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PARTIALLY HYPOELLIPTIC DIFFERENTIAL
EQUATIONS OF FINITE TYPE

JORAN FRIBERG

Introduction.

Consider the partial differential equation
(1) P(Dyu =0,

where P(D) is a linear partial differential operator with constant coeffi-
cients, operating on functions u=wu(x) with € R*. The characteristic
polynomial belonging to P(D) can be defined by

P(&) = —ix, &) P(D) PRCR S ,
where £ is a vector in the dual space to R*. It is convenient to introduce
the set
V(P) = {¢ | P(£)=0}

of all complex zeroes of the characteristic polynomial. As is well known
the shape of the set V(P) can be used to characterize important classes
of equations (1) with regard to properties shared by all their solutions.
Thus, let A be a class of functions, closed for differentiation. Then it
may be possible to prove that 4 contains all solutions of (1) if and only
if the set V(P) satisfies a certain algebraic condition. Those operators
P(D) that only have solutions in the class A will in their turn constitute
a new class, which we denote by A.

When A4 is the class & of all regular (i.e. indefinitely differentiable)
functions, then the operators in A are called hypoelliptic operators.
An important result by Hormander [3] is that P(D) is hypoelliptic if
and only if

(2) Im¢ - when {—>oc and (e V(P).

When A is the class of all analytic functions of the real variable x € R,
then the operators in 4 are called elliptic operators.

Petrowsky [8] has proved that P(D) is elliptic if and only if the principal
part of P(£) has no real zeroes outside the origin. It is easy to see (Hor-
mander [5]) that this condition is equivalent to
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(3) [Rel| = C(1+[Im{]) forall e V(P).

Evidently (3) implies (2) so that every elliptic operator is also hypo-
elliptic. (Of course all solutions of (1) are regular if they are already
known to be analytic.)

The reverse statement is not true, but it may be replaced by a weaker
result. This is based on the observation that the condition (2) for hypo-
ellipticity can be used to prove the following inequality, of the same type
as (3):

(4) [Rel| = C(1+[Imif)*  forall {e V(P),

where a is a constant =1, depending on P. Using (4) to make explicit
estimates of a fundamental solution of (1), it is then possible to show
(Hormander [3]) that every solution of (1) belongs to the “hypoanalytic”
class 4,, defined as follows. A, is the class of all analytic functions of
the real variable x € R*. A, consists of all functions u(x) such that for
every compact set K < B"

(5) |Dbu(z)] < C¥+1(kl)e, k=0,1,..., 2eK,

where |D¥u|? stands for the sum of the squares of all derivatives of u of
order k£ and where C is a constant depending on K and u. Since for a
given P(D) satisfying (4) the inequality (5) is best possible, it follows that
A, consists of all operators P(D) satisfying (4). The heat conduction
operator is a classical example of an operator in A,.

Hormander has also obtained a more precise result. Let y be a given
vector in R», If P(D), in addition to (4), satisfies the relation

(6) {y, Reld| < C(1+ [Im(|)P@® for all e V(P),

for some constant b(y) with 1 <b(y)=<a, then (5) can be complemented
by the better estimate

(7) <y, DYru(@)| < C*+ (K1), =0,1,..., veK.

The estimate is again in a sense the best possible.

Using a method of Schwartz one can extend the methods of Hor-
mander to cover the case of an inhomogeneous equation P(D)u=f, if f
is at least as regular as one wants u to be (Schwartz [9]).

A generalization of the ideas above has recently been given by Garding
and Malgrange [1] [2]. Suppose that there is given a decomposition
Rr=Rr-mx Rm of R™ so that the vectors in R™ can be written as
r=(x',2") with ' € R»—™, 2" € R™. A distribution v in 2, .. is then
called regular in 2/, if it is a regular function in z’ with values in 2.,
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ie. if (v(’,2"")p(x")da" is a function in &, for every ¢ in 9,,.. If v is
regular in 2’ and if furthermore Sv(x’,x")<p(x")dx" is an analytic func-
tion of 2’ for every ¢ € &, then v is called analytic in x’. A necessary
and sufficient condition for P(D) to have all solutions of P(D)u=0
analytic in 2’ is that (with obvious notations)

(8) [Rel’| = C(1+[Im¢)), ¢ =(L,{")eV(P).

P(D) is then called partially elliptic in «'.

Similarly, with 4 equal to the class of functions regular in 2/, 4 is
the class of all operators that are partially hypoelliptic in ’. These are
characterized by the algebraic condition

9) |Rel’| = C(1+|Im¢|+|Rel””|)2, for some a and all { e V(P).

The results of Garding and Malgrange are obtained without the aid of
fundamental solutions. Instead are used simple estimates of suitably
chosen norms. Analogous norms have been used for similar purposes
by e.g. Morrey and Nirenberg [7] and Hérmander [6].

