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ON A THEOREM OF E. SPARRE ANDERSEN
AND ITS APPLICATION TO TESTS AGAINST TREND

H.D. BRUNK

0. Introduction and summary.

Let n be a positive integer, to be fixed throughout, and let X, ..., X,
be random variables. Let

\
S,=0, 8, =3X, r=12...n
=1

The lower part of the boundary of the convex hull of the set of points
{(r,8.)}r_, in the cartesian plane is the greatest convex minorant of this
set of points, and will be referred to as the gem. E. Sparre Andersen [2]
found the distribution of the random variable M defined as the number
of sides of the gem, when the random variables X,,...,X, are symme-
trically dependent, and observed that it is the same distribution as that
of the number of cycles in a randomly chosen permutation of the integers
1,2,...,n

The gem can be described in terms of averages of successive terms of
the finite sequence X;,X,,...,X,. Determine a, so that

z X;la, = mln Z X,r;
1=1
determine a, so that

ay+r
z X,/(ay—a,) = m1n 12 X,[r;  ete.
t=a1+1 t=ai+1
Then the index m for which @, =n is the number of sides, M, of the gem.
It is found in Section 1 that the random variable M will have the same
distribution if the arithmetic averages X7  X,/r are replaced by
E(X,1,...,X,,,) for less specialized functions E,. The resulting theo-
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rem contains Andersen’s theorem on the distribution of the number of
sides in the gem, and the theorem giving the distribution of the number
of cycles in a randomly chosen permutation of 1,2, .. .,n, as special cases.

In the developing this result, a combinatorial theorem of Spitzer
(Theorem 2.1 of [12]) is generalized so as to apply when the functions #,
replace arithmetic averages. This combinatorial theorem may be applied
in the same way as was Spitzer’s [12] to yield a corresponding generaliza-
tion of another theorem of Andersen [1].

The principal theorem is extended somewhat so as to cover applica-
tions made in Sections 2 and 3. The applications in Section 3 involve only
the special case ,

B (zy,...,x,) Eizlxi/r.

Section 2 is devoted to the distributions of certain random variables
determined by the gem. Section 3 contains a brief discussion of the
application of the result of Section 2 to tests against trend. It contains
also a remark as to the possible utility of the number of sides of the gem
as a statistic in a distribution-free test against trend.

The writer gratefully acknowledges the benefit of conversations with
Professor E. Sparre Andersen.

1. The principal theorem.

The theorems of this section are largely combinatorial in nature;
their statements require the prior introduction of a rather large number
of special notations and terms.

DerintrioN 1.1. Let = (x4, . . .,x,) denote the generic point of euclidean
n-space 8. Let B (t,,,, . . .,t,) be a real-valued function of the real variables
bitos ooty r=1,2,...,n. Let E (x) denote B (x,,%,,...,x,) when xcd™.

In further definitions, the symbols =, and <=, will be used in defining
that which appears on the left of the symbol by that which appears on
the right.

DEerinNiTIONS 1.2, Sets A, *, oL, L, V', and tuples a, u, y are
defined by (1.1-7) below.

For m=1,...,n, the set A, of m-vectors k with non-negative integer-
valued coordinates is defined by

(1.1) ke, <=pk = {k};i > ik; =, Sk =m.
i=1

=1

(In particular: one may think of %; as the number of sides of horizontal
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extent ¢ in the gem of a set of points (0,0),(1,s,),...,(n,s,); then m
would be the number of sides of the gem.)

For m=1,...,n, the set /% of m-vectors o with positive integer-valued
coordinates is defined by

(1.2) n e ol o ke ;0 = {ofny; forany i =1,...,n,
D | k; of the coordinates of « are equal to i.

It follows from the definition that

m m n
Sa;=n and [« = [T
=1 i=1 -1

(In particular: «,...,x, may be thought of as a specification of the
horizontal extents of the sides of the gem referred to above.)

The set o ,,, m=1,...,n, and the set o/ are defined by
(1.3) Adn=p U * a=pU,.
ke m m=1

(In particular: 7, is the set of all « which specify horizontal extents of
sides of the gem when it has m sides.)

For m=1,...,n, the set V", is defined by

v=p (v, .. ,0,), vy =pla,w;], J=1,...,m;
(14) ve? ,<a = (... ,0p) €Ly
w= (wy,...,w,)1isa point of euclidean m-space &™.

(In particular: » may be thought of as a specification of horizontal
extents, «;, and slopes, w;, of sides of the gem.)

For m=1,...,n, and xes,, the (m+ 1)-tuple a=a(x)=(ay,ay, . . .,a,)

s defined by
ay = 0;
1.5 I ,
(1.5) ajzaj(oc)EDZ(X”, j=1L...,m.
y=1

(In particular: The a; may be thought of as abscissas of endpoints of the
sides of the gem.)

For nesl,, and xc 8", the m-tuple u=u(x,x) is defined by (cf. Defini-
tion 1.1)
{ (o, ) =p (Uq, - - -, %p) »
(1.6) .
w; = w(x,%) =p Ea?(xaj_lﬂ, .. -’”"a,-): ji=1...,m.

It
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(In particular: if £ is a simple arithmetic average, then n; represents the
slope of a segment of the graph of {(,s;}}_, between points with abscissa
a;_, and a;.)

