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ASYMPTOTES AND PROJECTIONS OF CONVEX SETS

VICTOR KLEE!

We denote by € the class of all closed convex subsets of a finite-dimen-
sional Euclidean space E. The paper [2] studies those sets C' € € which
admit neither boundary ray nor asymptote, where an asymptote of C is
a (closed) ray p<E ~C such that d(p,C)=0. (We define 6(X,Y)=
inf, ¥ ,eyle—yl. In general, we follow the notation and terminology
of [2] although explicit dependence on [2] is slight.) In the present note,
we consider a different (but closely related) sort of asymptote. Although
our discussion is quite elementary, it may throw some interesting light
on the structure of unbounded convex sets.

An f-asymptote of C € € is a flat F < E~C such that §(F,C)=0; an
f-asymptote of dimension j will be called a j-asymptote. The 1-asymp-
totes are merely the lines determined by asymptotes. The relationships
among f-asymptotes of various dimensions are seen to be especially
simple when C admits no boundary ray; in the general case, an unsolved
problem is raised. The sets admitting no f-asymptotes are exactly those
which have exclusively closed projections. The class & of all such sets
contains the class & of all compact K €€ and the class $§ of all (not
necessarily bounded) polyhedra P € €; it turns out that & resembles both
® and P in certain important respects. Probably our most interesting
result is that an f-asymptote of C;nC, must contain an f-asymptote of
C,; or an f-asymptote of C,.

Let us commence with a simple but useful remark from [2]:

1.
Lemma. Suppose C €€, peC, qe E~{0}, and there are sequences x,
i C and t, in 10,00 such that t, > 0 and t,x, —q. Then C contains the

ray p+[0,0[g.
ProoF. Consider an arbitrary r>0. Then for all {;<1/r we have
(I=rt))p+rtx; € C,
whence p+rq € C.
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From Lemma 1 it follows easily that the line determined by an asymp-
tote of C' must be a l-asymptote.

2.
ProPOSITION. Suppose C €€ and F is an f-asymptote of C. Then C
admits a boundary ray or asymptote parallel to F. And for each flat G
which contains F and intersects C, the set GNC contains a ray parallel to F.

Proor. (The second part of Proposition 2 is quite similar to a separa-
tion theorem in [3].) We may assume that 6 € GnC. Since F is an
f-asymptote there exists sequences z, in C and y, in F such that
x,—y, >0, |x,]| > oo, and z,/|l,]| >x€ E~{6}. Then [0,c0[x=C by
Lemma 1. But y,/|lx,|| > 2, whence it follows that the ray [0,occ[z is
parallel to F' and thus is contained in G (for it is parallel to F <@ and
includes the point 6 € @). This proves the second assertion of Proposi-
tion 2 and implies the existence of a point v € C and a ray g, emanating
from 6 and parallel to F, such that v+p<C. Let w € F and let m denote
the greatest lower bound of all numbers ¢> 0 such that C' meets the ray
w+t(v—u)+e. Then the ray (1—m)u+mv+p must be a boundary ray
or asymptote of C and is of course parallel to F. The proof is complete.

When E is n-dimensional (£ = E"), we denote the corresponding classes
of sets by €,, @, ete.

3.

TuEOREM. Suppose C € €, C admits no boundary ray, and 1 <j<k<
n—1. Then every j-asymptote of C lies in a k-asymptote of C and is parallel
to a 1-asymptote of C.

Proor. For the first assertion, use the second part of Proposition 2 in
conjunction with the fact that every f-asymptote of C lies in the bounding
hyperplane of a closed halfspace which contains C. For the second asser-
tion, use the first part of Proposition 2.

It is evident that a set C €€, admits a j-asymptote if one of its
(n—j)-projection fails to be closed, where a k-projection of C is the image
of C under an affine projection of E onto a k-dimensional subflat. From
Theorem 3 we see that if Ce€,, ¢ admits no boundary ray, and
1<k<mn-1, then all of C's projections are closed if all its k-projections
are closed. A similar situation occurs for a closed convex cone Y in £”.
Of course Y admits no (n— 1)-asymptote, so all its 1-projections must be
closed; but it is known for 2<k=<mn—1 that all of Y’s projections are
closed (and, in fact, ¥ is polyhedral) if all its k-projections are closed.
(See [4]. Also [1], [5] for the case k=2.)
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For an n-dimensional C € €,,, let us denote by «C the set of all integers
J between 1 and n—1 such that C admits a j-asymptote. When C ad-
mits no boundary ray, then «C=0 or aC={1,...,n—1}. When C is a
cone, then aC=90 or «C={1,...,n—2}. It would be of interest to de-
termine all possibilities for «C, but we have been unable to do this. To
the obvious examples in E3 we add the set

J = {(x,y,2) e B®: 20, 2y=1, z2(z+y)?}.

