1.1) is uniformity in k. This condition (1.1) is the func-
tion space analogue of the convergence at infinity condition in the one-
dimensional Helly-Bray theorem. Prohorov in [6] uses such a uniform
compactness condition to show there exists a convergent subsequence
of the process measures, convergent in the sense that the left side of
(1.2) has a limit for all continuous functionals G[x]. He then shows that
the limit is unique and is given by the right side of (1.2). As will be seen
below, using the inversion formula for characteristic functionals, the
problem reduces in a line to the justification of the interchange of two
limits which follows readily from (1.1). Our results are not as general as
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Prohorov’s because the inversion formula has as yet been proved only
for processes whose sample functions satisfy certain regularity conditions.

For any functional F[x] which is almost everywhere continuous in
the uniform topology (not necessarily bounded) on both the sample

functions of {x,, 0<¢<1}and {2¥,0<¢<1},k=1,2,..., we have from (1.2)
(1.3) lim P{F[2*]< A} = P{F[z] <4}
k—>o00

at all continuity points of the distribution function on the right. This
follows from (1.2) by letting G[x]=¢""®! and applying the ordinary
continuity theorem for characteristic functions. In particular, because
our assumptions involve only continuity in the uniform topology, we
obtain as a special case of (1.3),

(1.4) lim P { sup z*(t) gl} = P{ sup x(t) _S.Z} ,

k—>o00 0=t=1 0o=st=1
again at all continuity points on the right. Even in very special cases
(1.4) has proved difficult to demonstrate. In the last section of this
paper we indicate possible extensions of Theorem 1 and also discuss
certain special cases.

2. Proof of Theorem 1.

Let E}{ } indicate expectation on the Wiener process {p, 0=<t<1}.
In [1] it is shown that for processes {r, 0<¢{=<1} almost all of whose
sample functions vanish at {=0 and satisfy a Holder condition of order
«> % one can obtain an inversion for @(p), the characteristic functional
of {x,0=t=<1}. To be specific, it is shown there that if G[z] is a func-
tional on the sample functions of such a process which is bounded and
almost everywhere continuous in the uniform topology, we have for any
positive increasing function f(4) such that f(4)=o(4/ (logl)z) but 1/f(4)=
of Al—a—l),

(2.1) B {Gl=]} .
= lim {Dw( —l2f2(1))}*EZ’E;‘,’ lexp [ ——z'lf(l)J-a(t)dp(t)] G[f(l)a]@(lp)] ,
A—>0 0
where D, (u) is the Fredholm determinant of min(s,?) (Dw( — u?) = cosh ).
From the first assumption of Theorem 1 we have immediately

(2.2) B, {Gl«]}

1
= lim Lim{D,(—-2f2(A)} E} E}; {exp [ —iAf (}L)fa(t)dp(t)} Glf(A)a] @""(lp)l .
0

A—>00 k—>00
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Since each process {#{®,0<¢<1} satisfies the conditions of the inver-
sion formula and G[x] is assumed to have the same properties on the
sample functions ®(t) as on the sample functions z(¢), we have that

(2.3) B, {G[2®]}

1

= lim {Dw( — A% 2(1))}* ECE, Iexp [ —2Af(A) f a(t)dp(t)} Glf (l)a]@(")(ip)] .
A—>c0

0

Thus, the proof of Theorem 1 consists in justifying the interchange of
limits on the right of (2.2). To this end we show, using (1.1), that the
limit in (2.3) is uniform in k.

Using the definition of the characteristic functional, the fact that

1
By {exp [— 12re) [ a%t)dt]} = {D, (-2},
0
and formula (2.5) of [1], cf. Paley, Wiener and Zygmund [5, p. 653] we have

1
{Du(— 2 )P EL B Iexp [—Mfm | a(t)dp(t>] GLf(3)a] wmm}
0
1
= {Du(~ )P E,, By [G[f(ﬂ)a]E$ {exp [z‘z [0 s d)ate) dp(t)]”
0
1
= {Du(~ 2f*(0) P B, B {sz)a] exp [— 122 [0 —f (W (O dt]]
0

