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CIRCUMSPHERES AND INNER PRODUCTS

VICTOR KLEE!

In the present note we show that among normed linear spaces of di-
mension = 3, the inner-product spaces are characterized by certain con-
ditions involving circumspheres or circumradii of sets. Most of the
reasoning is finite-dimensional, and the results are apparently new even
for three-dimensional spaces. Our principal theorem asserts that for a
normed linear space B, the following three conditions are equivalent: E is
an inner-product space or is two-dimensional ; if a subset Y of E lies in a
cell of radius <1, then it lies in some cell of unit radius centered at a point
of conv Y; if a subset Z of E lies in a cell of radius <1, then it is inter-
sected by every cell of unit radius centered at a point of convZ. In termi-
nology of E. A. Michael [4], the third condition asserts that the space E
is 1-paraconvex.

Consider a metric space M with distance function g¢. For p € M and
r>0, we denote by S(p,r) the cell in M having center p and radius 7,

that is,
S(p,r) = {ge M: o(p,q) < r}.

For a bounded subset X of M, the M-radius n,X is the greatest lower
bound of all numbers » such that X <S(p,r) for some pe M. An M-
center of X is a point y € M such that X <8(y,r,X); the set of all such
centers will be denoted by Cj,X. For sets in normed linear spaces, these
and related notions have been discussed by Brodskii and Milman [1],
Routledge [5], and the author [5].

For a bounded convex set X in a normed linear space E, two cases are
of special interest in the above setting, namely the cases M =X and
M =E. It is natural to wonder whether rxX =rzX, for such is the case
in Euclidean n-space. We shall prove that in three or more dimensions,
the inner-product spaces are characterized by this equality, although the
equality subsists whenever ¥ is two-dimensional. Also obtained are some
similar results involving centers of convex sets.
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1.

THEOREM. For a normed linear space E, the following four assertions are

equivalent :
(i) E is an inner-product space or is two-dimensional ;

(ii) whenever ¢>0 and X is a convex subset of the unit cell U of E,
then U contains a translate of X whose distance from the origin is <e¢;

(iii) for each bounded convex subset X of B, ryX =rpX;

(iv) for each two-dimensional plane P in E and each bounded convex
subset X of P, rpX =rgpX.

Proor. We show first that (i) implies (ii). Suppose condition (i) holds
and X is a convex subset of U. Let K denote the union of all translates
of X which lie in U. Then K is convex, and in order to establish (ii)
we wish to show that the closure of K includes the origin 6. Suppose 0
is not in the closure of K. Then by the basic separation theorem for
convex sets there exists fe E* (the conjugate space of E) such that
IIfll=1 and inf fK=a>0. Let H denote the hyperplane f-10 and let
@ =f"a,o[. We claim there exists a continuous linear projection & of £
onto H which maps the set @nU into HnU. In the two-dimensional
case, the kernel 10 of = is a line through 6 which is parallel to a line
supporting U at an endpoint of the segment HnU. Here it is trivial to
check that #(@QnU)=HnU. When E is an inner-product space, the
projection « is obtained as follows: Let E be the completion of E and x
a point of E ~ {6} which is orthogonal to H. Then under the projection
of E onto H whose kernel is the line Rz, the set @n U maps into t(HnT)
for some ¢ €]0,1[. Thus for z€ ¥ and z sufficiently close to z, the set
@nU maps into HnU under the projection of £ onto H whose kernel
is Rz. Denoting this projection by =, we see at once that nE=H and
consequently #(@nU)<=HnU.

Now the kernel of & has the form Rw for some w € f-!1. And by the
definitions of ¢ and of K, there exist a translate ¥ of X and a point ¢
of Y such that Y < K and fq < 3a/2. Each point y € ¥ admits a unique
expression in the form y =y, +y,w with y, =ny € H and a <y, € B. Then
for arbitrary y € ¥ we have

y—oaw = y;+(Yy—a)w € [y,ay] < U,

whence Y —aw<K. But f(q—aw)<a/2, contradicting the fact that
a=inffK. It follows that (i) implies (ii).