We are now going to show how the methods of Garding and Malgrange
can be used to get results concerning estimates of the high order deriva-
tives of solutions of partially hypoelliptic equations. An advantage of
the method is that without modifications it yields results also in the
case of nonhomogeneous equations. The idea to make this investigation
was given to me by L. Garding, who also put the manuscript of the paper
[2] at my disposal.

1. Polynomials of finite type.

The operators that we are going to study are those with characteristic
polynomials “of finite type in &', i.e. satisfying

(10) |Rel’| £ C(1+|Im¢|)®, forsome b = 1 and all (e V(P).

We note that (10) implies that P(D) is partially hypoelliptic in #’. The
reverse is not true. Indeed, the wave operator is an example of an
operator, partially hypoelliptic in 1, but with a characteristic poly-
nomial that is not of finite type in the corresponding direction. In
section 5 of this paper we will show, through examples, that there are
polynomials that are not hypoelliptic but of finite type in some direction.

A particular case of (10) is when the z'-space is one-dimensional so
that we get the inequality

(6) i<y, Rel)| < C(1+Im¢)ew),  forall (e V(P).
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The best possible choice of b(y) is always a rational number. This can
be shown, arguing as in the proof of lemma 3.9 in Hérmander [3], (See
also the proof of lemma 1 in [4].) From the simple fact that

b(t,y' +1t,9%) < max(b(y'),b(y?))

for all real numbers #, and ¢,, it is easy to deduce that there is an increas-
ing sequence of subspaces of R™ corresponding to an increasing sequence
of exponents in (10). This makes it possible to reduce the general case
(10) to the case (6) of a polynomial of finite type b(y) in the direction y.

Let now P(&)=P(&,,...,&,) be a given polynomial. The derivatives
of P(&¢) will then be denoted by

P (&) = (0]0&)*P(&) = (0[0&y)™ ... (9]9&,)*P(&) .
If we put || =3 «; and if u is the degree of P(£) then the degree of P,(&)
is obviously p—|«|, if x| = u.
THeEOREM 1. P(£) is a polynomial (6) of finite type b(y) =1 in the direc-
tion y, if and only if

(11) S IPE)? Ky, P = O X |P,(6)1?,  forall £eR,; g=b(y)™.
lsl=0

la]>0

Proor. Suppose first that P(&) is of finite type b(y) in the direction y.
We then start with an estimate of P(&)~1{x,0d/0&)* P(§), where & and 7%
are fixed real vectors. If we introduce a new polynomial in one variable

Q) = P(§+1n)

then the expression to estimate is

(12) P(&)7* (n,0[06)k P(&) = Q(0)* Q¥X(0) .
Put
u u
Jj=0 @=1
Then .
QO = q,IT¢
and
QW0) = kla, = kla,e, 4(t, ...,1t,),
where e, .(t;, .. .,t,) is the sum of all products of u—k of the quantities

t;. Thus the number of terms in e, ; is

(&)
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The expression in (12) can then be written as

Q(0)-1 Q(k)(()) = k! ek(tl—l, cey t,“'l)

which gives the obvious estimate
(13) Q00 @9(0)] = k! (%) (min )+

But P(£—tn)=Q(—1t,)=0 so that {,H=&—¢m is a vector in V(P). So,
if |y|=1, then

(14) min|t;] = min|{,—§| = inf|-§],

the infimum taken over all ¢ € V(P).

We now recall the assumption that P(&) is of type b(y) in the direction
y, and that ¢=0b(y)~! is a number with 0<¢=<1. It is no restriction to
agsume that |y|=1. Then we have, since £ as well as y are supposed to
be real,

(15) [¢—¢* = Im(P+[Rel—&? 2 [Im{]*+ <y, Rel)—(y, &I

If now
Ky, Rel)—<(y,&)| 2 §<y,&)| and [y,&)| =z 1
th
o HI—EP 2 Ky.0) 2 Ky &)X
and

IE—¢l = $[<y,6)I7.
1<y, Rel)— (9, )| < 3Ky, &)

But if instead

then
(16) <y, Rel)| > 3 Ky, &I .
On the other hand we have assumed that
Ky, Rel)| = C(1+[Iml|)®  for (e V(P)
which gives the estimate of [Im(]|
Mm¢] 2 CyKy, Rel)|?—1.
This inequality together with (15) and (16) now gives
I£—& 2 Im¢] 2 O, Ky, Rel)I?—1 > OKy, 5|

provided that [{y,&)| > A for a suitable constant A, that can be assumed
to be >1. (We let C denote a constant that is not always the same
during the course of the proof, but that does not depend in §.) We have
now proved that

(17)  |t—& > CKy,&)e  when (e V(P) and [(y,£)>4 .
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Comparing (12), (13), (14) and (17) we can finally conclude that
(18)  |P(&)~n, 0[5 P(§)| = CKy,&)7*e,  when [y,&)|>4 .