For aest,, and xe &, the m-tuple y=1y(x,x) is defined by

(1.7) { y = yloz) =pv(u) = (Y1, ,Ym)

Y; = Yslx,) =p (o), Jj=1,...,m.
It follows from the definition that ye¥ ,. (In particular: if £ is an

arithmetic average, again ¥ is a specification of horizontal extents and
slopes of segments of the gem.)

DEerFiNITION 1.3. Let &, be a subset of &, invariant under permutation

operators, such that at each point x=(x,,...,x,) of &, for 1<r<it=n,
(1.8) min(¥ (zy,...,2,.), B (41, .,7)]
2 E(xy,....x) £ max[E (zy,...,2%,), B_(,11,...,7)],
and
(1.9) E (2, ...,2,) + B2y, ...,2).

The writer’s attention was called to property (1.8) by Mr. H. Brens of
the Statistics Institute, University of Copenhagen, in conversations in
which Mr. Brens suggested that such functions might be of rather wide
statistical interest.

It is property (1.8) of the functions ¥, on &, which is critical in the
present investigations. It is noted that both

E(xy,....2)=Dxfr and E(z,,...,2,)=u2z,

=1

satisfy (1.8). Property (1.9) may most appropriately be considered a
property of the set &, for given functions E, satisfying (1.8) on that set.

DEriNtTION 1.4, The sets A,,, A(x), B(x), D(«), D%, D,, are defined by
the equations (1.10-14) below.

For m=n,
(1.10) A, =p{weé™ wy<w,<...<w,}.

(Note that the slopes of the sides of the gem of a set {(i,s;)};_, of points
in the cartesian plane increase to the right.)

For anest ,
111 A(x) =p {€ &y wo,2) €Ay} = (€&t Uy<...<Up},
(1.11) {uj = wu(x,2), Jj=1L12,....m; ifm=1, A(a)=p Ey .
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Bj(x) =p {r€ &t u;< min E(z,_ 13,1040}
1sr<aj

(1.12) I J=1..m; 0 = aw), 4 = uyxa),

B(x) =p [ Bj() .
J=1

(1.13) D(x) =p A(x) B(x) .
For ke,
(1.14) D=, U D), D,=p, U D¥=U D).
aeslk ke m aem

We pause to interpret some of the variables and sets defined above in
each of two cases: Case 1, that of Andersen’s theorem [2], and Case 2,
that of randomly chosen permutations of 1,...,n.

DErviniTION 1.5. Case 1 is specified by setting

r
‘Ef(tl’ . "tT) EDE ti/r N
=1

and &, equal to the set of all points x of &™ such that the arithmetic averages
of distinct sets of coordinates of x are unequal.

Set 8,=0, s,=3/_;x,, r=1,...,n, and plot the points {(r,s,)}}_, in
the cartesian plane. Then xz; is the slope of the line segment joining
(1—1,8;4) to (4,8;); u; is the slope of the segment joining (a;_y,8,_,)
to (a;,8,). For weéy, the segments joining two distinct pairs of points
will have different slopes. The set B(«x) is the set of all zeé, such
that for j=1,...,m the segment of slope u; lies below all intermediate
points. A(x) is the set of those x in &, for which the slopes w; strictly
increase with j. The set D(«) consist of all points in &, such that the
segments of slopes u,,...,%, form the greatest convex minorant (gem)
of {(r,s,)}7_o.- Therefore, D(x) may be interpreted as the set of points x
in &, such that the gem has precisely m sides, the first of horizontal
extent «,, the second of horizontal extent «,, etc. Correspondingly, D*
may be interpreted as the set of points z in &, such that the gem has &,
sides of horizontal extent 1, k, of horizontal extent 2, ete. In particular,
D,, is the set of points x in &, for which the gem has m sides.

DerintTIoN 1.6. Case 2 is specified by setting
E.(t,...,t,)=pt,,

and taking for &, the set of permutations of 1,2,...,n; more precisely,
&, 18 the set of points xe E™ whose coordinates are distinct positive integers
not greater than n.

Math. Scand. 8 — 20
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Here Bj(«) is the set of points ze &, such that z,; is the smallest of
the integers Z,; .1, %4 49, - - -, %,;; and A(x) is the set of xe &, such that
Ty <Tg,<...<®, . Thus if, for ze &, one picks a, as the index of the
smallest coordinate (this coordinate is 1), @, as the index of the smallest
of those with greater index, etc., and then sets x;=a;—a;_;,j=1,2,...,m,
one has ze D(«).

For each m < n we have to deal below with permutations of 1,2,...,m;
for each such permutation, and for fixed xe.«,,, we consider a certain
permutation of the integers 1,2,...,n.

DerFiniTIONS 1.7. For m=1,...,n, we denote by I1,, the set of all permu-

tations . .
w: (1,...,m) > (iy, .. . 50,) -

We denote also by m the permutation operator carrying an ordered m-tuple
W= (Wy.. o, W) NGO AW = (Wi, Wy 5 Wy)
and by II, the class of such permutation operators. For mell,, e,

(1.15) A(x,7) =p {x € &y: mu(x,x) € 4,}

= (e uy<uy<...<u}.

