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THE RELATION BETWEEN TWO GENERALISATIONS
OF THE NOTION “SURFACE OF CURVATURE =K”

FOLKE ERIKSSON

Surfaces of bounded total (Gaussian) curvature <K have interesting
properties. A.D. Alexandrow has investigated such properties in [2]
and especially in [3] and extended them to spaces of curvature <K in
a more general sense. A region R in a locally compact space of arbitrary
dimension with intrinsic metric is called an Ry [3, pp. 36, 41], if for every
triangle 7' in R, the sum of the ‘“‘upper angles’ is not greater than the
sum of the angles of a triangle 77K with sides of the same lengths on a
surface of constant curvature K. (If K >0 it is postulated that the
perimeter of any triangle 7' in the Ry is not greater than 2zK-%, so that
TE exists. For the definition of ‘“upper angle” see [3, p.35] or [2,
p. 492].) Then a metric space, in which every point has a neighbourhood
which is an Ry, is said to be ‘“‘of curvature <K’ [3, p. 36]. Let us here
for the sake of brevity (and to avoid confusion in the sequel) call such
a space an Rx-space. kAN

In [6] I gave for a surface of total curvature <K an estimate for the
maximal deviation of a curve AB of given length from the geodesic 4B.
Then I generalised the notion “curvature <K’ in a way different from
Alexandrow’s—but analogous to Beurling’s generalisation for K=0 in
[4]—Dby means of the class C(K) of “functions of curvature <K”’. A
real-valued function u(z) of a complex variable z is said to belong to
C(K) in a region D if it is continuous in D and satisfies

r
&) L(w ) —u(z) 2 — 3K { o A(e,2,0) do

0
for every z,e D and all sufficiently small r [6, p. 318]. Here L(u,z,,7)
and A(u,zy,7) denote, as usual in the theory of subharmonic functions,
the mean values of u(z) on the circle |z —zy|=r and the circular disk
|2 —zy| <7, respectively (cf. [6, p. 317] or Radé [9, p. 3]). Then I called
the metric

Received May 25, 1960.



340 FOLKE ERIKSSON

(2) ds = e¥@|dz| ,

defined on D, “of curvature <K” if we C(K) in D [6, p. 322].

In this paper we shall see how this notion ‘“‘surface of curvature < K”
is related to Alexandrow’s notion, here cailed “R-space”. It will be
found that a surface of curvature <K in the sense of [6] is also an
Rx-space. But a 2-dimensional Rg-space (or even an Ry) need not be
a “surface of curvature < K”, because the continuity of u(z) assumed
in the definition of the class C(K) is not necessary. However, upper
semicontinuity is necessary and sufficient. Furthermore, a general
Ex-space does not correspond to a region D in the complex z-plane but
to an arbitrary open Riemann surface B. Therefore it is convenient to
introduce here a wider class C'(K) of functions u(z) defined on an open
Riemann surface R:

DEeFINITION. %(2) € C'(K) if

a) u(z) is upper semi-continuous,
b) u(z) satisfies (1) for every point 2z, of R and all sufficiently small r.

Then we have the following two mutually converse theorems:

THEOREM 1. A surface given by a metric (2), defined on an open Riemann
surface R by a real-valued function u(z) € C'(K), is an Rg-space.

THEOREM 2. Every orientable 2-dimensional Rg-space is isomelric to an
open Riemann surface R with the metric (2), where u(z) € C'(K).

Proor or THEOREM 1. We shall first show that any «(z) in ¢'(K) can
locally be represented as a logarithmic potential. Let D be a region of R,
which may be considered as situated in a z-plane. Let us introduce in
D the auxiliary function

v(z) = —(2n)~1 gS Injz—¢| Ke®® dedy ,
D

where we have put {=¢&+¢,. Then the function w—v is upper semi-
continuous, because » is so and v is continuous. And for a sufficiently
small circle in D we find

L(u—v,29,7) — u(20) +0(29) = L(u,2,,7) —u(2o) — [L(v,20,7) —v(2)] 2 O,
because u satisfies (1) and a calculation of L(v,z,,r) —v(2,) yields exactly
the right member of (1). Indeed, we have