1
B,B {G[f(l)a] exp [ — 32 [0t) - (D) alt)? dt”
0

1
B :exp [ — 3Azraa) f az(t)dt]]
0

Hence, what we wish to show is that

1
A {G[f(z)al exp { — 422 [0 ~f D)2 dt]”
0

=0
1
B {exp [ —322f2(3) f az(t)dt“ l

0

(2.4)  limE,, Gla] -

uniformly in &.
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Let M be the assumed bound on G[x]. From (1.1) we have that for
any &> 0 there exists an H independent of k such that, for all k, P{Sy; ;} 2
1—¢/(4M). Letting Sy ; denote the complement of Sy , we write the
limitand in (2.4) as

1 _
By {G‘[f(l)a] exp [— 122 [[a0) —f (D) a(t)? dt]”
E Glz®] — 9

rkeSH, k 1 +
l B {exp [ — 3A272(2) f a(t) dt” [

0
(2.5)

1
A {G[f(l)a] exp [ — 12 ) - f (B a(e) dt]”
0

B {exp [ —122f(A) f a¥(t) dt“ I

It will be shown subsequently that for all £ and almost all x®)(z),

+E G[a®] —

xpeS'H k

1
By |eXP [ -3 f [®(t) — f(A) a(t)]? dt“
(2.6) g

1
B {exp [— 12f%(2) f a?(t) dt}
0

Therefore the second term in (2.5) is in absolute value <2MP{Sy ,} < }e.
Thus, letting S;=U3,84 ;, and since P{Sy ,}<1, it will suffice, in
order to prove (2.4), to show that

1
A {G[f(l)a] exp [ = 4220 ~f D (O dt]
0

(2.7) lim

A—>00

i = G[z*]
EY [exp [ —12272(2) [a2(t) dt“
0

uniformly on Sy. Except for the uniformity needed here, the fact that
(2.7) holds under the assumptions imposed on z®(t), Q[x], and f(4) is
the crux of the inversion formula (2.1) itself and follows from theorems
proved in [1]. However, in order to make this paper self-contained and
to show the uniformity on Sy, we repeat the substance of the argument
here referring to [1] only for certain calculations.

First of all a calculation (Lemma 2 in [1]) shows that
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1
By [eXP [ — 32 f [®(t) - f (1) a(®)]? dt”
0

B lexp { EVEYLIEN f a2(t) dt”

0

1 11
= exp [ — 422 [[a(0)]2 dt = 8720 [ [ Ry, = 222(0) a(0) a(s) dsdt} :
0 00

where

cosh Af(A)(1 —#) sinh A (A)s

R (s.8;—22f2(2)) = l B Af(2) coshAf(4) T
WS BB =0 e A (2)(1 —s) sinb A >

| T mesaa 0 °EY

is the resolvent kernel of min(s,f). Now using the symmetry of
R, (s,t;—22 f%(4)) and elementary calculation,

1 11
pB f [C®() 2 dt + A42(A) f f Ro(s,; — A2f2(A))a®(s) 2(t) dsdt
0 00

1

1
= llzf[vc“"(t)]2 [ [1+22f%(2) f R, (s,t;—22f%(2)) ds] dt —
0 0

1¢
) f f Ry(s,8; — 22f2(2)) [2®(s) —a®(t)]? dsdt

®(f)]2 )1 —
coshl ) f[x )]2 cosh Af(A)(1—1¢) dt +

(@A)
coshAf(4)

f f oshAf(A)(1 —£) sinh Af(A)s [2() — 2®(s)]2 dsds .

At this point one should notice that both terms are positive which proves
(2.6). For any a®(t) € Sy, the last expression is less than or equal to

AR
mof t* cosh Af(2)(1—t) d¢ +

4 ABf(A)H?
coshAf(4)

f f(t 8)* coshAf(A)(1 —t) sinh Af (A)s dsdt .
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By the Holder inequality this is less than

ar 1
B U , coshAf(2)(1 dt] U cosh Af(2)(1 —1t) dt] N
0 0

coshAf(4) coshAf(4)

1t «
. coshAf(4)(1 —¢) sinhAf(A)s
+Bf(WH [ [[e-o cosh 1) dsdt] :

11 . 1—a
) [ff cosh Af(4)(1 —¢) sinh Af(A)s dsdt]
oo cosh Af(4)