Remark 1.1. If xesfk, then as & ranges over I,,, no ranges over /¥,
each element of /% appearing exactly TT;_,k;! times.

For greater clarity, we illustrate the notation. Suppose that n=7,
m=4, k;=2, k,=1, ky=1, x=(2,1,3,1), and that = carries (1,2, 3,4) into
(2,4,1,3). Then

e = (0g,004,000,008) = (1,1,2,3);
v(x,w) = ([2,7.01], [1,w,], [3,w,], [1’w4]);
(@, a1, 09, 04,a,) = (0,2,3,6,7);
U = (Uy, Ug, Ug, Uy) = (Ez(xl:xz)’ E\(5), By, 25, %), El(x7)) 5
= (El(xfi)’ E\(x;), Ey(2,,%,), Es(“w‘”w%)) .

The permutation operator p=p(x,n) defined in Definition 1.8 below
carries
T = (%,%5,...,%;) into px = (g, %y, Ty, Tg, Ty, Ty, Tg) «

Since nx=(1,1,2,3) we have
w(ne, pr) = [E(x3), By(2q), By, 20), By(4, 25, %)] = mu(x, )

verifying (1.16) below. Also
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B(a) = {xe &y By, wp) < Ey(2y), By(@y,%5,%)
< min[E,(x,), B2y, 25)]} ,
B(nx) = {z € &y: Bylws,xs) < By(3), By(ws, 2, %7)
< min[Ey(x5), By(xs, )]} -
Thus x € B(x) < px € B(nx);
that is, B(mwo) = pB(x), verifying (1.17) below.

DerintTioN 1.8. For m<n, o€, nell,, let u=u(x,x) and think of
the coordinates of x appearing in the definition of w;(x,x) as being written
in the order of increasing index j, j=1,2,...,m. Let ji,j5 ...,5, be the
indices of the coordinates of x in the order in which they appear when the u;
are rearranged to form muw=(w;, %, ...,%; ) without rearranging the co-
ordinates of x within wy, (j=1,2,...,m). Let p=p(x,7) carry x=
(@1, - . ., x,) tndo pr=(2;,%;,, . . ., %;,)-

Lemma 1.1. For m<n, aeA,, nell,, p=p(x,x), we have

(1.16) mu(o,x) = u(me, pr)
and
(1.17) pB(x) = B(nx) .

This lemma is immediate from the definitions of the symbols involved.
Continuing the illustration of the notation, we have
Y = ylxz) = v(x,u)
= ([2’ E2(x1’ x2)]’ [1; El(xél)], [3’ 'E3(x47x5)w6)]: [ly El(x7)]) .

Also
Yo, pr) = v(mox, u(mx, pr))
= ([1> El(x:))], [1, El(x7)]3 [2’ E2(x1’z2)]s [39 E3(x4’x5)x6)])
= ”y(‘x:x) s

verifying (1.18) below.

CoROLLARY 1.1.
(1.18) ay(o,x) = y(me, px) .

Proor: ay(o, ) = oo, u(o, )] = v[mx, mu(x, )]

= v[nx, u(no, pr)] = ylro, pr) .
Lemma 1.2. If m<n, e, the sets A(x,n), nell,, are disjoint and
their union 18 &y. If p=p(x,n) for nell,, then
(1.19) pA(x,7) = A(nx) .

20*
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Proor. The first statement is immediate from Definition 1.3 and

(1.15). Further
A(x,7) = {xeby: mu(x,x)ed}

= {xefy: u(nx,pr)ed}.
That is, xe 4A(x,x) if and only if pre A(nx); this is (1.19).
Motivated by the applications in Sections 2 and 3, we introduce some

definitions and a property of classes {H(x)} of subsets of &, one set
corresponding to each aeo/.

DeriniTioN 1.9. The class {H(x)}, xesZ, of subsets of &y will be called
aw-invariant if e, well,,, p=mp(x,7) (cf. (1.3), Def. 1.7-8) imply

(1.20) pH(x) = H(nx) .

It is part of the conclusion of Lemma 1.1 that the sets {B(«)} are
zm-invariant.

DerintTiONS 1.10. For m=n, kex',,

[ He =, U H@)D(),
aeslk

(1.21) n
H,=, U B*, H=,JH,.
ke m m=1
DerintTioN 1.11. The random variables X, ..., X, are symmetrically

dependent (E. Sparre Andersen) if for every Borel set J <&™ and every
permutation operator p we have

(1.22) Pr{XeJ} =Pr{pXeld};
or equivalently, if for every event J < &™ and every permutation operator p,
(1.23) P(J) = P(pJ) .

In general, we shall use the same symbol for a subset of £ and for the
event which occurs if X falls in that subset.

Lemna 1.3. If {H(x)}, xes, is m-invariant, if m<n, keX',, sk,
and if the random variables X, . .., X, are symmetrically dependent, then
(1.24) PG = (TTkY) 3 PLAGHE).

i=1 pestk
Proor. {4(x,n)}, mell,, is a partition of &, into disjoint sets. Hence

PH()] = 3 PlA(x,7n)H(x)] .

nelly
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Since the random variables X,,...,X, are symmetrically dependent,
we have

PlA(x,7m)H(x)] = P[pd(x,n) N pH(x)] = P[A () H(7x)]
by (1.19) and (1.20). The conclusion now follows from Remark 1.1.