2n
S In|zy— ¢ +re dO =

0

2nlnlzg—¢| for |zp—C] > 7,
27 Inr for |z~ = 7,
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which may be obtained by applying Jensen’s formula (cf. e.g. [1, p. 185])
to the analytic function f(z)=2z— (¢ —z,), and thus

L(’U, %0 7‘) - 'U(zo)

= —(a N(lnlzowe“’—c?l In fzg — £]) € dd | d

D

= —(2n)K (lnr In o) exp 2u(z, + 0¢'?) o do dg

= —(2n)"1K g‘ldg exp 2u(z, + 0€'?) o dodyp

ot P oY
<

Qe

o

ﬂ

I
l
™
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™

\ exp 2u(z + 0€'?) o dodp | dp

O3 Oy O 3 oV\g"

o
|
[un
S
ot

r

—gKSQA(e%,zO,Q) do .

0

Thus % —v is subharmonic in D. In a region D’, which together with its
boundary is contained in D, u—v is then the potential of a non-positive
mass-distribution —u plus a harmonic function [9, p. 42]:

3) u()=v(e) = ({Inje=¢) w(@B) + hes) .
)

On the other hand, if we divide the integral over .D defining » into two
parts, one over D’ and the other over D —D’, the latter part gives in D’
a harmonic function, and we get in D’

4) o) = —(27) SSlnlz—Cl Ke0 didn + hy(2)
)]

—(20)K (| Infe—215@B) + h(a),
2

where j(E) denotes the area (Lebesgue measure) of the set £ in the
metric (2). Adding (3) and (4) we find

ue) = — (@) (| Infa—] w(dB) + btz
D
with %,(2) harmonic in D’ and

(5) w(B) = Kj(E)—2mu(E) .

Math, Scand. 8 — 22
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Now according to a theorem of Reschetnjak [10] (cf. [2, pp. 503 £f.]), the
metric (2), with u(2) a difference between two subharmonic functions,
is ““of bounded curvature’ in the sense of [2, p. 493], and the curvature
corresponding to a set ¥ is w(#). As u(#)z0, we get from (5)

(6) w(E) £ Kj(E)

for every Borel set £ in D’. However, (6) then holds also for any Borel
set £ in D. Indeed such an F can be approximated from within by a
closed E’ for which the differences |w(Z)—w(E')| and |j(E)—j(E')| are
arbitrarily small. If w(#)— Kj(E)=2¢> 0, we could thus find an £’ in a

D’ so that o(B) > Kj(B)+e > Kj(E'),

which is impossible since (6) has been proved for E’. Thus (6) must
hold for any Borel set in D). An arbitrary region £ in R can be divided
into parts E, for which this yields w(¥,) < Kj(#,). Adding, we get (6)

for F or o(B)J(E) < K,

that is: The metric is of specific curvature < K in the sense of [2, p. 431].
According to Alexandrow [2, p. 513], the surface is then an Ej.-space.
(In [2] this statement is proved only for convex surfaces (cf. theorem 4,
p- 433, and its proof on pp. 442f. in [2]). For that part of theorem 4
with which we are concerned the method of this proof is however general.}

ProOF oF THEOREM 2. According to Alexandrow [3, p. 43], an Eg-
space is also “of bounded curvature”. Huber has recently proved
[7, p. 100] (completing a result of Reschetnjak [10]) that an orientable
2-dimensional space “of bounded curvature’ is isometric to a Riemann
surface R with the metric

(2) ds = e"@|dz| ,

where u(z) is the difference between two subharmonic functions. R is
open, because Alexandrows definition of Ex-space (mentioned above)
assumes that every point in the space has a neighbourhood. We have
to prove that u(z) a) satisfies (1) and b) is upper semi-continuous.

a) (1) is trivial, if u(zy) = — oo. Further u(zg) = + oo is impossible in an
Ry, as will follow from b). Here we may thus assume u(z,) finite. Then
we prove (1) for r < } so small that the closed disk |z —z,| £ is contained
in R. Let C, denote the interior of such a disk. Then u(z) may be written
(cf. formula (3) in [2, p. 504])

