ASYMPTOTES AND PROJECTIONS OF CONVEX SETS ## VICTOR KLEE¹ We denote by $\mathfrak C$ the class of all closed convex subsets of a finite-dimensional Euclidean space E. The paper [2] studies those sets $C \in \mathfrak C$ which admit neither boundary ray nor asymptote, where an asymptote of C is a (closed) ray $\varrho \subseteq E \sim C$ such that $\delta(\varrho,C)=0$. (We define $\delta(X,Y)=\inf_{x\in X,y\in Y}||x-y||$. In general, we follow the notation and terminology of [2] although explicit dependence on [2] is slight.) In the present note, we consider a different (but closely related) sort of asymptote. Although our discussion is quite elementary, it may throw some interesting light on the structure of unbounded convex sets. An f-asymptote of $C \in \mathfrak{C}$ is a flat $F \subset E \sim C$ such that $\delta(F,C) = 0$; an f-asymptote of dimension j will be called a j-asymptote. The 1-asymptotes are merely the lines determined by asymptotes. The relationships among f-asymptotes of various dimensions are seen to be especially simple when C admits no boundary ray; in the general case, an unsolved problem is raised. The sets admitting no f-asymptotes are exactly those which have exclusively closed projections. The class $\mathfrak F$ of all such sets contains the class $\mathfrak F$ of all compact $K \in \mathfrak C$ and the class $\mathfrak F$ of all (not necessarily bounded) polyhedra $P \in \mathfrak C$; it turns out that $\mathfrak F$ resembles both $\mathfrak F$ and $\mathfrak F$ in certain important respects. Probably our most interesting result is that an f-asymptote of $G_1 \cap G_2$ must contain an f-asymptote of G_1 or an f-asymptote of G_2 . Let us commence with a simple but useful remark from [2]: 1. LEMMA. Suppose $C \in \mathfrak{C}$, $p \in C$, $q \in E \sim \{\theta\}$, and there are sequences x_{α} in C and t_{α} in $]0, \infty[$ such that $t_{\alpha} \to 0$ and $t_{\alpha}x_{\alpha} \to q$. Then C contains the ray $p + [0, \infty[q]$. **PROOF.** Consider an arbitrary r > 0. Then for all $t_i \le 1/r$ we have $$(1-rt_i)p+rt_ix_i \in C,$$ whence $p + rq \in C$. Received September 24, 1959. ¹ Research Fellow of the Alfred P. Sloan Foundation. From Lemma 1 it follows easily that the line determined by an asymptote of C must be a 1-asymptote. 2. PROPOSITION. Suppose $C \in \mathfrak{C}$ and F is an f-asymptote of C. Then C admits a boundary ray or asymptote parallel to F. And for each flat G which contains F and intersects C, the set $G \cap C$ contains a ray parallel to F. PROOF. (The second part of Proposition 2 is quite similar to a separation theorem in [3].) We may assume that $\theta \in G \cap C$. Since F is an f-asymptote there exists sequences x_{α} in C and y_{α} in F such that $x_{\alpha} - y_{\alpha} \to \theta$, $||x_{\alpha}|| \to \infty$, and $|x_{\alpha}||x_{\alpha}|| \to x \in E \sim \{\theta\}$. Then $[0, \infty[x \subseteq C]$ by Lemma 1. But $|y_{\alpha}||x_{\alpha}|| \to x$, whence it follows that the ray $[0, \infty[x]$ is parallel to F and thus is contained in G (for it is parallel to $F \subseteq G$ and includes the point $\theta \in G$). This proves the second assertion of Proposition 2 and implies the existence of a point $v \in C$ and a ray ϱ , emanating from θ and parallel to F, such that $v + \varrho \subseteq C$. Let $u \in F$ and let m denote the greatest lower bound of all