LemMa 1.4. For distinct oA, the sets D(x) are disjoint, and
Usewr D(x) = &y
Proor. Given zed,, choose &, =a, so that
u, = B, (2,...,2,) = min E(z,...,2,).

1<r<n
Then choose «, so that

Uy = B, (€441, -+ ,%,) = min B (T, 4, ..., % 4,), ete.
1=rsn—ay
For a=(x;,&,...,&,) thus determined we clearly have xeB(x) (cf.
(1.12)). Further,
uj < Eai+oc]-.,,1(xa7~_1+l’ e 7xaj+1) ’

hence from (1.8) it follows that u;<wu,.;, j=1,2,...,m—1. Thus also
xeA(x) (cf. (1.11)), hence xeD(«). Further, if xeD(B) for feo, one
verifies that

Ey(2y,...,%) = min K (2y,...,x,), etc.,
1=srsn

so that f=u.

DrriniTIiONS 1.12. By Lemma 1.4, to each xe &, corresponds a unique
m=m(x) and an o=ox(x)=/[x(x),...,0,(x)]eL,, such that xeD[x(x)].
Combining this fact with (1.5), we obtain the functions a;[x(x)], j=1,2,.. .,
m(x), and, in conjunction with (1.6), the function

(1.25) u(x) =p u[x(x),x] .
We also define
(1.26) M = m(X).

REMARK 1.2. {xe&,:m(x)=m} = D,, (cf. 1.14).

In Case 1, m=m(x) is the number of sides in the gem of {(r,s,)}/_,;
o,(z) is the horizontal extent of the first side, etc. The random variable
M is the function of X obtained on replacing the point x by the random
variable X.

In order to interpret M in Case 2 as the number of cycles in a randomly
chosen permutation of the integers 1,2, . . .,n, we first introduce the repre-
sentation x = (r,%,, . . .,&,) of a permutation (1,2,...,7) - (ji,Ja - - - »Jn)-
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The first coordinate x, is the integer j; which replaces 1; z, is the integer
which replaces x,, etc., this phase of the definition terminating when a
coordinate equal to 1 is reached. The following coordinate of x is the
integer replacing the smallest integer which doesn’t already appear among
the coordinates, etc. It will be recognized that this representation is a
familiar device for exhibiting the cycles of the permutation. For ex-
ample, if the permutation carries (1,2,3,4,5,6,7) into (5,1,4,7,6,2,3),
then 15, 56>6, 62, 2—>1; 3>4, 47, 7T 3; hence the per-
mutation has 2 cycles, and we have z,;=5, z,=6, 2,=2, 2,=1; z;=4,
2g="1, ,=3. Here m(x)=2, x,(x)=4, xy(x)=3.

Since to each permutation corresponds one and only one such repre-
sentation in cycles, it is clear that each point in &, occurs with probab-
ility 1/n! when the permutation is chosen at random. It follows that the

random variables X,,...,X, are symmetrically dependent (Definition
1.11).

TaeorEM 1.1. If {H(x)}, xeSf, 18 m-invariant (Definition 1.9), if
msn, ke, el and if the random variables X,,...,X, are sym-
metrically dependent, then
(1.27) P(H*) = P[H(x)B(x)] / T k! .

i=1

Proor. It suffices to replace H(x) in Lemma 1.3 by H(x)B(x) and to
observe that since D(8)=A(8)B(8) one has (cf. (1.21))
P(HF) = ékP[A(ﬂ)B(ﬂ)H(ﬁ)]-
fe
It is shown below that

PLH(x)B(»)] = PLH(x)] 1} (1)

For Case 1 and for H(«)= &, this result is essentially a consequence of a
theorem of Andersen [1]. This latter theorem Spitzer [12] subsequently
obtained as an immediate application of a combinatorial theorem on
the averages (3;_,x;)/r. This theorem is generalized here so as to apply
to the functions E,.

Let ¢ be a positive integer not greater than n. Then &,* will denote the
projection of &, on &*:

Cf=p{w= (wy,...,w)e " Iu,,,%.,,...,2, such that
(W« v Wy Xyyy, o o o3 ®y) € Ex} .
Let C denote the cyclic shift transformation in &*:

w = (W, Wy, ..., W) > Cw = (W, Wy, . .., W, W) .
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THEOREM 1.2. For fixed t, 1 <t <n, for fixed r, 0Sr <t —1, and we &y},
there 1s exactly one integer v=v(r), 0<v <t—1, such that exactly r of the
inequalities

(1.28) E(Cw)< E(C'w), E(Cw)< Ey(C'w), ..., E(Cw)< E;_1(C'w)
hold.

The method of proof is suggested by the graphical interpretation given
by Spitzer for Case 1. In Case 1, define

J
Ty =poy, 1=12,...m, s=p>xlj, j=12,...,2n,
i=1

and plot the points (j,s;), j=0,1,...,2n. There will be exactly one
integer » such that exactly r points lie above the segment joining the
points (v,s,) and (»+m,s,,,). For this », exactly r of the inequalities
specified in the conclusion of the theorem obtain.