™ w@) = —(2a) ({ Inz—¢] 0By + 1a),

Cr
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where k(z) is a function harmonic in C,, and w(¥) denotes the curvature
of the set in our Rg-space which corresponds to E in R (The curvature
of a Borel set being defined in [2, p. 496]).
As L(h,z4,7) — h(2) =0, it is sufficient to study the left member of (1)
for -
uy(2) = w(z)—h(z) = —(27)-1 \\m le—C| w(dB,) .

r

Inserting this expression in L(uy,2,,7), we obtain

L(uy,2,7)

O

2n 2n
= (2n)—1Sul(zo+rei") dv = —(27)~2 [
0 0

“ In |zg+re® — | w(dE;)|dv .

cr

Here we interchange the order of integration. This is legitimate accord-
ing to well-known theorems of Tonelli and Fubini (cf. e.g. [8, p. 151]),
because the integrand is measurable and <0 in C, (in virtue of the as-
sumption r<3}) and the integral with respect to the measure |w| is
finite. This last point is verified at the end of our calculation. Thus
we get 2n

L(uy,zg,7) = —(27)~2 S\ [ S In |2y + ret* —¢| dv] w(dE,) .
¢ Lo

The integral in brackets has (as mentioned above p. 340) the value
2x Inr, since |{—zy|<r in C,, and we get

Luyz) = — @)t Inr \ (@B = —(2m) 1 Inr o(C,)
o

(cf. the analogous result 4.29 in [9, p. 30]). Now we see that the corre-
sponding integral with respect to |w| has the value —(27)~!Inr|w|(C,).
That |w|(C,) is finite is contained in the statement that the space is
“of bounded curvature” [2, p. 493].

Now, when u,(z,) is finite, the left member of (1) is,

(8) Lty 20,7) — Uyl 2g) = — (27)~1 Inr \S w(dE,) + (2m)1 \S In 20— ] (dB,)
Cr 'C'r
r

—(2n)1 SCS In —— w(dE,) .

However, any Rg-space is also of specific curvature <K, that is

(6) o(E) = Kj(E)
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for every region E. (This fact is stated by Alexandrow in [2, p. 513].
A proof is given here in an appendix.) Then (6) must hold for every
Borel set Z in E. Applying it to the last member of (8), we get,

(0) L(wz07) ~ulee) = Lt zor) ~aleg) 2 ~ @K ({In T jamy
o

because In (r/|z—¢]) >0 in C,.
By the definition of A4(u,z,,7) the right member of (1) is

- }K§ (g ;sz SS 62“©d§d17) do = —(2n)'K g [@—1 “ j(dEc)] do .
0 o ol ¢

[

This is a triple integral over the cone |{ —z,| <p, 0 <g <7, which may be
written ,

]

.Cr {zo~¢l

g‘ldQJ jdB) = —(2m)K Wn "B,
o 20— ¢l
This is the right member of (9), and thus, (1) is proved.

b) We start the proof that u(z) is upper semi-continuous by splitting
the curvature w into its positive and negative parts: o =w*+w-. The
corresponding parts of the potential « are denoted by u* and u~— resp.
Then »- is a subharmonic function and thus upper semi-continuous. It
remains to prove the upper semi-continuity of #+. In fact we can prove
much more, namely that u+(z+4y) has partial derivatives «»} and u;,
which satisfy Lipschitz conditions of every order 1—-¢<1. Since u*=0
if K £0, we may assume K > 0 in the sequel.

In a circular disk C in R we have

(10) wt(e) = — (@) ({Inlz-¢] wriaBy + 162,
c

where k(z) is harmonic in €. Introducing a positive number ¢ < 1, we

can also write ( ) (L)
_ ot (ak,
whe) = 2= SOS R e R CR

The integral here is the logarithm of a geometric mean. The inequality
between the arithmetic and geometric means then gives

w*(C) w*(dEy)
wie) 3 27 hlSGS[z—CI R (OF

For a given ¢ > 0 we can choose C with given centre z, so that w+(C) < .
Indeed, when the radius a of C tends to 0, w+(C) tends to wt(zy)=0.
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In an Rg, w*(z)) >0 is impossible. (This follows e.g. from the fact that
no shortest line (“Kiirzeste’’) could pass through such a point. However,
according to theorem 6, p. 54, in [3], in an Ry a shortest line varies
continuously with its endpoints. Hence, between two shortest lines,
AB and AC, passing near 2z, on opposite sides, there must be an inter-
mediate one passing through z,.) Thus, if ¢ <}, we have

8t h(e) + u(@) -

ulz) < %ln“lz ¢
C

And because A(z) and »—(z) have upper bounds in C, we get in C
e < k(12— ¢1 wramy
c

where k is a constant.