Since trivially

[Kn, 0[08)* P(§)| Ky, )|k = CKn,0[06)*P(£)l,  when [(y,6)| <4

we see that (18) is equivalent to
(19) |(n,0/08)* P(&)[? [<y, &) < C'Z [P, (&
l«]=0

The last step from (19) to (11) is very simple. We observe that # is an
arbitrarily given real vector. Suppose that we choose N different such
vectors 7). Then we have

(20) <n(i)’x>k —_" lzkck,an(i)a xzx’ v = 1: .. -,N .

If N is big enough and if the % are suitably chosen it is possible to solve
the system (20) for «*. Thus we get every x* with |x|=k expressed as a
finite sum of terms of the type {ny,z)*. Replacing = by 0/0¢ then gives
(9/9&)* with |x| =k as a linear combination of (), 9/0&)* and consequently

N
PN S O3 Ko, 8/2)- P

A simple application of Cauchy’s inequality together with (19) now
finishes the first half of the proof of theorem 1.

Let us now show that inversely every polynomial for which (11) is
valid is of type at most b(y)=1/g in the direction y. The proof is an
immediate extension of the corresponding proof by Garding and Mal-
grange in the partially elliptic case g=1. The inequality (11) can be
written in the form

2 PP (Ky, &P C) = CIPE)?,  E€R,,

|cx>

which shows that (11) is equivalent to
(21) P& Ky, &)lHle = CIP(E), € R, [(y,6)]>4, all [x[>0.

Since some P,(&), |x| =pu, must be a nonvanishing constant, we get from
(21) the special case

(22) [P()| 2z BI(y,&)lre,  for §€R,, Ky,&)|>4.

Consider now the set W, of complex vectors { =&+ i satisfying

Inl = tiKy, &I,
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where ¢ is a positive number. Then

[P = |P(§+in)| = IP(E)+E ¢ P,(&) (in)*]

lo|>0

z |P( I—OEIP ENml®

la]>0

2 [P(§)|=C 3 t1|P(&)] Ky, &I

|o]>0

2 1P@) (1-C3 t),
|a}>0
if { e W, and if (21) is valid. But we know from (22) that |P(£)| is posi-
tive if |{y,&)|>A. With ¢ sufficiently small we are therefore able to

conclude that .
PC)+0 if eW, and |{y,8)|>4,

Ky, > C(L+n[)a.

ie. if

But this is just another way of saying that P(£) is of type =<1/q in the
direction y. That ends the proof of theorem 1.

Lemma 1. Suppose that P(&) is a polynomial of type b(y)=r[s=1 in
the direction y, r and s being positive integers without common factors and
r=s. Then

(23) IIZOIU-”LX(D)’Q/,D>‘“"*v(96)ll2 = 0' IZZOIIPa(D)'v(%)H2

for all v(x) € @, where the norm is the usual L? norm.

Proor. When b=1 we prove the lemma immediately, multiplying
each side of the inequality (11) by the square of the Fourier transform
9(&) of v(x) and using Parseval’s formula. When b is not an integer this
method does not work without modification. But from

|Po(&)12 <y, E)[Pler = C' 3 |P(&)

ja]=0

|P (&) <y, &)[2ls < Cm {3 |P(&)12)

and estimating the second member by Holder’s inequality we get with
a new constant C

[Po(E)I* [y, E)Ile < O 3 |P(8)* .

follows

We can then multiply by |»(£)|2 and prove (23) as in the simple case b=1
by Parseval’s formula.
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2. The norm |u, V|,
Let V be any given set in B*. We then define the norm |, V|2 by

llw, V|2 = f |u(z)[2de .
1 4

When V coincides with R™ we simply write |u|2. Fundamental for the
following is the introduction of a new norm |u, V|,, defined by

lu, V|2 = X |P,(D)...P,(D){y,D)Yu, V| p2F=2%l4l 0 < h < 1.
The sum is to be taken over all index sets o;= (!, ... ™) with
0 <ol < ... o S
and over all integers k with
0 £ k < smin|x;| = s|xy] .
(b=b(y)=r[s=1 and u is the degree of P(&).) We shall also use the sim-
pler norm V| = u, V.
Observe that the exponent of A% in |u, V|, is <0 because
bk—3 |oyl < bsloy| =3 logl = rlog| =3 logl = 3 (log] = [oxgl) -
On the other hand, the smallest value of the exponent is —ru. This

value is assumed when k=0 and |x;|=...=|a,|=u. Hence, in view of
the assumption that 0<h =<1 we get
(24) Iu’ V‘ é iu’ V[h é [u> V[h—r,u .