00

- 1 2 sinh Af (1) 2 “r sinhAf(d) 1~
Loshzf(z)( 23£3() —szz(l))] [zfm coshAf@)}

1 2 T 1 sinh Af(2) 1=
+RIDH? [‘a@m)(Hcoshaf(z))] [mf(z)"zzzfzm coshlm} '

The first term here is J1-2s

[f(2)]H+2=

and, since by assumption 1/f(A)=o0(A1-1/*), this goes to zero as A — oo,
The second term in the last displayed formula is

H?2 }12 —2x
s

and this also goes to zero as 4 — co. Since H is independent of £k we

have shown that
1
BY {exp [ — 12 () - f(Da(O) dt”
(2.8) lim 0 S~ =1

e g {exp{—%lzfz(/l) (1) dt”
0

uniformly on Sy.
Finally we show that

E’”{G[f )a] exp[ lazf [9() —f(A) t)]2dt“

(2.9)  lim

= Gla®)
o {exp [— e f [9(0) —f (Rl dt“
0

uniformly on S8g. Then (2.9) and (2.8) imply (2.7) and thus Theorem 1.

Math. Scand. 9 — 4
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Let 2®(t) e Sy be a point where G[x] is continuous in the uniform

topology: Let >0 and let 6> 0 be such that

sup [2®(t) —f(A)a()] < 6

0sts1
implies

IGLf(M)a]—G[a®]] < 7.
Let

= fat®: sup ) et < o).

o=si=1

To show (2.9) consider

1
By {G[fu)a] exp [ — 120 ~f W an® dt]}
(2.10) 0 — G[a®]

E® lexp [ 12 f [2®(8) —f(A) a(t)]2 dt”

1
Eiea {[G[f (A)a] —G[2*]] exp [ — 322 f [2®(t) — £ (2) a(t)]? dt“
B {exp [ 32 f [90(t) — £ () a(t) ]2 dt“

1
aear [[G[f (A)a) — G[2®]] exp [ — 342 f [®(t) —f () a(t)]? dt]]
0

H

By Iexp [ — 1[0 —f(2)alt)]* dt]}
0

where A’ denotes the complement of 4. The first term on the right of
equation (2.10) is in absolute value =<7 and the second term is in
absolute value

1
Bles [exp {— 122 [0 ~f (D a(O) dt”
0

IA

: .
By [eXP [— %ﬁzf[x”‘)(t) =f(A)a(t)]? dt”
0

The latter expression will approach zero uniformly on S, if we can show
that
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B, {exp[ %Azf [&®(2) — F () al t)]zdt“
(2.11) lim =1

7 {exp { -1 f [2(0) —f(B)a(®) dt“
0

uniformly on S.
To show (2.11), let ¢(u)=1 if |u| =6 and 0 otherwise. It follows from
Lemma 11 in [1] that

1

EY 4 lexp[ 122 | [2®(t) — f(A) a(t)]? dt“

0

= By {w (0221]0@) —x"‘)(t)l)},

BY lexp [ — e f [2®() —f (A) a(t)]? dt“

where
t

0(t) = 2®(t) + f(A) coshAf(A)(1—¢) f sechAf(2)(1 — ) da(s) +

0

sinh Af(A)¢
—————— | sinh Af(2)(1 — ) da®)(s
cosh Af(A) f FA)(1 =) daBls)
coshlf ) coshaf (1)s da®(s) .
coshlf(l
We must show therefore that
(2.12) lim6(¢) = 2%(2)

A—>00

uniformly for ¢ € [0,1] and uniformly on §;. Consider the second term
of 6(¢) which does not involve ®(¢). Almost all sample functions a(t) of
the Wiener process satisfy for some ~ depending on a(t) the modified
Holder condition

ja(t)—a(s)| < h{lt—s| log[lt—s|fel}t .

Therefore, letting u = (logA)/[Af(A)], we have

£(A) cosh Af(A)(1— 1) f sechAf(1)(1 — ) da(s)
0

< f(A) coshAf(A)(1 —t) {sech[Af(A)(1 ~t)+logA]}h
< 2hf(2) exp[Af(A)(1—1)] exp[ — Af(A)(1 —¢) —logA] = 2hf(A)/A .