numbers t > 0 such that C meets the ray $u + t(v - u) + \varrho$. Then the ray $(1 - m)u + mv + \varrho$ must be a boundary ray or asymptote of C and is of course parallel to F. The proof is complete. When E is n-dimensional $(E = E^n)$, we denote the corresponding classes of sets by \mathfrak{C}_n , \mathfrak{G}_n , etc. 3. THEOREM. Suppose $C \in \mathfrak{C}_n$, C admits no boundary ray, and $1 \leq j \leq k \leq n-1$. Then every j-asymptote of C lies in a k-asymptote of C and is parallel to a 1-asymptote of C. PROOF. For the first assertion, use the second part of Proposition 2 in conjunction with the fact that every f-asymptote of C lies in the bounding hyperplane of a closed halfspace which contains C. For the second assertion, use the first part of Proposition 2. It is evident that a set $C \in \mathfrak{C}_n$ admits a j-asymptote if one of its (n-j)-projection fails to be closed, where a k-projection of C is the image of C under an affine projection of E onto a k-dimensional subflat. From Theorem 3 we see that if $C \in \mathfrak{C}_n$, C admits no boundary ray, and $1 \le k \le n-1$, then all of C's projections are closed if all its k-projections are closed. A similar situation occurs for a closed convex cone Y in E^n . Of course Y admits no (n-1)-asymptote, so all its 1-projections must be closed; but it is known for $2 \le k \le n-1$ that all of Y's projections are closed (and, in fact, Y is polyhedral) if all its k-projections are closed. (See [4]. Also [1], [5] for the case k=2.) For an n-dimensional $C \in \mathfrak{C}_n$, let us denote by αC the set of all integers j between 1 and n-1 such that C admits a j-asymptote. When C admits no boundary ray, then $\alpha C = \emptyset$ or $\alpha C = \{1, \ldots, n-1\}$. When C is a cone, then $\alpha C = \emptyset$ or $\alpha C = \{1, \ldots, n-2\}$. It would be of interest to determine all possibilities for αC , but we have been unable to do this. To the obvious examples in E^3 we add the set $$J = \{(x, y, z) \in E^3: x \ge 0, xy \ge 1, z \ge (x + y)^2\}.$$ It can be verified that $\alpha J = \{2\}$. Thus for $n \leq 3$ it is true that every subset of $\{1, \ldots, n-1\}$ can be realized as the set αC for appropriately constructed n-dimensional $C \in \mathfrak{C}_n$. We do not know whether this is true for larger values of n. In particular, can the sets $\{1\}$ and $\{1,3\}$ be realized as αC for $C \in \mathfrak{C}_4$? (It is easy to verify that certain sets of consecutive integers can always be realized in E^n , namely the sets $\{j,j+1,\ldots,n-2\}$ for $1 \leq j \leq n-2$ and $\{j,j+1,\ldots,n-1\}$ for $1 \leq j \leq n-1$. When n=4, these cover all possibilities except $\{1\}$ and $\{1,3\}$.) We mention also the set $$Q = \{(x,y,z) \in E^3: x \ge 0, xyz = 1, z \ge (x+y)^2\}.$$ Although Q admits no boundary ray and $\alpha Q = \{1, 2\}$, there are 2-asymptotes of Q which contain no 1-asymptote. This is of interest relative to the second assertion of Theorem 3. We next discuss f-asymptotes of the intersection of two sets. Consider the closed convex cone $$C = \{(x, y, z) \in E^3: x \ge 0, y \ge 0, xy \ge z^2\};$$ let D denote the closed halfspace $\{(x,y,z): z \le 1\}$ and F the plane $\{(x,y,z): x=0\}$. Then F is a 2-asymptote of the set $C \cap D$, although neither C nor D admits a 2-asymptote. However, we are able to prove 4. THEOREM. An f-asymptote of the intersection of two closed convex sets must contain an f-asymptote of one of them. PROOF. In effecting the proof, the following notion will be useful: a set Z is associated with a sequence p_{α} provided Z intersects every flat W for which $$\lim_{n\to\infty}\inf_{i\geq n}\,\delta(W,\operatorname{conv}(Z\cup\{p_i\})\,=\,0\;.