We will now try to estimate |u, V| by norms that do not depend on
P(&). We first notice that there is some « with |x|=py and P, (&)=c=+0.
This implies that |u, V| contains terms of the type |jc”(y,D)*u, V|? for
all k¥ with 0<k<su. Therefore

C1 2 Ky, DYru, VI = [u, V]2

k<su
On the other hand the total degree of the polynomial
P(8) ... P (E)y,E)F, O=|oy|=...=|aSp, k<s|oy]
is smaller than
max {ru—3 |o;| +smin o} = ru—(r—s).
Thus leil>0
(25) Oy 3 Ky, DYeu, VIP < Ju, VP = C; 3 D, VIP.

k<su o] <ru—(r—s)

REMARK. ru— (r—s)>su except in the trivial cases uy=1orr=s=g=1.
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3. The fundamental inequality.

LeMMa 2. Let Q,(D), i=1,...,p be arbitrarily given linear differential
operators with constant coefficients. Then there is a constant C so that

P
1Q:(D) . .. @u(DYl* < C X |Qu(D)ro|?, forall ved.
i=1
Proor. Parseval’s lemma shows that the inequality is equivalent to

QuE). .- Q& = O 3 Qe

But this is exactly the inequality for the geometric and arithmetic

means of |Q,(&)]?7,...,|@,(&)*.
We are now able to establish the fundamental inequality.

THEOREM 2. Suppose that P(§) is a polynomial of type b(y)=1[g=r[s
in the direction y. Let K, L be two relatively compact domains in R™ with
K<L and suppose that the minimum distance between the boundaries of
Kand L ish, 0<h=1. Then there is a constant C such that

(26) W|(y,Ddu, K|, < Clu,Ll+Che- S |D*P(D)u,L|, all ueé&.

|| Srp—p

Proor. Let ¢ be a regular function with support in L (p € 2(L)) and
with ¢(x)=1 on K, such that

sup |D*g(x)| < ¢ h1*  forall «.

A function of this type can easily be constructed by means of regulariza-
tion. If now u is a function in & and if v=¢gu then

v = gpueD(L) and v =uon K.

Further, according to the formula of Leibniz we have for every linear
differential operator Q(D)

(27) QD) v(@)? = | X a, Dp(x) @Q.(D)u(x)[*
{2 la.] c.h QD) u(@)]}?
C 3 1Q.(D)u(x)|2h-21e .
The quantity that we are going to estimate is
B2 |(y, Dyu, K2 = 3 |Poy(D) . . . P, (D){y, Dyk+tu,K|[? pP*+D-2Zledl
with

IIA

IA

0 £k <sminjx = sjoy|, all |ag>0.

We can split the sum above in two parts so that in the first part always
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k+1<s|x,| while in the second part £+ 1=s|«,|. In the first sum there
is a finite number of terms, each of which is also contained in |u, K|,2.
This part is therefore majorated by C|u, K|;2 and a fortiori by C|u, L|,2.
It remains to estimate the terms where k+1=s|x,|. Each such term
is treated as follows.

|Poy(D) . . . Py (D) <y, Dy \lu, K|[* 2 leai=2 2l

= [P(D) .. . P, D)y, DY u, K| 2= lead

IP(D) . .. P, D)y, Dy ot y|[* f-2=l-load
C z ”Pai(p)r <y’D>8laxlv”2 J2r (el

ItA

IIA

The first inequality is based on the fact that v=u on K, while the
second estimate is an application of lemma 2 with

QD) = P“(D)h_(|4"i|_I"‘1[)-
The last sum is again composed of terms of two different kinds. One
type is . A
(1P (D) <y, D)* " v|l%,
the other is
D) {y,Dy*o|? h=> =0 with |« > k.

Suppose we have a term of the first type. Then we can use lemma 1
and the formula (27) and so

IPDY Cy, Dy ol* < C 3 ||P,(D) ol

laz0
=C z E ”Pwkﬁl(D) zx+ﬂ (D)u L“2 h2Z1Bil
|8i|=20 |#|20

Notice in particular that the norms are taken with respect to L, since L
is the support of v=g¢u. Recalling that 0<h2 =<1 we now see that all
terms in the sum with |x+pg,/>0, i=1,...,r, can be majorated by
Clu,L|,2. The remaining terms, with |« + f;| =0 for some ¢, are certainly
smaller than

Ch 2D 3 (D*P(D)u,L|?.
o] spr-1)
Finally, consider terms of the form
]|Pa(D)T(y,D>8ka2 h—27'(lal~lc)’ with |x[>s20.
Using (27) again we get the majorating sum
C 3 IPapy(D) . . . Py (D) <y, DY u, LI p-2EIPiI2CkD2rel0)

where 0<j<sk. The exponent of 4% can be split into
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(b =2 o+ Byl) + (b= 1)(sk—j),

and since b= 1 and sk>j it cannot be smaller than bj— 3 |x+;|. More-
over, j = sk and s < |«| implies

J < $la] < smin|x+p5, .
This proves that the majorating sum above is itself majorated by
Clu, K|,
Summing up all the different estimates we finally get
Wy, Dyu, K2 < OW~*¢D 5 |\D*P(D)u, L.
lol=u@-D

We have now only to use the inequality «%+%%=< (|z|+ |y|)? & number of
times to get the desired estimate of theorem 2.