Proor or THEOREM 1.2. It is useful to reinterpret (1.8) and (1.9) in
terms of the present notation. For 1st=<n, 1<j=¢,

w = (W, Wy, ..., wy), Ejw)=pHEwy,w,,...,w;).
Then (1.8) may be rewritten:
(1.8) min[E;(w),E, j(C'w)] £ Efw) £ max[E;(w),E,_;(Cw)];
and (1.9) becomes
(1.9") Ej(w) + Eyfw) .
The proof of Theorem 1.2 depends on showing first:

1° If an inequality E\(C'w) < E;(C"w) obtains, then fewer of the inequal-
ities (1.28) are satisfied if v is replaced by v+j (mod t) than are satisfied
for ». Thus in this case it is not so that the same number of inequalities
(1.28) are satisfied for » as for »+j. Suppose 1° established, and suppose
further that E;(C’w) < E(C"w). From (1.8'),

E(Cw) £ E,_,(C""w).
If B, j(C"+w) < E(C**iw), then by (1.8') again,
B(Cv+iw) £ By(Cr+w) = Ey(Cow) .
Then E,_j(C+w) < E,(Cw) < B(Cw),

a contradiction. Thus

E (Cw) < E(C'w) implies E/(C*w) < E,_j(C"+w).
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It then follows from 1° that fewer of the inequalities (1.28) are satisfied
for v+j+t—j=v» (mod ¢) than for »+j. Thus again it is not so that the
same number of inequalities (1.28) are satisfied for » as for »+j. Thus
for distinct » there are distinct numbers r of the inequalities (1.28)
satisfied, and the conclusion of Theorem 1.2 follows.

It remains to establish 1°. It suffices to establish it when v=0, as 1°
may then be obtained by replacing w by C*w. We show that if

(1.29) Efw) < Ej(w)
and if

(1.30) E(Cw) < E,(Ciw),
then

(1.31) E(w) < E(w), 1<h<t h=j+k(modt).

Thus if (1.29) obtains, corresponding to each of the inequalities (1.28)
satisfied for »=j there is one other than (1.29) satisfied for »=0; this
establishes 1°. Suppose (1.31) does not follow from (1.29) and (1.30),
and that instead

(1.32) E,(w) < E(w) .
From (1.30) and (1.8"), it follows that
(1.33) E, ,(Citkw) < E(C'w) < E,(Clw) .

Case (i). Suppose now that j+k<t. From (1.29) and (1.32),
E; (w) < E;(w). From (1.8"),

(1.34) E,(Ciw) £ E; 4 (w) < Ejw) .
From (1.33) it now follows that
(1.35) E,_(Citkw) < Ej(w) = E,(Cw)
and from (1.8’) that
(1.36) B, ;. _j(Citkw) < E,_;(Ci+kw) < E;(Clw) .
From (1.36), (1.33), (1.34) and (1.32) we have K, , ;(C7+kw)< E(w).
Application of (1.8') yields
By - j(C7*w) < Ew) < Bjyp(w),

contradicting (1.32).
Case (ii). Suppose, finally, that j+k>¢ (note that (1.32) forbids
j+k=t). The inequalities (1.33) may then be written

(1.33") E,_(C™w) < E(Ciw) < E(Ciw).
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Also (1.8') yields
(1.37) E,(w) = E,(Cw) £ E,(Ciw) < E,_;(C'w) .

Now E(Chw) < By_(Chw)

together with (1.8’) yields

From (1.29) and (1.38) we have E(w)<E;w)< E,_;(C?w), contradicting
(1.8"). This completes the proof of Theorem 1.2.

Andersen’s theorem [1] is now seen still to hold when the arithmetic
averages are replaced by the present functions E,:

THEOREM 1.3. Let C denote the cyclic shift transformation in ™. Let L
denote an event (subset of &) invariant under C. Let N =N(x) denote the
number of indices ¢ (1=1,2,...,m—1) such that E, (x)<E(x). If
P(&y)=1, then

Pr{N(X)=r|L} =1/n, r=0,1,...,n—-1.

Proor. Theorem 1.3 is immediate from Theorem 1.2, which implies
that the sets

{: N(Cx)=r}nLn &, v=20,1,...,n—1

are disjoint sets which have the same probability and whose union is
Lné,.

DrriniTIONS 1.13. Let ny,my, . . ., n,, be positive integers with n=37" n,.
For j=1,2,...,m, let x7=(2; 1,%; 5,...,%; »;) denote the generic point of
&%, and let x=(x,. ..,2™) denote the generic point of the cartesian product
&n=X7 6™, For each j, define the cyclic shift transformation

(1.39)  Op: ad = (%0, s %y0) > O = (@0, - %), 0%, 1)
and define

(1.40) Oz = Oy, ..., 20, .., 2™) =p (a2, ...,0pt, ..., 2™) .

Let X;; be a random variable, ¢=1,2,...,n;, j=1,2,...,m. Let L
be a Borel subset of & invariant under each C;, j=1,2,...,m. Then
the event

{(Xy1 - . CRE D PRI SR e L}
(denoted also by L) will be termed cyclically symmetric in X; 5, ..., X; o,
forj=1,2,...,m.
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DerFiniTIONS 1.14.