We can now estimate w*(y,) for an arbitrary circular disk y, in C
with radius . Using (6), the last inequality for ¢** and that K >0 has
been assumed, we get

o y,) < Kjly,) = K SS &) drdy

<K I:k lz—¢|— w+(dE’c)] dedy
— Kk “(SS lo—t| da:dy) wH(dB,)
C \yp
< Kk g( 2 —edg)m(dEc)
¢ \o

—_ _n 2—-8§ = ! 2—2
ot (m(dEc) K2

L0

We have thus proved that, for every point z, in R and every &> 0, there
exists a circle C with centre z, such that

(11) w(y,) £ k'rie

for every circle y, in C.

Studying the regularity of u*(z) at a point z,, we need only the values
of u*(z) in a corresponding circle C. In the expression (10) for ut(z) we
may also disregard the function A(z), which has partial derivatives of
the second order, and the constant —(2z)-1. Instead of u+(z) we thus
study
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() = ({22l 04@B) = 3 ((mle— 2+ -0 0@ .
C c
For the derivatives of #(z,y) we get
z—§
= \amgr o e

and an analogous expression for ¢,, or in one formula

= R e
c

The differentiation under the integral sign may be justified by inverting
the order of integration in

) o o) am-

We put |z—z,|=r, suppose 4r <a (radius of (), and denote by C’ the
circular disk with centre z, and radius 2r. Now we can estimate
14(2) — t,(2o) in the following way:

b0 -te) = (§ (25 ) o
C

= S,Sz'l‘ 7 @By~ Eg zol_g‘*“(dE‘) + KS T C) e C)w +(dE,)

c-¢
= Il+IZ+I3 .

For I, we get the estimate
HdEy)
I < W
20— i

The most unfavourable mass-distribution compatible with (11) is

(12) 0H(C,) = ko>
for every circle C, with centre z, and radius p. This gives
2r
k@e-
gl = Sk’(2—s)gl-"g—1de = i ¢) (2r)t—e = cori—e,
—&
0

For I, we have an analogous estimate |I,| <c,71. For I, we find
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s = r

IA

(A
dd (2= 02— 1)
In this case the most unfavourable mass-distribution is given by (12)

for ¢ > 2r and has the mass k' (2r)2-¢ concentrated on the circle |{ —zy| = 2.
This yields

=

29— |2

c-¢ c-c’

]

IIA

2r [k' @2 + | K2- oo d@]

2r

K (2-¢)

- [a——(2r)~¢] £ cgrl-e.

I

E'(2r)t-s + 2r

— &
With these estimates of I, I, and I, we get
[t1(2) = 1(z0)l = [La]+ ol + 15| S (1 +Cy+e5)rt—e,

which is the desired Lipschitz condition (¢>0 can be made arbitrarily
small). (The estimation of ¢,(z) —¢,(2,) can be carried out in a more ele-
gant way by the method used by Carleson in [5, pp. 17-18 (1I)].)

RemARK 1. The result of b) also shows, that the superharmonic part
%*(2) of any function u(z) € C'(K) has partial derivatives u} and u;,
which satisfy Lipschitz conditions of every order 1 —e<1.

RemMarRk 2. The estimate—mentioned in the introduction—for the
deviation of a curve 4B from the geodesic 4B has been proved for an
arbitrary Ry by Alexandrow [3, p. 82]. For curves y of given length [
in an Ry, connecting endpoints with given goedesic distance r, the
deviation is greatest when the Ry is of constant curvature K and y
consists of two geodesics of equal length 4l. In my previous paper [6],
I was not able to generalise this estimate to a metric (2) with u € C(K)
for K > 0 (cf. theorem 1, p. 317, and theorem 3, p. 326, in [6]). Theorem 1
above shows that this case, too, is contained in Alexandrow’s result.