$$ Now consider two closed convex sets X and Y, and an f-asymptote F of the set $X \cap Y$. Then $X \cap Y \cap F = \emptyset$, but there is a sequence p_{α} in F such that $\delta(p_{\alpha}, X \cap Y) = \varepsilon_{\alpha} \to 0.$ Let $U = X \cap F$ and $V = Y \cap F$. Consider a flat $W \subseteq F$ for which $$\lim \inf \delta(W, \operatorname{conv}(U \cup \{p_{\alpha}\})) = 0.$$ Since $$p_i \in S(X, \varepsilon_i)$$ $(=\{z : \delta(z, X) \leq \varepsilon_i\})$ and $U \subset X$, we have $\operatorname{conv}(U \cup \{p_i\}) \subseteq S(X, \varepsilon_i)$. and thus W must be an f-asymptote of X unless W intersects X. It follows that if F contains no f-asymptote of X, then the set U is associated with the sequence p_{α} . A similar statement holds for the set V, and thus the proof can be completed by showing that if two members of \mathfrak{C}_n are associated with the same sequence, then they must intersect. We denote this assertion by A_n and observe that A_1 is easily verified. Suppose A_{k-1} is known, and consider members C and D of \mathfrak{C}_n which are associated with the same sequence q_{α} . If q_{α} is bounded, it has a convergent subsequence whose limit must lie in the set $C \cap D$. If q_{α} is unbounded, we may assume without loss of generality that $||q_{\alpha}|| \to \infty$ and $||q_{\alpha}|| \to q \in E^n \sim \{\theta\}$. For r > 0 and $u \in C$ we have $$\delta(u + rq, \operatorname{conv}(C \cup \{q_i\})) \le ||u + rq - (1 - r/||p_i||)u - rp_i/||p_i|||$$ for all i, and since C is associated with q_{α} it follows that $u+rq \in C$. A similar argument holds for D, and we thus conclude (*) $$C = C + [0, \infty] q \quad \text{and} \quad D = D + [0, \infty] q.$$ By use of (*) it can be verified that the sets πC and πD are both associated with the sequence πq_{α} , where π is a linear projection of E^k whose kernel is Rq. But then πC must intersect πD by the inductive hypothesis, and a second application of (*) shows that C intersects D. This completes the proof of Theorem 4. Let \Re denote the class of all continuous convex sets in E (the sets in \mathfrak{C} which admit neither boundary ray nor asymptote), and let \mathfrak{G} , \mathfrak{F} , and \mathfrak{R} be as defined earlier. 5. THEOREM. Let \mathfrak{X} be any of the subclasses \mathfrak{R} (compact), \mathfrak{R} (continuous), \mathfrak{P} (polyhedral), or \mathfrak{G} (closed projections) of \mathfrak{G} . Then whenever $X, Y \in \mathfrak{X}$ it is true that $X \cap Y \in \mathfrak{X}$. $$X \cap Y \in \mathfrak{X}$$, $X + Y \in \mathfrak{X}$, if $X \cap Y = \emptyset$ then $\delta(X, Y) > 0$. PROOF. For the classes \Re , \Re , and \Re this is already known [2, 4]. There remains the class \mathfrak{G} , for which the intersection condition follows from Theorem 4. Now consider the assertion A_n : whenever X and Y are disjoint members of \mathfrak{G}_n , then $\delta(X,Y)>0$. Clearly A_1 is true. Now suppose A_{k-1} is known and consider disjoint members X and Y of \mathfrak{G}_k . If $\delta(X,Y)=0$, there are sequences