4. Differential equations corresponding to polynomials of finite type.

We will now apply theorem 2 to the solutions of the equation P(D)u =0,
when P(£) is assumed to be of finite type.

Lemma 3. Let P(&) be a polynomial of type b=r/s in the direction y,
and let p be the degree of P(&). Suppose that 2 is an open domain tn R™.
Then there is a constant C such that the inequality

2 Ky, DY *u, K| = Ci(gl)yrd=sv=rw > |\D*u,Lll, j=0,1,..

M)
k<su |a| <rp—(r—s)

18 valid for every solution u € &(2) of P(D)u=0 and every pair of relatively
compact domains K and L with K<LcL<Q. The minimum distance d
between the boundaries of K and L is supposed to satisfy 0 <d < 1.

The constant C depends on P(&) but not on K or L.

Proor. Now suppose that K and L are given with d(X,L)=d,
0<d=1. Then there exists an increasing sequence of relatively compact
domains K, K, . . .,K; with

K=K, cK,c..cK,=L and dK;,Ki,)=dKL)j=h.

Thus every pair K;, K, , satisfies the conditions imposed on K and L
in theorem 2. If now u € £(f2) is a solution of the equation P(D)u=0
then also {y,D)* u e &(Q) and

P(D){y,D¥u = (y,DY¥P(Dyu =0, i=0,1,...

Successive applications of theorem 2 to K;, K,., and (y,D)-tu,
1=0,1,..., show that
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W° [y, DY u, Kolp < BIDC |y, DYi—tu, Kyl < ...
and finally ) ) .
kP Ky, DY u, Kolp, < CFlu, Ky, -
We can now make use of (24) to eliminate % from the norms;
Ky,DYu,K| < Cih-ih-e|y, L],

where h still depends on j, A=d/j. Thus we have proved the following
inequality, which now is valid for j=1,2,...

<y, DY u, K| = Cijittrnd=iv=ru|y, L] .
J

But the Taylor expansion e/=3j*/k!>ji[j! gives the estimate j/<eij!,
Ji<(e?)(4!)°, and there is a constant B so that j*< B/ for j=1,2,...
Consequently we have with a new constant C

Ky,DYu,K| £ Ci(j!)pd—-ru|u,L|, j=0,1,...

(The inequality is trivially true for j=0.)
The rest of the proof of the lemma is a direct application of (25).

CoroLLARY. % belongs to the hypoanalytic class 4,,, defined by (7),
in Q. Indeed, we can apply lemma 3 to Dfu, |f] <[in]+ 1, and after that
use Sobolev’s lemma to ge a majoration of |{y, D) u(z)| on any compact,
interior to K.

We now turn to the corresponding problem for the inhomogeneous
equation.

Lemma 4. If in lemma 3 the equation P(D)u=0 is replaced by P(D)u=f
wn Q, where f and its derivatives of order <N (N =ru—u+[3n]+1) belong

to A, then .
o ued,, in Q;  cly) = max(a(y),by)) .

Proor. The proof proceeds in strict analogy to the proof of lemma 3.
But since P(D)w does not vanish any longer we get some extra terms
when we apply theorem 2 to K;, K;,, and (y,D)~*u. Thus

E=TD0 CI%=1 [(y, DYf+tu, Kyl
S WE-DD QI ((y, DYeu, Ky il + WED0CI-khore 3 [y, DYeDf, Kyl

ol Srp—p
for £=0,1,...,5—1. Summation of these inequalities gives
(28) Ky,DYu,K|s,
j—1
< Cih-9|u, L), + ho-rs 3 pe-D0Ci-k > |{y,DYeD*f,K; 4| ,
k=0

lalsro—u
Math. Scand.9 — 3



34 JORAN FRIBERG

with A=d[j <1. But we have assumed that
D*feAd,, in Q, |« =ru—up.

That means e.g.
“(y,D)kD"‘f,Kj_k” < C, sup |<?/,D>kDaf(x)l < 0,0k (k)W ,
xeL
la|Sru—p

Then the sum in (28) is certainly smaller than
j=1
C 0 hp=m1 > pe-Db i~k k (k1)e .
k=0

For k40 is k! <k*k <j*, since only terms with k<j appear in the sum.
For k=0 the inequality k!<j* is trivial. Replacing » by d/j and intro-
ducing a new constant C again we then get the majorant

)—1 j—1
0j+1’:zoj(j k)b jka < (i +1:z j(j ke jkc = Qi+l ,7 jjc < 031‘ +1( ,7 e,
= =0

with ¢=max(a,b). As the first term in the second member of (28) is

already known to be smaller than C,/(j!)? we have now proved that
I<y, DY, K| = [y, DY w, K], £ CJF(51)°+C+1(51),
that s, Gy, Dy, K| 5 CHm(jty.

