A PROOF OF SCHWARTZ'S KERNEL THEOREM

H. GASK

1. Introduction.

We let O_x and O_y denote open sets in the Euclidean spaces R^n and R^m respectively and write O_{xy} for the product $O_x \times O_y$. As usual, $\mathcal{D}(O_x)$, $\mathcal{D}(O_y)$ and $\mathcal{D}(O_{xy})$ stand for the spaces of infinitely differentiable functions with compact supports (in O_x , O_y and O_{xy} respectively), equipped with the standard topology ([3]). The strong duals of these spaces will be denoted by $\mathcal{D}'(O_x)$, etc.

We identify a locally integrable function T in, e.g., $\mathcal{D}(O_x)$ with the distribution

$$f \to \langle T, f \rangle = \int T(x) f(x) dx$$
,

and we shall use the integral as a notation for the value $\langle T, f \rangle$ of T at f also when T is an arbitrary distribution.

Consider the space \mathscr{A} of all separately continuous bilinear functionals A on $\mathscr{D}(O_x) \times \mathscr{D}(O_y)$ with the topology of uniform convergence on products of bounded sets in $\mathscr{D}(O_x)$ and $\mathscr{D}(O_y)$. Any distribution T in $\mathscr{D}'(O_{xy})$ gives rise to such a functional A by specialisation to products of functions of x and y:

(1)
$$(\Lambda T)(f,g) = \langle T, f(x)g(y) \rangle = A(f,g).$$

The kernel theorem says that the mapping

$$T \rightarrow AT = A$$

is a linear homeomorphism between $\mathscr{D}'(O_{xy})$ and \mathscr{A} . In particular, there exists to any A in \mathscr{A} precisely one "kernel" T in $\mathscr{D}'(O_{xy})$ such that

$$A(f,g) = \int T(x,y) f(x) g(y) dx dy.$$

The theorem was first proved by Schwartz [4], and a much simplified proof has then been given by Ehrenpreis [2]. Our proof is close to that of Ehrenpreis but has the advantage that we can easily show that Λ in (1) is one-to-one and *onto* \mathscr{A} , before proving that it is a topological isomorphism. The proof of the former half of the theorem can thus be

328 H. GASK

made independent of most of the topological concepts necessary for the latter. A by-product of the proof is also a simple estimate of the local order of T in terms of the local order of A.

The theorem remains true if, e.g., \mathscr{D} is replaced by the space \mathscr{E} of infinitely differentiable functions, or if $O_x = R^n$, $O_y = R^m$ and \mathscr{D} is replaced by the space \mathscr{E} of Schwartz (see [3]). The proof given here is easily adapted to these cases.

In what follows, U and V will always denote compact sets in O_x and O_y respectively. By $\mathcal{D}(U)$ we shall denote the subspace of $\mathcal{D}(O_x)$ whose elements have their supports in U, and analogously for $\mathcal{D}(V)$ and $\mathcal{D}(U \times V)$.

2. Some estimates for Fourier series.

To any given U and V we can find a number a, such that U and V are contained in cubes with sides 2a-2, say, in \mathbb{R}^n and \mathbb{R}^m . We let K_x and K_n stand for the corresponding cubes with side 2a and write

$$e_p(x) = \gamma_n \cdot \exp\left\{i\pi a^{-1}(p_1 x_1 + p_2 x_2 + \dots + p_n x_n)\right\}$$

$$e_n(y) = \gamma_m \cdot \exp\left\{i\pi a^{-1}(q_1 y_1 + q_2 y_2 + \dots + q_m y_m)\right\}.$$

and

Here p and q are n- and m-tuples of integers and the constants γ_n and γ_m are chosen such that the functions are orthonormal. Any function h(x,y) in $\mathcal{D}(U\times V)$ can be expanded in a Fourier series in $K_x\times K_y$:

$$h(x,y) = \sum a_{na}e_n(x)e_n(y) ,$$

the sum taken over all p and q. The coefficients in (2) are given by well-known integral formulas, and integrations by parts in these formulas yield the classical estimates

(3)
$$|a_{pq}| \leq C_i |h|_i (1+|p|+|q|)^{-j}.$$

Here C_j is a constant independent of h, j is an arbitrary positive integer, |p| and |q| are defined as $\sum |p_i|$ and $\sum |q_i|$ respectively and $|h|_j$ stands for $\sup_x \sum_{|\alpha| \leq j} |D^\alpha h(x,y)|$. If $\varphi(x)$ and $\psi(y)$ are in $\mathscr{D}(K_x)$ and $\mathscr{D}(K_y)$ and identically one on U and V, the expansion

(4)
$$h(x,y) = \sum a_{pq} \varphi(x) e_p(x) \psi(y) e_q(y)$$

holds in the whole of $O_x \times O_y$. We shall write (4) in the form

(5)
$$h(x,y) = \sum \lambda_{pq} f_p(x) g_q(y)$$

with $f_p(x)$ and $g_q(y)$ proportional to $\varphi(x)e_p(x)$ and $\psi(y)e_q(y)$:

$$\alpha_{pq} f_p(x) = \varphi(x) e_p(x) ,$$

$$\beta_{pq} g_q(y) = \psi(y) e_q(y) .$$

With these notations the coefficients in (5) are given by

$$\lambda_{pq} = \alpha_{pq} \beta_{pq} a_{pq}.$$

The proportionality factors shall be chosen in a suitable way, expressed in the following lemmas.