(141) Erj(x) =p Er(xj) = Er(xj,l? . ',xj, r)’

r=12,...,n

j=012,...,m;
(1.42) F;=p{xeb,: Enjf(w)<Er7'(x) for r = 1,2,...,m;,—1},
ji=L12,...,m.
THEOREM 1.4. Let the random variables X;;,1=1,2,...,n;,j=1,2,...,m,
be symmetrically dependent, and let L be an event which in cyclically sym-
metric in X 4, ..., X; . for j=1,2,...,m. Then

(1.43) P (Lf]1 F,.) - P(é’*L)/}i n; .

Note that if the random variables are independent as well as identic-
ally distributed then Theorem 1.4 follows from the special case m=1.

Proor. By Theorem 1.2, to each xze&, corresponds exactly one
m-tuple (v,,7y,...,v,), 0Sv;Sn;—1, j=1,2,...,m, such that C/izeF,,
j=L1,2,...,m. Thus for distinct m-tuples (uy,pg, ..., ty), 0= p;<n;—1,
j=1,2,...,m, the sets N7, C/F; are disjoint, and their union is &,.
Hence

Le, = U N IepFL,
j=1

the union being carried out over all distinct m-tuples (uq,s, - - «»Mm)
0sp;=m;—1, j=1,2,...,m. Since L is cyclically symmetric in
X1 "va"i for j=1,2,...,m, we have also

L&, = U N opir;L).
j=1

Since the random variables X;; are symmetrically dependent, each term
in the union has the same probability, so that

P(LE,) = [P( N F,L)} TI7,
J=1 =1
which is (1.43).

CoroLLARY 1.2. Let m=<n, keX,,, xe*. If X,,...,X, are sym-
melrically dependent, if H(x) is cyclically symmetric in each of

D. 0. CHNNND. GHEID. PRI S5 D. RN, G

and if P(&,)=1, then
(1.44) P[H(x) B(«)] = P[H(x)] 1:[1(1/@')’“"-
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ProorF. In Theorem 1.4 set

Ny = &y, Mg = gy eney Ny = Oy

Xj,i=Xaj_1+’5’ 1 = 1,2,...,(X j= 1,2,...,m,

is

and L=H(x). We have B(x)=N7",F;, and find that

P[H(x)B(x)] = P[H(oc)]/ﬁ w; = P[H(oc)]ln—‘[1 (1/s)ki .
7=1 =

CoroLLARY 1.3. Under the hypotheses of Corollary 1.2 (omitting that on
H(w)), n
PIB()] = TI (Ui

=1

Proor. It suffices to set H(x)=&.

TaeorEM 1.5. If the random wvariables X,,...,X, are symmetrically
dependent, if P(&,)=1, if {H(x)}, xesl, is m-invariant (Def. 1.9), if
msn, ked,,, «cL*, and if H(x) is cyclically symmetric in each of

Xy Xos Xepn oo Xay oo Xain X
then n
(1.45) P(H*) = P[H()] TT 1/(k;! i%) .

t=1

This, the “principal theorem’ referred to in the section heading, is now
immediate from Theorem 1.1 and Corollary 1.2.

THEOREM 1.6. If the random wvariables X,,...,X, are symmetrically
dependent and if P(€y)=1 then

(1.46) Pr{M =m} =3 TIl(k'd*), m=12,...,n.
ke t=1

Thus each such random variable M (cf. (1.26)) has the same distribu-
tion as in the special Case 2 (Def. 1.6), where M is the number of cycles
in a randomly chosen permutation of the integers 1,2, ...,n. For Case 1,
Theorem 1.6 is Andersen’s theorem [2]. (Andersen’s theorem has been
generalized in another way by Miles [11]. Let Wy, W,,..., W, be fixed
positive numbers. Then the role of the functions K, is played by weighted
averages >7_, W, X, |3 W, where o,',05,...,0," and 01,05, .- -50n
are randomly chosen permutations of 1,2,...,n. This clearly does not
fit the pattern of a function ¥, fixed for each r.)

Proor or THEOREM 1.6. By Remark 1.2,

(=m) =D, = U D*
ke 'm
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(cf. (1.14)). On setting H(x)=&,, we have H¥=DF¥ (cf. (1.21)), and
(1.46) now follows from Theorem 1.5.

In the following paragraph we denote by M, the random variable
designated M above, and by M, the corresponding random variable
when 7 is replaced by a positive integer ¢ less than n. Under the hypo-
theses of Theorem 1.6 we have

(1.47) Pr{M,=m} = (1/n) z Pr{M,=m—1}, m=2,3,...,m,
t=m—1
as can be verified from formula (1.48). This formula has an interesting
interpretation. Let 4, denote the event that ¢ of the functions E,
j=12,...,n—1, are smaller than £,. We have
n—1
(M,=m} = U 4,n{M,=m};

t=m—1
and since P(4,)=1/n, formula (1.47) may be interpreted as asserting that
Pr{M,=m} may be computed as if Pr{M,=m | 4}=Pr{M,=m—1}.
The author does not know whether or not this last equation is in fact
valid.

Probably the formulas

(1.48) Pr{M,=m}=Pr{M, ;=m—1}/n + Pr{M, ;=m}(n—1)/n
and
(1.49) Pr{M,zm} =Pr{M, ;2m—1}/n + Pr{M, ;zm}n—1)n

are more suitable than (1.47) for computation (cf. [1]).