The rest of the proof proceeds as the verifications of lemma 3 and its
corollary.

We can also extend the results of lemma 3 in another direction (cf.
section 1), namely to polynomials of finite type in &', when &=(§',£"),
x=(z',x'") correspond to a decomposition of R™ in R"=R"-™x R™
Then D* will denote derivatives in a’ only.

TuroREM 3. Suppose that P(£) is a polynomial of degree pu and of type
b'=r[s in &. Let 2 be an open domain in R™. Then

(29) ¥ SID"PuK|| £ 0/GY) a7 ¥ DL,  j=0,1,...

lo'|<sn 18]=j |&] <ru—(r—s)

for every solution u € &(2) of P(D)u=0 in 2 and every pair of relatively
compact domains K,L with KcL<L<Q and d=d(K,L)<1.

Proor. We recall that P(£) is of type b’ in &' if
(10) |Rel’| < C(1+Im¢|)Y, forall e V(P).
But then, a fortiori,
Ky, Re)| = C(1+|Im¢|)Y, forall (e V(P),
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and for any real vector y=(y',y’’) with y''=0. Accordingly, P(£) is of
type b’ in the direction y for every such vector y. By the same technique
as in the end of the proof of theorem 1, we can now show that there is
a set of vectors y,, i=1,...,N, with y"’=0 and with the following
property; every differentiation operator Df with |8’|=p<su can be
expressed as a linear combination

N
zlci, ' <y(i)> D)? .

Since there is only a finite number of indices |f’| with |8'| < su, we real-
ize that N

> > lcs, g2

=1 |f'|Ssu
is bounded. Consequently, from
(23) S IP (D) y,DYelsv|2 < C Y ||P (D) v|2, for vePD,
/>0 |aj=0
we can deduce that
S ||PD)yDfv|E = C 3 ||P(D)vl, forveD.
la]>0 18| =sla| Ja]z0
According to this new form of (23) we now also change the definition of
the norm |u, V|,:
lu, V|2 = 3 |P, (D) ...P, (D)D" u, V| pPFI-2=1xl
where the sum is to be taken over all «; and ' with
0 <oyl = oo Sl 2 p 1B < slagf .

Then we can proceed as before to get the proof of theorem 3. For in-
stance, the fundamental inequality (26) now takes the form

Y |DFu,K|, < Clu,Ljp+... .
181=1
ExaMpLE. An elliptic operator has a characteristic polynomial of
type 1 in every direction. In this case we get a much simpler form of the
inequality of therem 3, because su=ru—(r—s)=u. The inequality (29)
can then be written as
MZJHD”%KHI s Ci(jhyd=7=#||lw, L] ,
=j

where e, Vil = 3 1D%u, V.

la|<p

REmARK 1. Of course it is also possible to prove corresponding gener-
alizations of lemma 4 and of the corollary of lemma 3.
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Remark 2. If P(§) is of different type in different directions, then it
is possible to get estimates of the form

it tip (g1 L (Jpl)r or  ABIFp I(5iby+ ... +5,bp)

for the mixed derivatives of the solutions of P(D)u=0. This is made
simply by repeated application of lemma 3.

We have now proved that for every operator with a characteristic
polynomial of type b’ in & all the regular solutions of P(D)u=0 are in
the hypoanalytic class A4, consisting of all regular functions v such
that one has for every compact K < R"

(30) |DFu(a’,2")| < CRA(KY, k=01,..., x=(@2")ek.

This result can immediately be generalized to all distribution solutions
of P(D)u=0. But this requires an extension of the definition of A,
In analogy with the definitions made by Garding [2] we say that a
distribution v € Z,, ,.(Q) belongs to Ay, if and only if, for all V x W <2,

vw(xl) =fv(xl,xll) q(xll) dxll

belongs to the class 4, when '€V and ¢ € Z(W). We can then
state our main theorem:

TureorEM 4. All distribution solutions of P(D)u=0 in 2 belong to the
class Ay iof and only if P() is partially hypoelliptic of type b’ in &'

In other words, the class ffb,(m,) consists exactly of all polynomials of
type b’ in &'.