I wish to thank Professors Carleson and Ganelius for valuable help
and advice in the preparation of the manusecript. In particular, I am
indebted to Carleson for the idea of part b) of the proof of theorem 2.

Appendix: On the notion of area in a 2-dimensional R.!

On p. 343 we used the fact, stated by A. D. Alexandrow in [2, p. 513],
that a 2-dimensional Ry -space is of specific curvature < K. Since Alexan-
drow’s proof has not yet been published, a proof is given here with his

1 Received December 31, 1960.
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consent. This proof is intimately connected with the notion of area
in an Rg. Indeed, if w and j as above denote curvature and area, re-
spectively, we have to prove

(6) o(E) < Kj(B)

for any region Z. According to the definition of an Ry, we know that
for any triangle 7' the “‘excess relative K é,(7) is £0. In the simplest
case this is equivalent to w(7') = Kj(TX), where TK, as above (p. 339)
and everywhere in the following, denotes a triangle in a “K-plane’ (sur-
face of constant curvature K) [3, p. 34] with sides of the same lengths
as the sides of 7. According to theorem 1, p.71 in [3], j(TX)zj(T).
Then for K £0, the inequality (6) follows for certain triangles. But for
K >0 we need an estimate of the difference j(7'X)—j(T') corresponding
to the theorem on p. 399 in [2]. Therefore we must carry out a discus-
sion corresponding to § 1 of chap. X in [2, pp. 391{f.]. This will also lead
to the conclusion that the notion of area defined in [3, pp.70f.], for a
2-dimensional Ry may be understood also in the stronger sense of [2,
chap. X].

We shall need the following elementary estimate of the area of a
triangle in a K-plane in terms of one angle and the greatest side.

Lemma 1. The area of a triangle in a K-plane with greatest side d < | K|}
and one angle v is less than vd?.

Proor. The area of the triangle is at most v/2n times the area of a
circle with radius d. The area of this circle is for K >0:

2n K11 —cos(dK?)] < md?,
for K <O0:

27 K-1[1—cosh(d|K|})] = nd? cosh(6d|K[}) < =d? coshl,

(and for K =0: zd?). In all cases we get even better estimates than stated
in the lemma.

Now we begin the investigation corresponding to Alexandrow’s. The
curvature o has here to be replaced by the excess relative K, that is

0(T) = a+f+y—aX—pE—ypK,
where «, 8, y denote the angles of 7' and o¥, X, yK are the angles of
the “corresponding triangle” TK in a K-plane. Instead of the lemma of
[2, p-392] on triangles with polyedric metric, we have a lemma on
triangles with ‘“‘concavely K-polyedric” metric. We call an intrinsic
metric of a 2-dimensional manifold § concavely K-polyedric, if every
point of 8 has a neighbourhood, which is isometric to a cone in a space
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of constant curvature K, and the “full angle” [2, p. 38] of any point of
Sis = 2x.

Lemma 2. If T is a triangle on a 2-dimensional manifold with concavely
K-polyedric metric, j(T) and j(TX) are the areas of T and the corresponding
triangle TX, respectively, d <|K|=-* is the diameter of T and 0x(T') s the
relative excess of T, then

(13) 8x(T)d* < j(T)—j(TF) £ 0.

Proor. The right inequality is well known—even for any Ry (theorem
1, p. 71, in [3]). The problem is to prove the left inequality.

The difference between 7' and 7K is due to the presence of ‘“‘conic
points” in the interior and on the sides of 7. For the following proof it
is important to observe that no interior point has a full angle =3z.
In fact, if 7' (with vertices 4, B, O) should contain a point P with full
angle =3m, < APB or one of the analogous angles would have to be =zx.
This is impossible.

Now any interior conic point P can be removed or displaced to the
boundary of 7' by the following construction, (cf. fig. 1 and [2, pp. 394£.]).