2. Distribution of a function determined by the gcm.

Theorem 2.1 in this section will be applied in Section 3 to the problem
of determining the distribution of the likelihood ratio in a test against
trend. In Section 3 our attention is restricted to Case 1. However, while
the title of the present section refers to Case 1, Theorem 2.1 is not re-
stricted to that situation; the functions Z, envisaged here may be any,
subject to (1.8) and (1.9).

DerinitioNs 2.1. Let f,(v,x) be a (real) function defined for ve¥,,
(cf. (1.4)), zeé&™ (Def. 1.1). The function z(x), the random variable Z,
and the sets G, Q(x), G*, G, are explained by equation (2.1-5) below.

First let
(2.1) 2 = 2(x) =p ylx(x), 2]

(cf. Definitions 1.2, 1.12), and
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(2.2) Z =p,2X).
For real ¢, let
(2'3) G =p {x € ("@*: fm(:c)[z(x)’x] < q}’

thus if P(&,)=1, P(@F) is the value at ¢ of the distribution function of
the random variable f;,(Z,X). For m=n, aesf,, let

(2.4) G(x) =p {.’I} €6yt [fulylx,x),2] < q} .

One may think of G(«) as “the form the event G takes if D(x) occurs”
(i.e., in Case 1, if the gem has m sides, the first of horizontal extent «;,
the second of horizontal extent «,, etc.). For m<n, ke, let

Gk =, U 6 D),

xeslk
(2.5) i

G.=p UJ 6% (cf. (1.21)).

keA p

Since e D(«) if and only if o= x(x), m =m(x), we have
(2.6) ¢=Uea,.
m=1

Lemwma 2.1. If f,.(v,2) is symmetric in the components of ve¥",, and in
the components of xe&™, m=1,2,...,n, then the family {G(x)} defined in
(2.4) is m-invariant (Def. 1.9). Also, for fixed xe ot ,,, G(«) is then cyclically

symmetric in
XX DGR G R S, G . G

m=12,...,n.

ay?’

Proor. For m<n, let ncll,, xesf,,, p=p(x,7) (cf. (1.2), Definitions
1.7, 1.8). Let p’ denote the permutation operator inverse to p. Then
pA(x) = {we &y fuly(x.p'2), p'a] < ¢}
= {we by fulwy(a,p'x), 2] < ¢}
by hypothesis on f,,. By (1.18),
pG(x) = {xe &y fulylan,2), 2] < ¢} = Glma) .

Since f,,(v,) is symmetric in the components of z, it is clear from (2.4)
and Definitions 1.2 with E (x)=3/_,,/r that, Q(«x) is cyclically sym-
metric in the variables mentioned in Lemma 2.1.

TuroreM 2.1. Let X,, ..., X, be independent and identically distributed,
and let f,,(v,x) be symmetric in the components of ve ¥, and in the compo-
nents of zeé™, m=1,2,...,n. If
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(2.7)  the common distribution function of the {X,}*_, is continuous,

or if

(2.8) fawlz®),z], and, for aesd, f,ly(x,x),x] are continuous in x
on &7,

then for m<n, ke ,,, and « chosen arbitrarily from 7%, the conditional
distribution of fy(Z,X) given DF is the distribution of f,,[y(x, X),X].

We recall (cf. (1.14)) that D¥=pU,czxD(x); in Case 1, this is the
event which occurs if the gem has %, sides of horizontal extent 1, k, of
horizontal extent 2, etc.

Proor orF THEOREM 2.1. Since H¥=HD* (cf. (1.21) and (1.14)), the
conclusion of Theorem 1.5 may be rewritten as follows: for m <, ke X,
and e,

(29)  PO% =TI 1!, P | DY = PIHG),
i=1

the first equation being the special case H(x)=§& of (1.45). If the com-
mon distribution of X,,...,X, is continuous, then not only are these
random variables symmetrically dependent, but also P(&,)=1. Using
Lemma 2.1 to apply Theorem 1.5 with H replaced by G and H(x) by
G{(x), we obtain the desired conclusion. In case the common distribution
function F of X,,...,X, is not continuous, let {X/}, »=1,2,..., be
independent and identically distributed for fixed » (:=1,2,...,n) with
a common continuous distribution function F,. Let the sequence {F,}
converge completely to F' as v — oo (i.e., at each point of continuity of F';
cf. [9, p. 178]). Set

X = (X! ..., X)), W = fu(Z,X), W = fux)[2(X*), X7] .

By the Helly—Bray Theorem ([9, p. 182]), the characteristic function of
W” converges to that of W, hence the distribution function of W* con-
verges completely to that of W. A similar argument applies to

W(x) =p fuly(x, X*),X’] and  W(x) =p fuly(x X),X]

for fixed axes/. The conclusion of Theorem 2.1 now follows for the
general case by letting » — .