Proor. We begin by proving that if P(&) is of type b’ in &', then every
distribution v with P(D)v=0 is in 4, But, as P(§) is of finite type
in &', it is also partially hypoelliptic in ' and so the distribution v must
be regular in ’. Then one can show (see [2]) that the function

wq)(wl,xll) =fv(xl’xll +yll) ¢(yll) dyll

is regular for 2’ contained in a small neighbourhood of the origin. The
function w,(x’,2"") also satisfies the equation P(D)w,=0, so that theo-
rem 3 gives estimates of the 2’-derivatives of w, But, since

w,(@,0) = v @) = f o2 p(z'") da'’

this shows that v, € 4, that is, v is a distribution in A4,
The other half of the proof of theorem 4 is very close to the proof of
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Garding and Malgrange for the partially elliptic case and will therefore
be given without details. Suppose that all distribution solutions of
P(D)u=0 belong to A, Then it follows from Baire’s theorem that
there is a constant ¢ so that

(31) | Iz lDa’u‘P(O)I § Cj+1jjb,|ulll‘?|2’ .7 = O: 1:2, IR
1<)

for every solution #, regular in a fixed compact C'x (" and every
e 2D(C"). |u|;and |p|, stand for suitable norms of » and ¢. In particular,
if w=e' @+ then according to (31)

[PE )L S CHAGY (L4 || 427t MmEmED g

where ¢(¢"') is the Fourier transform of ¢ and k some constant. Choosing
¢ carefully we obtain with new constants

T 01’+1jjb’(1+]C'H_|&-”I)kek(lImC'HIImc”l)
or
(32) 1’| = Cj¥edd, A = k{log(1+ || +]2"])+ Im '+ Im (|},
j=012,....

The right band side is near its minimum as a function of j if we chose j
as an integer approximately equal to 4. Thus we can replace (32) by
the inequality

'l = C{log(L+['[+12"]) + Im{'| + [ImC"[}¥,
which is equivalent to

[ReZ/|/(1+ Im |+ Im¢”)"" < Clog(1+|Rel”|).

So, if m(r) is the maximum of the left hand side of the inequality above

when |Re(”’| <r then
m(r) £ Clog(l+r).

Since m(r) is an algebraic function of » for large r (Seidenberg [10]) this
shows that m(r) is bounded. Thus P(&) is of type b" in &',

5. Some remarks concerning polynomials of finite type.

In this section we are going to collect some rather loosely connected
results about polynomials of finite type.

We have already mentioned that for any given polynomial and for
any given vector y the smallest possible number b(y) 2 1 in the inequality

Ky, Rel)| = C(1+[Im{])P®, all {e V(P),



38 JORAN FRIBERG

is a rational number <co. We will now show by an example that, in-
versely, for every rational number > 1 there is a polynomial of type b
in some direction.

PRrOPOSITION. Let b=r[s be a given rational number =1 and let a be a
nonreal number. Then the polynomial

P(&) = &7 —aky?
satisfies the inequalities
[Rely| = C(1+[Im&y|+ [ImEy|*7) = C (1+|Im()),
[Rely| = O(1+[Im&|"7o+[Imlyl) = Cy(1+[Im])°,

for all £ € V(P). Consequently, P(£) is of type 1 in the direction (1,0) and
of type b in all other directions.

=
=

The proof is easy and will not be supplied here.

REMaARK. The characteristic polynomial &,2+4£, of the heat conduction
operator is of this kind.

We now turn to the following problem: If P(£) is a polynomial of
finite type in some direction, are there some classes of polynomials @
and R for which P @ respectively P+ R are of the same type as P? This
question will be partially answered by the following lemmas.

LemMA 5. Suppose that P,(&) and Py(£) are of type b, and b, respectively
in the direction y. Then the product P,(§)P,(§) is of type max(by,b,) in
the same direction.

Proor. The lemma can be deduced from theorem 1 but also and
simpler as follows. Let u be an arbitrary solution of the equation
P,(D)Py(D)u=0. Then we put v=Py(D)u and get P,(D)v=0 which
shows that v € 4, (). Since Py(D)w is in 4, () we then get from lemma 4
that u € 4,¢) with c¢(y) =max (b,b,).

The idea used above gives us also the opportunity to construct examples
of polynomials that are of finite type in some directions but not in all,
i.e. that are not hypoelliptic. Nearly trivial is the case when

P(E’,gl') - Q(SI) H(&I’EII) R

where Q(&’) is of finite type in & and H(&) is hypoelliptic. Then we can
show as above that P is of finite type in &'. That P(£) is not hypoelliptic
follows from the observation that every function of x only, satisfies the
equation P(D)u=0 without even having derivatives of all orders. Less
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trivial examples can be constructed by adding suitable terms of lower
order to polynomials of the form P=@QH. A polynomial of this kind is
P(E)=&,(62+ &%)+ 1. Tt is easy to verify directly that this polynomial
is of type 1 in &; but not of finite type in &,.

Let P and @ be two polynomials. As usual we call ¢ weaker than P
if and only if

(33) 2 1@, = C 3 IPL&)I,

where the sums are extended over all derivatives of P and . If P also
is weaker than @ then we say that that P and @ are equally strong.

Lemma 6. If P and Q are equally strong and if P is of type b in the
direction y, then Q is too.