Now to prove that (ii) implies (iii) it suffices to show that rxX =1 for
each convex subset X of U. Consider an arbitrary ¢>0. Condition (ii)
implies the existence of points p,€ £ and z,€ X such that X +p,<U
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and |jp,+ x| <e. But then for each u € U we have |lu—(p +z,)||<1+¢,
and since XU —p, it follows that X <=S(x,1+¢) and consequently
rxX £1+e¢. Thus (ii) implies (iii).

It is evident that (iii) implies (iv) and remains only to prove that (iv)
implies (i).

Now let us suppose that (iv) holds and E is at least 3-dimensional. To
show that Z is an inner-product space it suffices, in view of known char-
acterizations (Jordan—-von Neumann [2], Kakutani [3]), to show that if
J is a 3-dimensional subspace of £ and P is a 2-dimensional subspace of
J, then J admits a linear projection of norm 1 onto P. Let T' be the
class of all translates of P in J ~ P, and for each ¢ € T let X;,=¢tnU. Then
rpX,;<r,;X,< 1l,and from condition (iv) it follows that »,X, < 1, whence (by
bounded compactness of ¢) there exists p, €t with X,<=S8(p,,1). (Though
p; may not be unique, that fact causes no trouble. Any definite choice of
p, is satisfactory for our purpose, so long as p, e ¢ and X,=8(p,1).) Let
7, be the projection of J onto P whose kernel is the line Rp,, so that
mX,=PnU. Let Y, be the intersection with U of the halfspace in J
which is bounded by ¢ and misses P. We claim that z,Y,< U, and justify
this as follows: Consider an arbitrary point ze€Y,~¢, and suppose
az ¢ PnU. Let v be the point of the segment [0,7z]n U which is nearest
to sz (that is, the endpoint other than 6) and let w e [v,2z]nt. Then
w € X, and hence sw € U. But it is clear also that mw € Jv,7z2[, contra-
dicting the choice of v. Thus 7, Y,<U.

Now let ¢ be a fixed point of U~ P. For all ¢ (€ T') sufficiently close
to P it is true that g€ Y,u — ¥, and hence mg € U. Thus there is in T' a
sequence ¢, converging to P for which the sequence x, ¢ converges to a
point g, € PnU. Let x be the linear projection of J onto P which takes g
onto g,. Then m, converges to 7, Since always z, Y, < U, and since

Ur,uU(-7) = ~PnU,

it follows that m(JNU)=PnU. Consequently n is of norm 1 and the
proof of Theorem 1 is complete.

It may happen that rxX =r;X even though both of the sets CxX
and C X are empty. (For example, let E be the Euclidean plane and X
an open half-disc in E; or let E be an incomplete inner-product space
and X the intersection with E of a cell centered in £ ~ E.) But clearly
XnCpX < OxX, and thus when CpX intersects X it follows that
rxX =rzX ; for compact X, the reverse implication holds. The following
two assertions are equivalent to (1i)—(1iv) above: (ii") each compact con-
vex set X< U admits a translate X' for which 0 e X' <U; (iii’) for all
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compact convex X <E, CpX intersects X. Completeness of the inner-
product space is needed to produce condition (iii’) for all bounded closed
convex X < F. In fact, the following two results are easy consequences
of Theorem 1.

2.
CoROLLARY. For a normed linear space E, the following three assertions
are equivalent:
(i) E is a complete inner-product space or is two-dimensional;
(ii) each closed convex set X < U (the unit cell) admits a translate X'
Jor which 6 e X' < U,
(iii) for each bounded closed convex X < E, CxX intersects X.

3.

CoRrOLLARY. For a normed linear space E, the following two assertions
are equivalent:

(i) Z is a complete inner-product space or is two-dimensional and strictly
convex;

(ii) for each bounded closed convex X < B, C X is a nonempty subset of X.

And of course we may replace ‘“‘bounded closed’’ by ‘“‘compact’ in (3ii)
provided ‘“‘complete’ is omitted in (3i).

Our principal result (stated in the first paragraph) rests on Theorem 1
and on the following:

4.