It can be verified that «J={2}. Thus for n<3 it is true that every
subset of {1,...,n—1} can be realized as the set «C for appropriately
constructed n-dimensional C € €,. We do not know whether this is true
for larger values of n. In particular, can the sets {1} and {1, 3} be realized
as «C for C € €,? (It is easy to verify that certain sets of consecutive
integers can always be realized in E™, namely the sets {j,j+1,...,n—2}
for1<sjsn—2and {j,j+1,...,n—1}for 1<j<n—1. When n=4, these
cover all possibilities except {1} and {1,3}.)
We mention also the set

Q = {(x,y,2) e B3: 220, zyz=1, 22 (x+y)*}.

Although @ admits no boundary ray and «Q ={1,2}, there are 2-asymp-
totes of  which contain no l-asymptote. This is of interest relative to
the second assertion of Theorem 3.

We next discuss f-asymptotes of the intersection of two sets. Consider
the closed convex cone

C = {(x,y,2) € B3 220, y=20, xy=2?};
let D denote the closed halfspace {(x,y,2): 2z<1} and F the plane

{(x,y,2): x=0}. Then F is a 2-asymptote of the set CnD, although
neither C nor D admits a 2-asymptote. However, we are able to prove

4.
THEOREM. An f-asymptote of the intersection of two closed convex sets
must contain an f-asymptote of one of them.

Proor. In effecting the proof, the following notion will be useful: a
set Z is associated with a sequence p, provided Z intersects every flat W

for which L
lim inf 6(W, conv(Zu {p;}) = 0.
n—»00 i2n
Now consider two closed convex sets X and Y, and an f-asymptote ¥
of the set XnY. Then XnYnF=4, but there is a sequence p, in F

such that S(p, XNY) =e,~0.
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Let U=XnF and V=YnF. Consider a flat W < F for which
lim inf §(W, conv(Uu{p,})) = 0.
Since p; € 8(X,¢;) (={2: 8(2,X)<¢;}) and U<X, we have
conv(U U {p;}) = 8(X,e;),

and thus W must be an f-asymptote of X unless W intersects X. It
follows that if F' contains no f-asymptote of X, then the set U is associated
with the sequence p,. A similar statement holds for the set V, and thus
the proof can be completed by showing that if two members of €, are
associated with the same sequence, then they must intersect. We denote
this assertion by 4, and observe that 4, is easily verified.

Suppose 4,_, is known, and consider members C' and D of €, which
are associated with the same sequence g,. If ¢, is bounded, it has a
convergent subsequence whose limit must lie in the set CnD. If g, is
unbounded, we may assume without loss of generality that ||g,|| — oo
and q,/|lg,/l > ¢ € E"~{0}. For r>0 and u € C we have

(u+rg, conv(C U {g.})) < |lut+rg— (1 —r/lpl)u—rpipd|

for all 7, and since C is associated with ¢, it follows that u+rge C. A
similar argument holds for D, and we thus conclude

(*) C =C+[0,0[qg and D= D+[0,00[q.

By use of (*) it can be verified that the sets #C and zD are both associated
with the sequence mq,, where = is a linear projection of £* whose kernel
is Rq. But then #C must intersect #.D by the inductive hypothesis, and
a second application of (*) shows that C intersects D. This completes
the proof of Theorem 4.

Let R denote the class of all continuous convex sets in £ (the sets:in ¢
which admit neither boundary ray nor asymptote), and let @, %, and &
be as defined earlier.

5.

THEOREM. Let X be any of the subclasses R (compact), R (continuous),
R (polyhedral), or & (closed projections) of €. Then whenever X, Y € X
it 18 true that

XnYekX,

X+YekX,
if XnY =0 then 6(X,Y) > 0.

Proor. For the classes ®, R, and P this is already known [2, 4]. There
remains the class @, for which the intersection condition follows from
Theorem 4. Now consider the assertion

23*
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A, : whenever X and Y are disjoint members of &,, then §(X, Y)> 0.
Clearly A, is true. Now suppose 4;_, is known and consider disjoint
members X and Y of &,. If 6(X,Y)=0, there are sequences z, in X
and y, in ¥ such that z,—y, -~ 0. With XnY =0, we may assume
without loss of generality that |z, — co and z,/|,|| > qe E*~ {0},
whence also y,/|lx,|| - ¢. From Lemma 1 we see that X =X +[0,00[q
and Y =Y +[0,00[ q; since X n Y =0 it follows that no translate of the line
Rgq can intersect both X and Y. Let = be the orthogonal projection of
E* whose kernel is Rg. Then #nX and =Y are disjoint members of &,_,,
hence at positive distance by the inductive hypothesis. But of course
(#xX,nY)=6(X,Y), and the contradiction completes the proof that 4,_,
implies A,. Thus 4, is valid for all n.