3. Applications to tests against trend.

We shall first apply Theorem 2.1 to the problem of determining the
distribution of the likelihood ratio when the population belongs to an
exponential family, and the ultimate aim is testing against trend.
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Let Fy(x) be a non-degenerate distribution function, and let
o(7) EplogSe”" dF (@) ,

the integral being assumed convergent in a neighborhood of r=0. The
distribution function

Flz;v)=p | expler—0(x)]dFy(2)
(=00, %)
is the member corresponding to the parameter value 7 of the exponential

family generated by F,. Let
0(z) =p S z explzt—O(7)] dFo(x);

then 6(t)=0’'(7) is the mean of the distribution. The function 6(z) is
strictly increasing.
Let » be a positive integer. For ¢=1,2,...,n, let h; be a positive

integer. Let .
{Eiv}’ Y = 1’2""’h’i’ 7/':—'1,2,...,77/,

be independent random variables. For v=1,2,...,k,;, let the distribu-
tion of £, be the member of a common exponential family (the same
family for i=1,2,...,n) corresponding to a parameter value 7;,
1=1,2,...,n. Set 0,=,0(7,), 4=12,...,n. Let 2 denote the set
of all n-tuples 6=;(6,,...,0,), with each coordinate 6, in the range of
the function 6(t). Set

Qy=p{0: 6,=0,=...=0,} and Q,=,{0: 6,<...20,}.
Consider the hypotheses

Hy: 0,=...=09, (that is, 0 € 2,)

and
H,: 0,<...20, (thatis, 6 £,).

The maximum for 60, of the joint density function of the random
variables
{E{v}, VY = 1,2,...,h-

o t=12,...,n

is found in [5], [4], and [6]. These results yield simple expressions, in
terms of the gem of the points

(zh 3 ffi,)}" :

t=1r=1 r=0

for the likelihood ratios in likelihood ratio tests of H, within 2, and of
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H, within Q. Under the null hypothesis H,, and when the sample sizes
are equal, hy=...=h,, these likelihood ratios are found to be of the
form f,,(Z,X). Theorem 2.1 can then be used to effect an important
reduction in the labor of computing the distribution of such a likelihood
ratio under H,.

Particularly simple and interesting results are obtained when the
random variables {Z,} are normally distributed with means 60, and
common standard deviation ¢, known or unknown. This case is treated
by Bartholomew in [3], without the restriction to equal sample sizes.
(Dr. P. Armitage kindly called the attention of the writer to this inter-
esting paper by Bartholomew.) It turns out that the general theory in
Section 1, and Theorem 2.1, are not required in this situation; special
properties of the normal distribution suffice. Let 4, and 4, denote the
likelihood ratios for testing H, within 2, and H, within £, respectively.
Then if ¢ is known, the conditional distribution under H, of —2logA,
given M =m is 3% with m —1 degrees of freedom, and that of —2 logA,
is ¥% with n—m degrees of freedom. Let N=3" A, If ¢ is unknown,
the conditional distribution under H, of

[N —m)[(m —1)][(1/44)*N —1]
given M =m is F' with m—1 and N —m degrees of freedom, and that of
[ =n)[(n —m)] [(1/A4,)*N —1]

is ¥ with n —m and N —n degrees of freedom.

Andersen’s theorem is of interest also in connection with a possible
distribution-free test against trend.

It is intuitively clear that if there is in fact an upward trend in the
distributions of X, ..., X, then one should expect a larger number, M,
of sides in the gem than if they are identically distributed. One is thus
led to a distribution-free test based on the statistic M, rejecting the
hypothesis that the random variables are identically distributed if too
large a value of M is observed. The question of interest is: against which
alternatives, if any, is this, the GOM test, a “good” test ?

It is easy to construct alternatives at which Mann’s 7' test [10] is
more powerful than the GCM test. For 1<i<j=mn, let

Y'W:]' if Xi<Xj’ Y'W:O if X,,:>Xj.
Then

M=

T

Il

D <
J

J-1
,Z Y.
12=1

Let the null hypothesis, H,, assert that the random variables X,,...,X,

I
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are independent and have the same continuous distribution function.
Under H,, T is asymptotically normally distributed ([10], [8]) with

E(T) ~ n?/4, V(T) ~ n3[36,
while M is also asymptotically normally distributed with
E(M) ~ logn, V(M) ~ logn

(cf. [2], and [7, p. 242]).

Let r be a positive integer, and n=2r. Let H, denote an alternative
to H, according to which X,,...,X, possess a common distribution,
while X,,;,...,X,, have in common another distribution such that
Pr{X;>X;}=1for 1si<r<j<2r. Under H,, as r — oo, the statistic M
is asymptotically normal with

E(M) ~ 2logr, V(M) ~ 2logr.
The power of the GCM test at H, is therefore given asymptotically by

(3.1) 1 — &{[log2r+c(log2r)t — 2 logr]/(2 logr)t}
~ 1 — &{[c— (logr)]/2t,

where w
D(u) =, (27)~* S e dz

and where ¢ (independent of r) determines the size of the test. Under
H,, as r - oo, the statistic 7' is asymptotically normal with

E(T) ~ 322, V(T)~ r318.
The power of the 7' test at H, is therefore given asymptotically by

(3.2) 1 — D{[c(2r%]q)t + 72— 3r3[2]/[(2r5)}/6]}
=1 — @[2c—3(r/2)}].

A comparison of (3.1) with (3.2) shows that as r — o the power at H,
of the T test approaches 1 more rapidly than the power of the GCM test.

Mann remarks that the K test [10] is more powerful than the 7' test
at alternatives specifying rapidly increasing trend. It would be interesting
to compare the three tests at such an alternative.
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