52 MONROE D. DONSKER

This last expression approaches zero uniformly in ¢e[0,1] as 4 > o0
since by assumption f(4)=o(4/ (log2)?). Also for sufficiently large A,
¢
f(A) cosh Af(A)(1—1) f sechAf(2)(1 —s) da(s)
[f (/1) coshAf(2)(1 —1) sechAf(2)(1 —t)Jh{u[log(u/e)| }*
(2) {log 2/Af (A)}* {log (Af(4)) —log log A+ 1}}
h{f 2) logA/A}t (2 logA)} = h{2f(A)(logA)?[A}},

IIA

IIA

and again, since f(A)=0(4/(log)?), this last expression approaches zero
uniformly in ¢€[0,1] as A — oo. The third and fourth terms of 6(¢) do
involve 2®(t). The argument to show that these terms approach zero
uniformly in ¢ € [0,1] and uniformly on S, is almost exactly the same for
each term and therefore we consider only the third. Taking u=(logi)/
[Af(A)] again, we have, since a®(t) € Sy,

t+u

sinh Af(A)¢

m hlf (1-——8 dx(")( )

o sinh Af(A)t sinhAf(A)(1 1)
coshAf(4)

<H (logl )“ ’
Af(2)
and this last expression goes to zero as A — co uniformly for ¢ e [0,1]
and uniformly on 8. Also

IIA

smhlf
coshAf(2) A) sinhAf(2)(1 —s) d=(s)
sinhAf(A)t sinh2f(A)(1—t—p)
s4d coshAf(4) ~ [,

and this last expression goes to zero uniformly in ¢ € [0,1] and uniformly
on Sy.

We have thus shown (2.12) which implies (2.11) and hence (2.9) and
Theorem 1.

3. Possible extension of Theorem 1.

" The reason that Theorem 1 is restricted to processes whose sample
functions satisfy a Holder condition of order « >} is, of course, that
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the inversion formula for characteristic functionals employed here is
thus restricted. Now it is clear that any extension of the inversion formula
itself implies a corresponding extension of Theorem 1. In particular it
is pointed out in [1] that if 0 <x =1 and if g(s,?) is a covariance function
continuous in both variables with reciprocal kernel E (s,¢;u) and Fred-
holm determinant D, (u) satisfying, as u — co, the two conditions

1 1
(3.1) f 14+ p f R (s,t;— p)ds | 12 dt = of[logD,( — )]~
and ’ e ’
@2 uf[IBst—wle—s dsdt = offlog Dy~ )] ).
00

then one can invert characteristic functionals of processes almost all of
whose sample functions satisfy a Holder condition of corresponding
order &« where now « is not restricted to be >3}. Although min(s,?)
satisfies (3.1) and (3.2) for any « > } it is not clear whether there exist
covariance functions p(s,t) satisfying these two conditions for any « < 1.
However, it is shown in [1] that if {x,,0<¢=<1} is a process almost all of
whose sample functions vanish at {=0 and satisfy a Holder condition
of order &« >0 and if there exists a p(s,t) satisfying (3.1) and (3.2) for
this «, then there exists a positive increasing f(4) such that

(3.3) E {G[=]}
= }im {D—22f2(%)) P EY By {GXP { —iAf (l)fy(t) dp(t)} GLf(AMy] Q(lp)} ,
—>00 o

where @(p) is the characteristic functional of {x,,0<t<1}, G[x] is a func-
tional bounded and almost everywhere continuous in the Hilbert topo-
logy on the sample functions of {x,0=<t<1}, and where E%{ } denotes
expectation on the Gaussian process {y,0=<t=1} having mean function
zero and covariance function ¢(s,t). Using (3.3) instead of (2.1) it is
clear that one can prove a theorem like Theorem 1, but for processes
whose sample functions satisfy a Holder condition of any positive
order «. Unfortunately we do not know whether a g(s,t) having the
requisite properties exists for « < 4. Using inversion measures other than
Gaussian it is possible that one could obtain an inversion formula like
(2.1) or (3.3) which applies to characteristic functionals of processes
whose sample functions are not even continuous. To do this one appar-
ently needs to prove the corresponding generalization of (2.7) which we
have not been able to do.
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It should be pointed out that condition (1.1) in special cases may be
difficult to demonstrate. Indeed, in the classical invariance principle [2],
[4] as well as in the Kolmogorov—Smirnov theorems of mathematical
statistics [3], to demonstrate (1.1) requires the same sort of technique
which was used in those cases while demonstrating (1.4).
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