Lemma 1. Let h be a function in $\mathcal{D}(U \times V)$ and k and l given positive integers. Then f_n and g_q in (5) can be chosen such that

$$|f_n|_k \leq 1$$

and

$$|g_q|_l \leq 1$$

for all p and q and

$$\sum |\lambda_{pq}| \leq C|h|_{k+l+n+m+2}$$

with a constant C independent of h.

PROOF. We write (4) as

$$h(x,y) \, = \sum a_{pq} (1 + |p|)^k (1 + |q|)^l \left[(1 + |p|)^{-k} \varphi(x) \, e_p(x) \right] \left[(1 + |q|)^{-l} \psi(y) \, e_q(y) \right] \, ,$$

and choose the functions in square brackets for f_p and g_q . The estimates (3) and some straight-forward calculations then give the lemma.

Lemma 2 (Ehrenpreis). Let $\{a_i\}_{1}^{\infty}$ be a sequence of positive real numbers and h any function in $\mathcal{Q}(U \times V)$ satisfying

$$|h|_{\nu} \leq a_{\nu}, \quad \nu = 1, 2, \ldots$$

Then there exists another sequence $\{b_v\}_1^{\infty}$, depending only on the original one and not on h, such that with a suitable choice of f_p and g_q in (5) we have

$$|f_{v}|_{v} \leq b_{v}, \quad |g_{q}|_{v} \leq b_{v}, \quad v = 1, 2, \ldots,$$

for all p and q, and also

$$\sum |\lambda_{pq}| \leq 1.$$

PROOF. The lemma expresses the fact that if h is in some bounded set in $\mathcal{D}(U \times V)$, the expansion (5) can be made such that (6) holds with f_p and g_q in fixed bounded sets in $\mathcal{D}(U)$ and $\mathcal{D}(V)$ respectively. For the proof, put

$$f_p(x) = |a_{pq}|^{\frac{1}{4}} \varphi(x) e_p(x) ,$$

 $g_q(y) = |a_{pq}|^{\frac{1}{4}} \psi(y) e_q(y) ,$

and hence

$$\lambda_{pq} = a_{pq} |a_{pq}|^{-\frac{1}{2}}$$

330 H. GASK

in (4). Then the rapid decrease of the coefficients a_{pq} , expressed by (3), is easily seen to give the lemma.

3. The kernel theorem.

As stated above, \mathscr{A} denotes the set of all separately continuous bilinear functionals on $\mathscr{D}(O_x) \times \mathscr{D}(O_y)$, and in what follows we shall simply write \mathscr{F} for $\mathscr{D}'(O_{xy})$.

It is a classical fact that the restriction to $\mathcal{D}(U) \times \mathcal{D}(V)$ of any $A \in \mathcal{A}$ is continuous (see, e.g., [1, p. 83]) and so there exist a constant C and integers k and l (depending, of course, on A) for which

(7)
$$|A(f,g)| \leq C|f|_k|g|_l, \quad f \in \mathcal{D}(U), \quad g \in \mathcal{D}(V).$$

As stated in the introduction, there is a mapping Λ of \mathcal{T} into \mathcal{A} , defined by (1). We shall now first prove that the range of this mapping is the whole of \mathcal{A} and that it is one-to-one.

Theorem 1. For any separately continuous functional A on $\mathcal{Q}(O_x) \times \mathcal{Q}(O_y)$ there exists precisely one distribution T in \mathcal{T} such that

(8)
$$(\Lambda T)(f,g) = \langle T, f(x)g(y) \rangle = A(f,g)$$

for all (f,g) in $\mathcal{Q}(O_x) \times \mathcal{Q}(O_y)$.

PROOF. We begin by restricting A to $\mathcal{D}(U) \times \mathcal{D}(V)$, U and V compact, and write an arbitrary h in $\mathcal{D}(U \times V)$ in the form given by lemma 1. If k and l are integers such that (7) holds for our given A we find

(9)
$$\sum |\lambda_{pq}| |A(f_p, g_q)| \leq C|h|_{k+l+n+m+2}$$

with C independent of h. We define T by

(10)
$$\langle T, h \rangle = \sum \lambda_{pq} A(f_p, g_q)$$

and conclude from (9) that T is a distribution on $U \times V$ of order $\leq k+l+n+m+2$. It is clear that (8) holds for this T and also that T is uniquely determined by A, for if A vanishes we infer from (10) that T(h) = 0 on all finite sums $h = \sum \lambda_{pq} f_p g_q$, and as the set of such sums is total in $\mathcal{D}(U \times V)$ the distribution T must vanish.

Now, O_x and O_y are unions of compact sets in each of which the existence of a unique T has been proved, and the theorem follows.

Theorem 2. The mapping Λ defined by (8) is a linear homeomorphism.