B pig.1. B

We connect P with one vertex 4 of T' by the geodesic AP, and suppose
that no other conic point is situated on AP. (Otherwise we begin with
the first conic point on AP.) Then we draw a geodesic from P so that
the angles which it forms with P4 are equal, say ¢. We have n< ¢ < §x.
This geodesic is extended until it in @ meets either the side BC or a
conic point. We make a cut along 4P@ and insert between its sides
two triangles AP'Q and AP"'Q from a K-plane with the sides AP'=
AP"=AP and P'Q=P"Q=P@ and the angles at P’ and P’ equal to
27 —q@. If then the sides AQ of the two triangles are identified, 7' is
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transformed into a new triangle 7. The excess — and because 7K is
unchanged, also the excess relative K — of the triangle has increased
as much as the angle at 4, say by 2v. The area of the triangle has in-
creased by the two congruent triangles AP’'Q and 4P"'Q. According to
lemma 1, either of these triangles has an area less than vd®. Thus, if
(13) should not be true for 7', we would have

T —j§(TE) < j(T)—j(TE)+2vd? < Sx(T)d2+2vd? = 6x(T")d?,

that is, (13) could not hold for 7" either. (The diameter of 7" is also d,
because for any not too large triangle in an Ry the diameter is the
greatest side. This follows from the corresponding fact for the K-plane
by theorem 2, p. 53, in [3].) The number of conic points in the interior
of 7" is less than in 7. Repeating this process we can remove all
conic points from the interior of 7'. Thus it will suffice to prove (13)
for triangles 7' without conic points in the interior.

Such a triangle 7' may differ from 7K by the presence of extra ver-
tices P, with angles >z, on the sides. Now any such vertex P can be
removed by the following transformation of 7' into a new triangle 7',
(cf. fig. 2, and consider e.g. the case K =0 of the ordinary plane). If the
vertices on AB are A,P,D, ... in that order, we first extend DP to A’
so that PA’=PA (and the angle DPA’'=xz). Then we construct in a

Fig. 2.

K-plane the triangle 4,B,C, with sides equal to 4'B, BC and C4. In
this triangle the polygons A4,P,D,...B;, BiE,...C, and C,F,... A,
are constructed congruent to A’PD...B, BE...C and CF... A, re-
spectively. 4.,D,...BE,...C,F,... 4, is our new triangle 7', where
the extra vertex P is removed but all other extra vertices remain with
unchanged angles. Using arguments similar to the proof of lemma 2 in



TWO GENERALISATIONS OF THE NOTION “SURFACE OF CURVATURE < K” 351

[3, pp. 511.], we find that each angle of 7', is greater than the correspond-
ing angle of 7'. In fact

< BPA' > <« BPA = B;A, = BA’ > BA

= ¥ B,Ci4, > < BCA = «C, > xC,
X APC > 5 A'PC = 4,0, = AC > A'C

= < 4,B,C, > <« A'BC = <« B, ><%B,
< P,B,C, > <« PBC = P,C, > PC

= X P4,C;, > < PAC = s 4,> < 4.

For comparison of the areas of 7', and 7' we also construct in 7', the
triangles 4,C, P’ and B,C,P" congruent to ACP and BCP, respectively.
The difference A4j between the areas j(7';) and j(7') is, in fact, equal to
the difference between the sums j(4,C,P,)+j(B,C;P;) and j(ACP)+
J(BCP)=4j(4,0,P")+j(B,CP"), because these sums differ from j(7',)
and j(7'), respectively, by areas of polygons which are congruent in pairs.
4j is thus equal to the sum of the areas of the triangles 4,P,P’, C,P,P’,
CP,P" and B,P,P". Estimating these areas by the formula j <vd? of
lemma 1, we find .
4j < pd?*,

where y= < P,4,P'+ < P'C,P" + <« P,B,P" is equal to the increase in
excess 6(7) —0(T)=0x(T) —0x(T). Thus if (13) should not be true for
T, we would have

J(T) =j(TE) < j(T)—j(TF) +yd® < 6x(T)d?+yd? = dx(T1)d?,

that is, (13) could not hold for 7'; either.

Repeating this process we can successively remove all extra vertices
from 7. We thus arrive at the result that if (13) did not hold for 7', it
could not hold for 7X either. But as (13) is obviously true for 7K, it
must be true also for 7', and thus the proof is completed.

