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A PROOF OF SCHWARTZ’S KERNEL THEOREM

H. GASK
1. Introduction.

We let O, and O,, denote open sets in the Euclidean spaces E™ and R™
respectively and write O,, for the product O,x0,. As usual, 2(0,),
2(0,) and 2(0,,) stand for the spaces of infinitely differentiable func-
tions with compact supports (in O,, O, and O,, respectively), equipped
with the standard topology ([3]). The strong duals of these spaces will
be denoted by 2'(0,), ete.

We identify a locally integrable function 7' in, e.g., 2(0,) with the
distribution

f=<2.py = 1@ f@) da,

and we shall use the integral as a notation for the value (7,f> of T at f
also when 7' is an arbitrary distribution.

Consider the space &7 of all separately continuous bilinear functionals
4 on 9(0,) x 2(0,) with the topology of uniform convergence on prod-
ucts of bounded sets in 2(0,) and 2(0,). Any distribution 7' in 2'(0,,)
gives rise to such a functional 4 by specialisation to products of functions

of z and y:
(1) (AT)(f.9) = T.f(x)g(y)) = A(f.9) .
The kernel theorem says that the mapping

T>AT = A

is a linear homeomorphism between 2'(0,,) and /. In particular, there
exists to any 4 in & precisely one “kernel” T' in 2'(0,,) such that

A(f9) = \ Te.y) f@) gty) drdy .

The theorem was first proved by Schwartz [4], and a much simplified
proof has then been given by Ehrenpreis [2]. Our proof is close to that
of Ehrenpreis but has the advantage that we can easily show that A
in (1) is one-to-one and onto &, before proving that it is a topological
isomorphism. The proof of the former half of the theorem can thus be
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made independent of most of the topological concepts necessary for the
latter. A by-product of the proof is also a simple estimate of the local
order of 7' in terms of the local order of 4.

The theorem remains true if, e.g., & is replaced by the space & of
infinitely differentiable functions, or if 0, = R", 0,= R™ and 2 is replaced
by the space % of Schwartz (see [3]). The proof given here is easily
adapted to these cases.

In what follows, U and V will always denote compact sets in O, and
0, respectively. By Z(U) we shall denote the subspace of 2(0,) whose
elements have their supports in U, and analogously for 2(V) and
2Ux7V).

2. Some estimates for Fourier series.

To any given U and V we can find a number a, such that U and V
are contained in cubes with sides 2a — 2, say, in B” and R™. We let K,
and K, stand for the corresponding cubes with side 2a and write

ep(x) = Yn°€XPp {ina—l(p1x1+p2x2+ et +pnxn)}
and .

ey) = Ym"exp{ina (@1 +qoYzt - - - + L)} -
Here p and ¢ are n- and m-tuples of integers and the constants y,, and y,,
are chosen such that the functions are orthonormal. Any function
h(z,y) in 2(U x V) can be expanded in a Fourier series in K, x K,

(2) hw,y) = 2 apep(@)eg(y) »

the sum taken over all p and ¢. The coefficients in (2) are given by well-
known integral formulas, and integrations by parts in these formulas
yield the classical estimates

(3) lapgl = C;lhl;(1+Ipl+1g))~7 .

Here C; is a constant independent of 4, j is an arbitrary positive integer,
|p| and |g| are defined as 3|p,| and 3 |g,| respectively and |k|; stands for
sup, 3, <; DM, y)|. If p(x) and y(y) are in Z(K;) and P(K,) and
identically one on U and V, the expansion

(4) Mz,y) = 3 ap,p(x)e,(@)p(y) e,(y)
holds in the whole of 0, x0,. We shall write (4) in the form
(5) h(%y) = zlqup(x)gq(y)

with f,(x) and g,(y) proportional to g(z)e,(x) and y(y)e,(y):
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pafp(X) = @(x)ey(x) ,
Bra9a¥) = v(y)eq(y) -
With these notations the coefficients in (5) are given by
Apg = %pgBpgng -
The proportionality factors shall be chosen in a suitable way, expressed
in the following lemmas.

Lemma 1. Let b be a function in D(U x V) and k and 1 given positive
integers. Then f, and g, in (5) can be chosen such that

fple = 1
|9gh = 1

z M’pq! é Olhlk+l+n+m+2

with a constant C independent of h.

and
for all p and q and

Proor. We write (4) as

M,y) =3 ape(1+1p))*(1+g]) [(1 + |p]) @) ey (@)] [(1+ Ig])p(y) ea(y)] »

and choose the functions in square brackets for f, and g,. The estimates
(3) and some straight-forward calculations then give the lemma.

Lemma 2 (Ehrenpreis). Let {a,}7 be a sequence of positive real numbers
and h any function in D(U x V) satisfying

k], = a

v

y=1,2....

Then there exists another sequence {b,}Y, depending only on the original
one and not on h, such that with a suitable choice of f,, and g, in (5) we have

lfp!v é bv’ |gg|v é bv’ v = 1’ 2, LR ]

for all p and q, and also
(6) Slip 1.