Proof. The topologies on ${\mathscr A}$ and ${\mathscr T}$ as introduced above are defined by the seminorms

$$egin{aligned} arrho_{B_{xy}}(A) &= \sup |A(f,g)|, \qquad f \in B_x, \quad g \in B_y \;, \\ \sigma_{B_{xy}}(T) &= \sup |\langle T,h
angle|, \qquad h \in B_{xy} \;, \end{aligned}$$

where B_x , B_y and B_{xy} are bounded sets in $\mathcal{D}(O_x)$, $\mathcal{D}(O_y)$ and $\mathcal{D}(O_{xy})$ respectively.

It is clear that Λ is linear. In order that Λ be a homeomorphism it is necessary and sufficient that it is bicontinuous, i.e. that Λ and Λ^{-1} are both continuous.

Let $\varrho_{B_{\sigma}B_{\sigma}}$ be an arbitrary seminorm on \mathscr{A} . Then

$$\varrho_{B_xB_y}(AT) = \varrho_{B_xB_y}(A) = \sup_{f \in B_x, g \in B_y} |A(f,g)| = \sup_{f \in B_x, g \in B_y} |\langle T, fg \rangle| \ .$$

It is easy to see that for any bounded sets $B_x \subset \mathcal{D}(O_x)$ and $B_y \subset \mathcal{D}(O_y)$ there exists a bounded set $B_{xy} \subset \mathcal{D}(O_{xy})$ such that all products fg are in B_{xy} whenever f is in B_x and g in B_y . Hence

$$\sup_{f \in B_{xy}} |\langle T, fg \rangle| \, \leqq \sup_{h \in B_{xy}} |\langle T, h \rangle| \, = \, \sigma_{B_{xy}}(T) \; \text{,}$$

and so Λ is continuous. Conversely, if $\sigma_{B_{ry}}$ is a seminorm on $\mathscr T$ we find

$$\sigma_{B_{xy}}(\varLambda^{-1}A) \,=\, \sigma_{B_{xy}}(T) \,=\, \sup_{h \,\in\, B_{xy}} |\big< T, h \big>| \,=\, \sup_{h \,\in\, B_{xy}} |\sum_{h \,\in\, B_{xy}} \lambda_{pq} A(f_p, g_q)| \text{ ,}$$

where h has been expanded as in lemma 2, and thus

$$\sup_{h \in B_{xy}} |A(f_p,g_q)| \leq \sup_{f \in B_x, g \in B_y} |A(f,g)| = \varrho_{B_xB_y}(A) ,$$

if B_x and B_y are those bounded sets in $\mathcal{D}(O_x)$ and $\mathcal{D}(O_y)$ which contain all f_p and g_q according to lemma 2. From (6) we now conclude

$$\sigma_{B_{xy}}(A^{-1}A) \leq \sup_{h \in B_{xy}} |A(f_p, g_q)| \sum |\lambda_{pq}| \leq \varrho_{B_x B_y}(A)$$
 ,

and thus Λ^{-1} is also continuous and the theorem is proved.

REMARK. For a given A in $\mathscr A$ we can define a functional L on $\mathscr D(O_y)$ by $\langle L,g\rangle=A(f,g), \qquad f\in\mathscr D(O_x), \qquad g\in\mathscr D(O_y)$,

and L is immediately seen to be a distribution in $\mathscr{D}'(O_y)$ for every f. Hence every A in \mathscr{A} gives rise to a mapping Γ from $\mathscr{D}(O_x)$ to $\mathscr{D}'(O_y)$:

$$(I1) (If)(g) = A(f,g),$$

and it is easily checked that this mapping is linear and continuous. Conversely, via formula (11) every such linear continuous mapping is seen to define a bilinear functional in \mathcal{A} .

332 H. GASK

The usual strong topology on the space \mathscr{L} of all continuous linear mappings from $\mathscr{D}(O_x)$ to $\mathscr{D}'(O_y)$ is defined by the seminorms

$$\theta(\varGamma) = \sup_{f \in B_x} \tau(\varGamma f) ,$$

where τ is a seminorm on $\mathscr{D}'(O_y)$ and B_x a bounded set in $\mathscr{D}(O_x)$. Therefore

$$\theta(\varGamma) = \sup_{f \in B_x} \tau(\varGamma f) = \sup_{f \in B_x, g \in B_y} |\langle \varGamma f, g \rangle| = \sup_{f \in B_x, g \in B_y} |A(f,g)| = \varrho_{B_x B_y}(A) .$$

Thus the kernel theorem states that the spaces $\mathcal F$ and $\mathcal L$ are homeomorphic, and this formulation of the theorem was the one used in the previous proofs.

REFERENCES

- 1. N. Bourbaki, Topologie générale, Ch. IX (Act. Sci. Ind. 1045), Paris, 1958.
- L. Ehrenpreis, On the theorem of kernels of Schwartz, Proc. Am. Math. Soc. 7 (1956), 713-718.
- 3. L. Schwartz, Théorie des distributions I and II. Paris, 1950 and 1951.
- L. Schwartz, Espaces de fonctions differentiables à valeurs vectorielles, J. Analyse Math. 4 (1954-55), 88-148.

UNIVERSITY OF LUND, SWEDEN