Corresponding to the lemma on p. 396 in [2] we have the following
result:

LemMmA 3. Let T be a triangle in a 2-dimensional Ry, d <|K|} its dia-
meter, 0x(T) its excess relative K and j(TX) the area of the corresponding
triangle in the K-plane. Then for any partition of T into triangles T';, the
sum of the areas j(T /K) of the corresponding triangles in the K-plane satis-

fies the inequality . .
Ox(T)d? = 3 j(TF)—j(T¥) = 0.
i

Proor. Let T be divided into triangles 7;. If each 7', is replaced by
the corresponding triangle 7',/X in a K-plane, the T';X (connected in the
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same way as the T';) constitute a polygon @ with K-polyedric metric.
Any angle «; in a T'; is not greater than the corresponding angle «,X in
the T',K (theorem 4, p. 54, in [3]). This has three consequences:

1° For any interior vertex of @ the full angle is =2x. In fact, it is
not smaller than the full angle of the corresponding point in 7', and even
this is = 2#.

2° At any exterior vertex of ¢ which does not correspond to one of
the three vertices of T the angle is >xn. This angle is not smaller than
the corresponding angle in 7', which also is 2x. (The ‘“Schwenkung”
[2, pp. 3511f.] of a geodesic is non-positive [2, p.498].) Thus, considering
its interior metric @ is a triangle.

3° The relative excess of @ is not smaller than the relative excess of 7':

8x(Q) 2 x(T).
Because of 1° and 2°, ¢ satisfies the assumptions of lemma 2, which

yields

(14) 0 2 j(@) —j(TX) 2 x(Q)d? = 8x(T)d?,

because of 3° and since the diameter of @ is equal to the greatest side of
) =the greatest side of 7'=d. However, (14) is the statement of our
lemma, because j(Q)=3,5(T,X).

THEOREM. Every triangle T tn a 2-dimensional Ry has an area j(T') in
the following sense: Let T be divided inmto iriangles T, with diameters
2d<|K|}t Then if d tends to zero, the sum 3,5(T,K) of the areas of the
triangles T/X (in a K-plane and with sides of the same lengths as the sides
of T;) converges to the limit §(T'). More precisely the inequality

0 £ 3T E)—j(T) £ —8,T)d*

holds, where 0,(T') is the excess relative » and »=max(K,0).

Proor. We first consider two arbitrary partitions of 7' into triangles
T, with diameters <d and into triangles 7T, with diameters <d,; <|K|%,
respectively, and prove that

(15) 8(T)d.? < _zﬂT,-K)—gﬂT;f‘) < —5,T)d2.

This is done by means of a common subdivision of the two partitions,
that is, a partition of 7" into triangles 7", so that any 7', is at the same

v

time contained in one 7; and one T}. According to lemma 3 we have

for any T.‘ 6K(T@)d2 < Zl j(T:,,K) '—j(T’iK) < 0 s

where the sum 3, is extended over those » for which 77 is contained
in T;. Adding for all 7', we find
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. 1K .
(16) @3 0x(Ty) < 3TV ) -SHTE) < 0.
1 14 ?

Between the excesses of 7' and the T'; we have the relation (obtained by
considering the sum of all the angles of the T';)

(17) 2Ty = 5(T)—§ TP“%“’Q z &T),

because both the ‘“Schwenkung” 7 of one side of 7' at a point P (vertex
of some 7;) and the curvature w, of an interior vertex ¢ are <0. Thus
we have

2. 0x(Ty) = 2 [8(T))~ Kj(TF)] 2 8(T)—- K 3 j(TX).

For K 20 we now use the fact that X,j(7,X) <j(T¥). This is the right
inequality of lemma 3 but does not depend on the assumption made
there about the diameter of 7. In fact, it follows directly from theorem 1
in 3, p. 71] (cf. the proof of lemma 3). We thus find

(18) 2. 0x(Ty) 2 8(T) - Kj(T*) = 6x(T) = 6,T) .

If K <0 we can replace dx by 6. We find by (17)
(19) 3 0x(T) = 2 [8(T) - Kj(TF)] 2 3 8(T) 2z o(T) = 6(T) .