ProrosiTiON. Suppose J is a three-dimensional normed linear space with
unit cell U, P is a plane through the origin 0 in J, and K is the intersection
of U with one of the closed halfspaces bounded by P. Let 7 be a projection of
smallest possible norm of J onto P. Then either nK < K (that s, ||n||=1) or
0 is interior to the convex hull of nK ~ K (relative to P).

Proor. Let C=UnP. Then =K <|n||C, and the set 7K ~m( is non-
empty for each m € [0, ||n||[ and each projection = of J onto P. Suppose
0 ¢ intconv(wK ~ K), whence there is a line L through 6 such that
7K ~ K lies in one of the closed halfplanes in P bounded by L. Let w
and —w be the endpoints of the segment LNC. Let z € P~ {6} be such
that 7K ~ K <L +[0,00[ 2 and such that C is supported at w by the line
w+ Rz; if there is more than one supporting line of C' at w, choose z
further so that (w+ Rz)nC = {w}. We claim that

7K ~ K < [—rw,rw]+[0,00[2z  for some r < |n|,
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that is, that =K lies in the open strip bounded by the lines |jz|w+ Rz
and —|lzjjlw+ Rz. To establish this, we consider two cases:

Case 1: C is smooth at w. Then w+ Rz is the only line which supports
C at w. If y is any point of the halfplane ]1,c0[ w+ Rz, there is a point
y’ € C for which the segment [y,y’] intersects the set (L +]—o0,0[2)~C.
But of course nK is a convex set containing C, and

nK ~ K =aK ~C < L+[0,00[2,

so it follows that the point y as described cannot lie in #K. The same
reasoning involving —w leads, then, to the conclusion that

nK ~ K < [—w,w]+][0,00] 2.

Case 2: C is not smooth at w. Suppose the desired conclusion fails.
Then, since nK < |#||C and since the set |x]|C is intersected only at
|zl by the line ||z|lw+ Rz, it follows from compactness of K that
|l7llw e nK. But K is convex and contains C, so this contradicts the
fact that nK ~ K< L+[0,00[ 2.

Now let r be as described above, and let

(1) W = Cu (||n]|C) n ([ —rw,rw] +[0,00[2) > =K .

It is easy to verify the existence of b>0 and m, € ]0,|n|[[ such that
W —bzc=mC. For ¢ € ]0,b[ we have

Wz = z(W—bz)+(l—§) W < £m10+(1——§) ¢ = m,C
where

m, = = (| =my) € 10, [ .

It follows that
(2) W —[e,b)z = m,C forall &€1]0,5[.

Let f be the linear functional on J for which f-10=P and supfK=1.
Let g € f-11 with ng= 6, so that the line Rq is the kernel of 7. For each
t>0, let 7, be the projection of J onto P whose kernel is the line
R(q+tz). It can be verified that

(3) mx = nx—t(fr)e forall zed.

We will show that |j;|| < ||| for a sufficiently small ¢> 0, a contradiction
completing the proof of Proposition 4.

Since the section S,=Knf-la varies continuously with a € [0,1],
and since 7 is continuous and 78,=8,=C, it is clear that there exists
6 €70,1[ and m' € ]1,|j=||[ such that
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7S, +[0,0](—2) < m'C forall a€]0,6].

Now choose ¢ € ]0,1[ such that t<b. For x € Knf-1[0,6] we have x € S,
for some a € [0,4], and #(fx) € [0,5], whence (using (3))

ax = x—t(fx)z < aS,+[0,6](—2) < m'C .
And for ze Knf-1[6,1], we see by (1)—(3) that
mx = nx—i(fr)z © K —[td,t]z = W —[t,b]z = m,C .

Thus 7K < mC for m=min (m',m,) < ||z||, whence ||=,|| < ||=|| and the proof
is complete.

With J, P, and K as in Proposition 4, it follows easily that the following
two assertions are equivalent: J admits no projection of norm 1 onto P; J
admits a projection z onto P for which §eintconv(nK ~ K).

5.
TaEOREM. For a normed linear space E, the following three assertions are
equivalent :
(1) E is an inner-product space or is two-dimensional;
(ii) if a subset Y of E lies in a cell of radius <1, then Y lies in some cell
of unit radius centered at a point of conv Y ;
(iii) if a subset Z of E lies in a cell of radius <1, then Z is intersected by
every cell of unit radius centered at a point of convZ.