x_α in X and y_α in Y such that $x_\alpha-y_\alpha\to\theta$. With $X\cap Y=\emptyset$, we may assume without loss of generality that $||x_\alpha||\to\infty$ and $|x_\alpha|||x_\alpha||\to q\in E^k\sim\{\theta\}$, whence also $|y_\alpha|/|x_\alpha||\to q$. From Lemma 1 we see that $|X=X+[0,\infty[q]]$ and $|Y=Y+[0,\infty[q]]$; since $|X\cap Y=\emptyset|$ it follows that no translate of the line |X|=0 and are disjoint members of |X|=0 and |X|=0 and |X|=0 and |X|=0 are disjoint members of |X|=0 and are disjoint members of |X|=0, hence at positive distance by the inductive hypothesis. But of course |X|=0 and |X|=0 and |X|=0 and |X|=0 and |X|=0 and |X|=0 and |X|=0 are disjoint members of |X|=0 and are disjoint members of |X|=0 and |X|=0 and |X|=0 and |X|=0 and |X|=0 are disjoint members of |X|=0 and |X|=0 and |X|=0 and |X|=0 are disjoint members of |X|=0 and |X|=0 are disjoint members of |X|=0 and |X|=0 and |X|=0 and |X|=0 are disjoint members of |X|=0 and |X|=0 are disjoint members of |X|=0 and |X|=0 are disjoint members of |X|=0 and |X|=0 and |X|=0 are disjoint members of |X|=0 and are disjoint members of |X|=0 and |X|=0 and |X|=0 and |X|=0 are disjoint members of |X|=0 and | It remains only to show that if $X, Y \in \mathfrak{G}_n$, then $X + Y \in \mathfrak{G}_n$. We show first that X + Y is closed. For consider an arbitrary point $p \in \operatorname{cl}(X + Y)$. Then $\theta \in \operatorname{cl}(X - (p - Y))$ and hence $\delta(X, p - Y) = 0$. Since $X, p - Y \in \mathfrak{G}_n$, it follows from the above result that $X \cap (p - Y) \neq \emptyset$; that is, x = p - y for some $x \in X$ and $y \in Y$. But then $p = x + y \in X + Y$ and X + Y must be closed. Now for each linear projection π of X + Y onto a j-dimensional subset of E^n , we have $\pi(X + Y) = \pi X + \pi Y$, where the sets πX and πY are both members of \mathfrak{G}_j . Thus the proof of Theorem 5 can be completed by an inductive argument. The classes \Re and \Re have the additional property that if X and Y are in one of these classes, then so is the set $\operatorname{conv}(X \cup Y)$. This property is shared by the class of all bounded convex polyhedra in E, but not by the class \Re of all polyhedra; however, if X, $Y \in \Re$ then $\operatorname{clconv}(X \cup Y) \in \Re$. Now let $$C = \{(x, y, z) \in E^3: y \ge x^2, z = 1\}.$$ Then for each $a \neq 0$ the line $\{(x,y,z): x=a, z=0\}$ is a 1-asymptote of the set cloon $(\{\theta\} \cup C)$, although of course $\{\theta\}$, $C \in \mathfrak{G}$. Here again a special role is played by the sets which have no boundary ray, for we note 6. PROPOSITION. Suppose X_1 and X_2 are closed convex sets in E^n and neither admits a boundary ray. Then every f-asymptote of the set $\operatorname{clconv}(X_1 \cup X_2)$ is parallel to some (n-1)-asymptote of X_1 or X_2 . PROOF. Let F be an f-asymptote of the set $\operatorname{clconv}(X_1 \cup X_2)$. By the basic separation theorem for convex sets there exists a linear functional φ on E^n and a number a_1 such that $$\varphi F = a_1 = \sup \varphi(\operatorname{cl} \operatorname{conv}(X_1 \cup X_2)).