It remains only to show that if X, Y e @, then X+ Y e &,. We
show first that X+ Y is closed. For consider an arbitrary point
pecl(X+Y). Then 6ecl(X—(p— Y)) and hence 6(X,p— ¥)=0. Since
X, p—Ye@,, it follows from the above result that Xn(p—Y)+0;
that is, x=p—y for some x € X and y€ Y. But then p=x+yeX+7Y
and X + Y must be closed. Now for each linear projection = of X+ Y
onto a j-dimensional subset of E*, we have n(X + Y)=aX+xY, where
the sets #X and wY are both members of &;. Thus the proof of Theorem
5 can be completed by an inductive argument.

The classes & and R have the additional property that if X and Y
are in one of these classes, then so is the set conv(Xu Y). This property
is shared by the class of all bounded convex polyhedra in E, but
not by the class § of all polyhedra; however, if X, Y € § then
cleonv(Xu Y) € 8. Now let

C = {(x,y,2) € B3: yza?, z=1}.

Then for each a + 0 the line {(x,y,2): x=a, 2=0} is a 1-asymptote of the
set cleonv ({6}u(), although of course {0}, C € &. Here again a special
role is played by the sets which have no boundary ray, for we note

6.
ProrposiTIiON. Suppose X, and X, are closed convex sets in E™ and neither

admits a boundary ray. Then every f-asymptote of the set cleconv (X,uX,)
1s parallel to some (n — 1)-asymptote of X, or X,.

Proor. Let F be an f-asymptote of the set clconv(X,uX,). By the
basic separation theorem for convex sets there exists a linear functional
¢ on E" and a number a; such that

@F = a; = sup g(cl conv (X, U X,)).



ASYMPTOTES AND PROJECTIONS OF CONVEX SETS 361

We assume without loss of generality that sup ¢ X, =a, <sup ¢X,, whenc
sup X, =a,. Now if gz;<a; for all x € X, then the hyperplane ¢-1a; is
an (n—1)-asymptote of X;. Thus to prove Proposition 6 it suffices to
derive a contradiction from the simultaneous existence of p, € X, with
ep,=a, and p, € X, with ¢p,=a,.

Since the hyperplane ¢—'a, contains the f-asymptote F of the set
cleonv (X, U X,), there must exist sequences x,7 in X; and ¢, in [0, 1] such
that

gl +(1—t)e?) > a,  and  [fal+(1—1)e,2] - o

We may assume without loss of generality that
t, - te[0,1] and  aj/|jx]]| > a7 e E* ~ {0} .

We consider two cases:

Case I: t=1. Then ga! - a, and ¢((1—t,)x,%) — 0. If the sequence
z,! is unbounded it follows that ga!=0 and then from Lemma 1 that the
intersection X; ng~la, contains the ray p, + [0, co[x!, which must therefore
be a boundary ray of X;. If z ! is bounded, then ||(1 —¢,)x,2|| - co; with
m;=(1—1t;)/|lx;|, we have m,— 0 and m, x,2 — 2% E*~{0}. Of course
@x?=0 and by use of Lemma 1 we see that the ray p, + [0, o[22 is a bound-
ary ray of X,.

Case II: £<1. When t<1 we must have @, =a, and thus, in view of
the case just treated, may assume that {>0. But then ¢z! — a,,
¢x,2 —> a;, and at least one of the sequences ¢,x,! and (1—¢,)x,? is un-
bounded, whence a contradiction is reached as in Case I. The proof of
Proposition 6 is complete.

For further properties of sets which admit no boundary ray, see [2, 3].

Reasoning as for certain ‘“‘separation’ theorems of [2], we can derive
from Theorem 5 the following:

7.

CororrLarY. Suppose X, ...,X,, are members of & which have empty
tntersection. Then there exist ¢ >0 and closed halfspaces Q;> S(X;,¢) such
that the Q;’s have empty intersection.

For the families & and R, there are similar theorems involving infinite
families of sets [2]. These cannot be extended to P or @, as is seen from
the following example in E3: Let P,,P,,..., be a sequence of closed
halfspaces whose intersection is the cone

C = {(x,y,2): x20,y20, xy=2?},

and consider the line
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P, = {(x,y,2): 2=0,2=1}.

Then NG P,=¢. But every closed halfspace which contains P, must
intersect C, and consequently there are no closed halfspaces @;> P,
such that NFQ,=0.
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