Proor. Equivalence of conditions (i) and (ii) is immediate from
Theorem 1 as applied to the set X =conv Y.

Now suppose (i) holds and let U denote the unit cell of Z, y € E ~ {6}.
To establish (iii) it suffices to show that 6 ¢ conv((y+ U)~ U). When E
is two-dimensional, let L be a line through 6 such that U admits sup-
porting lines parallel to Ry at the endpoints of the segment LnU. It
can be verified that (y+ U)~U lies in the open halfplane L4 ]0,00[y
and hence 0 ¢ conv((y+U)~U). When E is an inner-product space,
let H be the orthogonal supplement of the line Ry. From the two-
dimensional result in conjunction with the symmetry of U about the
line Ry it follows that (y + U)~ U < H +]0,00[ y. Consequently (i) implies
(iii).

Finally, suppose condition (iii) holds an £ is at least 3-dimensional.
To prove that E is an inner-product space it suffices [2,3] to show that
if J is a 3-dimensional subspace of E, P a 2-dimensional subspace of J,
and = a projection of smallest possible norm of J onto P, then |z|=1.
Suppose |z||>1 and let U and K be as in Proposition 4, so that



CIRCUMSPHERES AND INNER PRODUCTS 369

feinteconv(nK ~ K). Let ¢ be the nonzero endpoint of the segment
Kn#z-10, so that Rq is the kernel of .

There are a finite set V={v,,...,v,} <K ~K and a neighborhood N
of 6 in P such that N <conv V. For each ¢, the ray v, + [0, o[ ¢ intersects
K, and since v;¢ K there exists s;>0 such that v;+s,ge K but
v,+tgeJ ~K for all te[0,s;[. Let wy=—q, w;=v;+sgfori=1,...,n,
and W={wy,w,,...,w,}<U. We claim that 6 is interior to conv W
relative to J. Let a=min{s,,...,s,}, f=max{s;,...,s,}, and y=
«/(x+pB). Since 6 € N<convV, there are numbers a,20 such that
Sta,=1 and Y}aw,=0; then

n n
convW s > aw; = (z ais,-> q
1 1

But of course 37a;s,=«, and since —ge W it follows that [—q,ag]<
conv W. We will now show that yN <conv W; since conv (yNU[—q,xq])
is a neighborhood of 6 in J, this will show that 0 € intconv W relative
to J. Consider an arbitrary x € N<convV, say x=37bw, with 6,20
and 37b;=1. Then

n

= ?('ﬂ)i)wi - zl(ybisi)q

n n VEbisz-
=Y (yb)w; + (1—- (¥b,)
1
But y=«f(x+p), s0 n
72 bs;
0 1 oM _
1—y 11—y

and since [ —q,xq]<conv W it follows that yx € conv W.

Now since 0 is interior to conv W, there exists £>0 such that
0 € conv{yy,...,y,} whenever y,eJ with always |ly,—w;<e. Let
0=min (¢/2lq||,x) and let x;=w,—dq for ¢=0,...,n. Then [;—w,=
dllgll<e/2. Since xy= —(1+0)q, and x;=v;+(s;—0)g with 0<s;—d<s;
fors=1,...,n, it follows that always x, € J ~ U. Thus for p€]0,1[ and u
sufficiently close to 1 it is true that always ux;eJ~U and
lluz; — ;|| < ¢/2, whence ||ux;—w;| < e and 0 € conv {ux,, .. .,uz,}. But all
the points uz; lie in the cell uU — udq of radius <1 and it then follows
from condition (iii) that some point yx; must lie in U. This is a contra-
diction which completes the proof of Theorem 5.

In closing, we note that condition (5iii) above is equivalent to (5iii’):
if @ subset Z of E lies in a cell of radius equal to 1, the Z 1is intersected by
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every cell of unit radius centered at a point of convZ. (Or, in other words,
if Z<8(p,1) then conzZ <S(Z,1).) For clearly (5iii’) implies (5iii), and
the discussion above actually showed that (5i) implies (5iii’).
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