Proor. The lemma expresses the fact that if 4 is in some bounded set
in 2(U x V), the expansion (5) can be made such that (6) holds with f,
and g, in fixed bounded sets in 2(U) and 2 (V) respectively. For the

f
proof, put fo(@) = laygltp(@)e, (@),

94Y) = lay ly(y)e,y)

Apg = Opglapg|~

and hence
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in (4). Then the rapid decrease of the coefficients a,,,
is easily seen to give the lemma.

expressed by (3),
3. The kernel theorem.

As stated above, &/ denotes the set of all separately continuous bi-
linear functionals on 2(0,) x 2(0,), and in what follows we shall simply
write J for 2'(0,,).

It is a classical fact that the restriction to 2(U) x @(V) of any 4 € o
is continuous (see, e.g., [1, p. 83]) and so there exist a constant C' and
integers k£ and ! (depending, of course, on A4) for which

() 4,9 = Clfixlgh,  feDU), geD(V).

As stated in the introduction, there is a mapping 4 of 7 into &, defined
by (1). We shall now first prove that the range of this mapping is the
whole of o/ and that it is one-to-one.

TuroREM 1. For any separately continuous functional A on 2(0,) x 2(0,)
there exists precisely one distribution T in I such that

(8) (AT)(f.9) = (T.f(x)g9(y)) = A(f.9)
for dall (f,g) in D(0,) x D(0,).

Proor. We begin by restricting 4 to 2(U) x 2(V), U and V compact,
and write an arbitrary A in Z(U x V) in the form given by lemma 1. If
k and ! are integers such that (7) holds for our given 4 we find

(9) z Mpql lA(fzngq)l é C|h|k+l+n+m+2
with C independent of 2. We define 7' by
(10) (T,ky = 3 2, A(fpy9,)

and conclude from (9) that 7' is a distribution on U x V of order
<k+l+n+m+2. It is clear that (8) holds for this 7' and also that 7' is
uniquely determined by 4, for if A vanishes we infer from (10) that
T(k)=0 on all finite sums h=34,,f,9,, and as the set of such sums is
total in (U x V) the distribution 7' must vanish.

Now, 0, and O, are unions of compact sets in each of which the exis-
tence of a unique 7' has been proved, and the theorem follows.

TaEOREM 2. The mapping A defined by (8) is a linear homeomorphism.

Proor. The topologies on & and  as introduced above are defined
by the seminorms
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QB,By(A) = SuPIA(f:g)l! fe Bz: ge By ’
GBW(T) = sup [T, k)|, ke B,,,

where B,, B, and B,, are bounded sets in 2(0,), 2(0,) and 2(0,,)
respectively.

It is clear that A is linear. In order that A be a homeomorphism it is
necessary and sufficient that it is bicontinuous, i.e. that A4 and A-! are
both continuous.

Let o BB, be an arbitrary seminorm on /. Then

05,n(AT) = 0pn(d) = sup |A(fg)l = sup KTofpdl -
feBz,geBy feBz,geBy

It is easy to see that for any bounded sets B,=2(0,) and B,<2(0,)
there exists a bounded set B,,<%(0,,) such that all products fg are in
B,, whenever fis in B, and g in B,. Hence

sup [KT.fg)| = sup (T,h)| = op,(T),

feBz,geBy heBgy

and so 4 is continuous. Conversely, if o5, is a seminorm on J~ we find
o5, (A7) = oy (T) = sup [KT,1)] = sup |3, ZygAfpg)] »
heBgy heBgy

where & has been expanded as in lemma 2, and thus

sup 'A(fp’gq)] = sup 'A(f,g)l = ngBy(A) )

heBgy

feBg, geBy

if B, and B, are those bounded sets in 2(0,) and 2(0,) which contain
all f, and g, according to lemma 2. From (6) we now conclude

UB,,/(A—IA) § sup |A(fp7gq)| z Mpql é QB,;BF(A) ’

€Bgy

and thus A-! is also continuous and the theorem is proved.
REMARK. For a given 4 in o/ we can define a functional L on %(0,)
b
Y Lgy = Alf.9).  fe2(0), 9e20,),

and L is immediately seen to be a distribution in 2'(0,) for every f.
Hence every 4 in &/ gives rise to a mapping I" from 2(0,) to 2'(0,):

(11) If)g) = A(f.9),

and it is easily checked that this mapping is linear and continuous.
Conversely, via formula (11) every such linear continuous mapping is seen
to define a bilinear functional in 7.
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The usual strong topology on the space .# of all continuous linear

mappings from 2(0,) to 2'(0,) is defined by the seminorms
0(I") = supz(If),
feBg

where 7 is & seminorm on 2'(0,) and B, a bounded set in Z(0,). There-
fore

6(I') = supz(If) = sup [KIf,g)l = sup |A(f,9)| = ep,n,(4).

feBg feBg,geBy feBz,geBy

Thus the kernel theorem states that the spaces .7 and ¥ are homeo-

morphic, and this formulation of the theorem was the one used in the
previous proofs.
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