$$ We assume without loss of generality that $\sup \varphi X_2 = a_2 \leq \sup \varphi X_1$, whence $\sup \varphi X_1 = a_1$. Now if $\varphi x_j < a_j$ for all $x \in X_j$, then the hyperplane $\varphi^{-1}a_j$ is an (n-1)-asymptote of X_j . Thus to prove Proposition 6 it suffices to derive a contradiction from the simultaneous existence of $p_1 \in X_1$ with $\varphi p_1 = a_1$ and $p_2 \in X_2$ with $\varphi p_2 = a_2$. Since the hyperplane $\varphi^{-1}a_1$ contains the f-asymptote F of the set $\operatorname{clconv}(X_1 \cup X_2)$, there must exist sequences $x_{\alpha}{}^j$ in X_j and t_{α} in [0, 1] such that $$\varphi(t_{\alpha}x_{\alpha}^{-1} + (1-t_{\alpha})x_{\alpha}^{-2}) \rightarrow a_1$$ and $||t_{\alpha}x_{\alpha}^{-1} + (1-t_{\alpha})x_{\alpha}^{-2}|| \rightarrow \infty$. We may assume without loss of generality that $$t_x \to t \in [0,1]$$ and $x_x^j/||x_x^j|| \to x^j \in E^n \sim \{\theta\}$. We consider two cases: Case I: t=1. Then $\varphi x_{\alpha}^{-1} \to a_1$ and $\varphi \left((1-t_{\alpha})x_{\alpha}^{-2} \right) \to 0$. If the sequence x_{α}^{-1} is unbounded it follows that $\varphi x^1=0$ and then from Lemma 1 that the intersection $X_1 \cap \varphi^{-1}a_1$ contains the ray $p_1 + [0, \infty[x^1]$, which must therefore be a boundary ray of X_1 . If x_{α}^{-1} is bounded, then $\|(1-t_{\alpha})x_{\alpha}^{-2}\| \to \infty$; with $m_i = (1-t_i)/\|x_i\|$, we have $m_{\alpha} \to 0$ and $m_{\alpha}x_{\alpha}^{-2} \to x^2 \in E^n \sim \{0\}$. Of course $\varphi x^2 = 0$ and by use of Lemma 1 we see that the ray $p_2 + [0, \infty[x^2]$ is a boundary ray of X_2 . Case II: t < 1. When t < 1 we must have $a_1 = a_2$ and thus, in view of the case just treated, may assume that t > 0. But then $\varphi x_{\alpha}^{-1} \to a_1$, $\varphi x_{\alpha}^{-2} \to a_1$, and at least one of the sequences $t_{\alpha} x_{\alpha}^{-1}$ and $(1 - t_{\alpha}) x_{\alpha}^{-2}$ is unbounded, whence a contradiction is reached as in Case I. The proof of Proposition 6 is complete. For further properties of sets which admit no boundary ray, see [2, 3]. Reasoning as for certain "separation" theorems of [2], we can derive from Theorem 5 the following: 7. COROLLARY. Suppose X_1, \ldots, X_m are members of \mathfrak{G} which have empty intersection. Then there exist $\varepsilon > 0$ and closed halfspaces $Q_i \supset S(X_i, \varepsilon)$ such that the Q_i 's have empty intersection. For the families \Re and \Re , there are similar theorems involving infinite families of sets [2]. These cannot be extended to \Re or \Im , as is seen from the following example in E^3 : Let P_1, P_2, \ldots , be a sequence of closed halfspaces whose intersection is the cone $$C = \{(x, y, z): x \ge 0, y \ge 0, xy \ge z^2\},$$ and consider the line 362 VICTOR KLEE $$P_0 = \{(x,y,z): x=0, z=1\}.$$ Then $\bigcap_{0}^{\infty} P_{i} = \emptyset$. But every closed halfspace which contains P_{0} must intersect C, and consequently there are no closed halfspaces $Q_{i} \supset P_{i}$ such that $\bigcap_{0}^{\infty} Q_{i} = \emptyset$. ## REFERENCES - A. Bastiani, Polyèdres convexes dans les espaces vectoriels topologiques, Séminaire de Topologie et de Géométrie differentielle (Paris) 1958, 1901–1947. - 2. D. Gale and V. Klee, Continuous convex sets, Math. Scand. 7 (1959), 379-391. - 3. V. Klee, Strict separation of convex sets, Proc. Amer. Math. Soc. 7 (1956), 735-737. - 4. V. Klee, Some characterizations of convex polyhedra, Acta Math. 102 (1959), 79-107. - 5. H. Mirkil, New characterizations of polyhedral cones, Canadian J. Math. 9 (1957), 1-4. UNIVERSITY OF WASHINGTON, SEATTLE, WASH., U.S.A. AND UNIVERSITY OF COPENHAGEN, DENMARK