CoroLrArY. If P is of finite type b(y), then one can add to P any
weaker polynomial and get a new polynomial of the same type b(y).

Proor or LEMMA 6. For every integer m there are numbers a; and real
vectors 7;, 1=1,2,...,N(m), so that the identity

(34) 1 R (§) = Z a; B(& +1n;)

is valid for every polynomial of degree <m. This is a consequence of
Taylor’s theorem for polynomials. If now P and ¢ have degree =m,
we obtain from (34), (33) and Taylor’s theorem again

N
B1Q,(&)| = € Z Q¢+, = C % ; |Pg(&+tm;)| = Og_‘ 1Py -

Let t=|(y,&)|? with ¢=>b(y)~!. Then, using the assumptions about P,
we see that

Iy, &H)[111Q,(8)| = 02 <y, E)*12| P (&)]
C’IP C'ZIQ )N, for Ky,5l 21

A

IA

which shows that @ is of type b in the direction y.

We will end this section with a remark about the general form of a
polynomial of finite type. Suppose that P(&)=P(&',&") is of type
b’=g~1in &. Then we first note that P is hypoelliptic in & and so, by
the results of Garding and Malgrange [2], of the form

M
P(E,E") = Py(&') + > Py(&) (",
1
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where P, is hypoelliptic and P; are strictly weaker than P, that is, to
every P; there is a positive number k; so that
(35) Lim | Py(&")]1€'19](|Po(&)] +1) = a; + 0

(Since P, is hypoelliptic this implies that P; is weaker than P,.) We have
supposed that P is of type b'=g~' in & which means that for every
derivative P,

(36) |P(&)I1E4 < CIPE)], if €] > 4.

But if o= («’,6"")=(0,$;), then
P(&,0) = c;Py¢&'), ¢ +0,
which together with (36) gives
|PAEIEN19P < O|PE,0), [&'] > 4.
Then also

M
S IPAENE1WH < OP@E,0) < C|Py&)| + C 3 IPyE),  |1&] > 4,
J=1

and finally for some constant B

3 P& E197 < O1Py(&)), €] > B.
On the other hand we observe that since P(£',&"') is of type b’ in &' then
of course also PE,0) = Po&) + 3 b;P,()

is of type b’. But P; are assumed to be (strictly) weaker than P, and
80, by lemma (6), P (5 ) is of the same type as P(£’,0). Hence Py(&') is
hypoelliptic of type b'.

We have then proved

Lemma 7. A necessary condition for P(&',£"") to be partially hypoelliptic
of type b' in &' is that

N
P(,8") = Py(&') + 2 P& E"YT,
j=1

where Py(&') is hypoelliptic of type b', and where Py&') are strictly weaker
than Py(&'). Further, the numbers |B;| are restricted by the condition

where k; is given by 16| = ks,
B |Py(&")| €' ](|Po(&)]+1) = a; + 0.

Of course all k;<pu= degree of Py so that we get the general restriction
IB;l = b’ .
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Note that when b'=1, i.e. when P is partially elliptic, we get the
necessary condition that

(37) P(&,E") = Py(&) + 2 Py(&)Q4(¢")

with Py(&’) elliptic, degP;<degP, and degP;+deg@;=<degP, This
shows that the condition in lemma 7 is not sufficient in order that P
be of finite type. The polynomials satisfying (37) constitute indeed a
broader class, the so called conditionally elliptic polynomials. These
were introduced by Garding and Malgrange in [2].

In the special case when £’ =&, the lemma tells us that

P(e) = A" + 3 &9QE),
J=1

where @; are polynomials of degree b,j at most. We can use this result
to get an estimate of b, when P is given. If we denote the degree of @;
by d; we know that . .
d; £ b5, Jj=12,...,u,
and thus by = maxdyfj = d.
j*0

That equality cannot be valid in general is clear from examples, e.g.
P(§) = (5+ &)1 +i(5—&),

where b; =2 but d;=1. Of course the same polynomial can be written,
after a change of coordinates, as 7,2+ ¢n, with b;=d;=2. Then instead
by=1butd,=1%.

ADDED IN THE PROOF. We know that every partially hypoelliptic
polynomial satisfies the condition

9) [Rel’| £ C(1+|Im¢| +|Rel”|)®
for some b and all e V(P). It can be proved that P(&) satisfies (9) if
and only if ) .
P(¢) = Py() + 3 P,() &,
> IPRENE P < O(IPy(E)] +1) -

latv|20

with

(Note that this is a strengthening of lemma 7, since every polynomial
of type b in &' satisfies (9).) A polynomial P(&) of this kind may well be
called ‘“conditionally hypoelliptic of type b in &.” Indeed, e.g. every
solution u € & of the equation P(D)u =0 belongs to the class 4, provided
only that » and a number of its derivatives belongs to A4, Details
will probably follow in another paper.
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