Inserting (18) and (19) in the left member of (16) we get
d20(T) < 3 j(T,") =S JTE).

U i . 144 . /
sine > = %J(ThK)’

which is the right inequality (16) for the partition into the triangles 7,
we get the right inequality (15). The left inequality is proved in the same
way.

For a sequence of partitions P, of 7 into triangles 7™ with diameters
=<d,, (15) yields, if we put 3, j(T,"E)=3,

8(TVd,2 < 3n—3, < —8,T)d,2.

If lim,_, d,=0, it follows that lim, , 3, =a exists. Then if we use
T ™ ag the T} in (15) and let n — oo, we get

(20) 05 SjTK)—a < —o,T)

for the arbitrary partition into triangles 7';. The definition of area in
[3, pp. 70ff.] may—as remarked there—for 7' be written
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J(T) = inflim, Z.i(Ti‘Q)K)

where the lim is taken for an arbitrary sequence of partitions P into
triangles 7', @ with diameters <d,, with lim__, .d, =0, and the inf i 1s then
taken over all such sequences of partitions. Now it follows from (20)

both that j(T')=a and that the inequality of the theorem holds.

CorOLLARY. Since, as just observed, j(T')=lim,,_, >, j(T™K), applica-
tion of lemma 3 to the partitions P, yields, if the diameter of T is d <|K|%,
the following estimate for j(T')—j(TK):

ox(T)d® = j(T)—j(T%) £ 0

REMARK. The inequalities given here in the theorem, the corollary and
the lemmas are not the best possible. E.g. we have not made use of the
factor } obtained in the proof of lemma 1 for K =z 0. Also the restriction
d < |K|~* might be weakened.

ArprLIiCATION. We can now prove that a 2-dimensional Ry (and thus
also an R -space) is of specific curvature < K in the sense of [2, p.431],
that is,

(6) o(B) = Kj(E)

holds for any region £ in the Ry. We begin with the case K=0. Ac-
cording to the definition of curvature [2, p. 496], we have

(21) w(E) £ wt(l) = supZé(T

where the supremum is taken over all sets of non-overlapping triangles
T, which are contained in Z, and §(7',) as above is the excess of 7T';.
For any T'; we have

o(T) — Kj(T;) = o(Ty) — Kj(T' )+ K[J(T ) —j(T)]
= 0x(Ty) + K[J(T*)—j(T))]
S 0g(T)) ~ Kog(Ty)d?
= 0x(T)(1-Kd?),
because of our corollary above. If the diameter of £ is <K-%, the

same holds for d, (the diameter of 7',). Then 1-Kd2>0, and as
dx(T,;) £ 0 by the definition of an Ry [3, p. 36], we get 6(7';) = Kj(T';) and

ST < K 3Ty < Kj(B),

* which proves (6) for all sufficiently small E. A larger region E can e.g.
by a few geodesics g,, be divided into sufficiently small parts E,. Since
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the set function wx=w — Kj is completely additive and wg(£,) <0, we

have o e(®) = S ox(B)+3 oxlgn) £ S 0xGn) = S olgn) -

m

This is =0, because w(g) <0 for any geodesic g (cf. [2, p. 498]).
If K <0, we have for any triangle 7'

8(T) = 6x(T)+ Kj(T) < 6(T) < 0,

according to the definition of an Rg. The positive part of the curvature
ot is thus identically O (cf. (21)), and the definition of curvature [2, p.
496] for a region ¥ is simplified to

() = —w-(E) = inf Z oT;) ,

where the infimum is taken over all sets of non-overlapping triangles 7',
which are contained in E. From the premise d4(7";) <0 we get

oT;) = Kj(T;X) = Kj(T,),
because j(7';) <j(T,;X) (theorem 1, p. 71, in [3]). This yields
inf 3 &(7;) < inf 3 Kj(T;) = K-sup > j(T;) .

But, by the usual definition of j(E), we have supY,j(7T;) =j(£), and hence
w(E) = inf 3 &(T;) < K-sup 3 j(T;) = Kj(E),

which proves our statement.
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