MATH. SCAND. 8 (1960), 287304

ON GENERALIZED POTENTIALS
OF FUNCTIONS IN THE LEBESGUE CLASSES

BENT FUGLEDE

1. Introduction.

The generalized potentials considered in the present paper are those
of order «x, 0 <x<n, in R* with the logarithmic potential as a kind of
limit case corresponding to the order «=n. These potentials refer to

the kernels
| —y|*—™, 0<a<mn,

and
— loglz—y|,

respectively. Here x and y range over the n-dimensional Euclidean
space R". The first systematic investigations of these potentials are
those of M. Riesz [13] and O. Frostman [7]. Various applications of
LP-norms to potentials of order « were made by Frostman [8].

Our principal aim is to establish the following result referred to in an
earlier paper [10, p. 198]:

Let p=1, 0<ap<n, and E<R* In order that there exist a function
20, fe £2(R"), whose potential of order « is infinite at every point of B
(without being identically infinite) ¢t ¢s!
capy,E = 0, provided p < 2.

1° that
) mecessary tha { apk _E = 0 for every ¢ > 0, provided p > 2.

ap—e
capy, Bl = 0, provided p = 2.

90 cient that
) sufficien { capy,_ B = 0 for some ¢ > 0, provided p < 2.

ap—e

The same conclusions subsist in the case ap=mn provided potentials and
capacities of order n are taken with reference to the logarithmic kernel.
Part 1° was established in the case ap<n=1 by N. du Plessis [13],
who also showed that the ¢ cannot be dispensed with when p>2. Using
the same method, J. Deny [5] treated Part 1° for general » in the case
p=<2, ap<n. (In view of the intended applications, only the value

Received February 3, 1960.
1 Here cap;,"E denotes the exterior capacity ‘“‘of order 8, that is, associated with the
above kernel of order 8, 0 < <n. For f>n, cap;,"E =0 is meant to imply that ¥ is empty.
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a=1 was considered specifically.) Part 2° is related to a result due to
H. Cartan [2, théoréme 3bis, p. 96]. (Cf. Theorem 3.2 of the present
paper.) A complete discussion of the case ap<n is given in §§ 3, 4 of
the present paper, based on the methods of du Plessis (Part 1°) and
Cartan (Part 2°). Cartan’s method depends on the existence of an in-
terior capacitary distribution to be associated with any given, say open,
set of finite capacity. Such a measure A was constructed by Cartan [2
in the Newtonian case x=2. Extensions to arbitrary order « <n were
made by Aronszajn and Smith [1] and later by the present author [11].
A Dbrief survey over the relevant material concerning the potentials of
order x <7 is given in § 2 of the present paper.

The logarithmic case ap=mn is settled in § 62 and § 7 with reference to
the author’s study [12] of the logarithmic kernel in higher dimensions.

2. Potentials of order «.

The potentials of a given order «, 0 <x <mn, in Euclidean n-dimen-
sional space R refer to the following convolution kernel

Ix_y]a—’n, X E Rn7 Yye R" )

the value of which is interpreted as + o for x=y. The corresponding
kernel function |xz|*-™ is lower semi-continuous and locally Lebesgue
integrable in R*. A fundamental property of these kernel functions is
expressed in the formula of composition due to M. Riesz [14]:
M e xlalf " = o,,plal+o,
valid for x>0, >0, x+f <n. The constant ¢, 4 is given by

o = 2 I(«/2) T'(B[2) I'(n]2 — x[2 - B[2)

e I(n[2—«[2) I (n[2~p|2) T(x/2+p[2)

The potential of order x of a measure u on R™ is defined as the convolu-
tion U%=|z|* "*u, that is,

2) Utte) = ey duty),

provided the integral on the right exists, that is, U%" and U are not
both infinite. If © 20, U% is everywhere defined (< + o) and lower
semi-continuous. If u has a density f (that is, du =fdx, where f is locally
Lebesgue integrable), we may write U’ instead of U“.

In order to exclude the possibility that the distant masses force the

2 In the case p=1, a=n, we have, for brevity, confined the attention to bounded
parts of R%. The extension to the global case is easy.
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potential U* to become infinite (or undefined) at some point (and hence
actually everywhere), we shall restrict the attention mostly to measures
1 which are finite of order « in the sense that

3) | lzle @) < +oo.

le.;l
Simple estimates show that this condition is equivalent to the following
more general condition®

(3) { oy ) <+
cBQ(QT)

for any given point z € E” and radius ¢>0. Here B (x) denotes the
(closed) ball of radius p about x, and hence CBQ(x) ={ye R": |[x—y|>p}.
For =0 we may write simply B, instead of B,(0).—The class of all
measures which are finite of order « will be denoted by .#,. It is easily
proved that, for any u e .#,, U%x) is an analytic function of = in the
complement of the support S(u) of u. This fact permits us to extend to
the case u € M, any local regularity property of the potential UY which is
known in the case where u has compact support. In particular, U% is
defined almost everywhere and represents a locally Lebesgue integrable
function, provided u € .# .
From the formula of composition (1) follows that

(4) U, =c,,U%, almost everywhere,

when f=U4and ue #, , (Ci. M. Riesz [14, no. 4]. The assumption
«+ [ <n remains in force.) In fact, the relation

el =) = (Jal sl

holds whenever the right hand side exists as a Lebesgue—Stieltjes inte-
gral, thus in particular almost everywhere in R». Note that (4) holds
everywhere in B™ if u > 0.

The mutual energy {u,v), of order « of two measures u,» is defined by

e = \{ - du@ ),

provided the double integral on the right exists (that is, {u*,v*),+
u=,v~), and {ut,»~), +{u~,v*), are not both infinite). Under the same
assumption we have the formula of reciprocity

3 The condition (3’) is evidently independent of g. The equivalence of (3) and (3’)
follows, therefore, from the fact that the ratio [x—y|* "/|y|* ™ is bounded away from 0
and oo as |y| — +00, z being fixed.
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(5) Vorar = §ondn (= cum.).

In view of the formula of composition (1), the kernels of order « are
consistent (cf. [11, § 3.3 and Theorem 7.4]). Since they are strictly
definite (cf. M. Riesz [14, nos. 4 and 10]), we conclude that they are perfect.
The energy of order x of a measure x will be denoted often by ||u2
instead of {(u,u),. The class &, of all measures x for which the energy
{u, ), is defined and finite is a pre-Hilbert space with the scalar prod-

uct {u,v), and the norm
llella = <o 912 -
The identity

(®) Il = (U820, wes,,

1
w,
where w,=c,j5 .0, 18 a consequence of (1). Note also that &,<.#,.

The interior Wiener capacity of order « of an arbitrary set B < R* is
defined as the supremum of u(R") when u ranges over all positive meas-
ures concentrated on £ of potential

(7) Ubx) = 1 for every x € S(u) .

Observe that the kernels of order «<2 fulfill Frostman’s maximum
principle, and hence (7) implies: U%(x) <1 everywhere (under the as-
sumption x=0). As a substitute we have, for any order x<mn, the
following consequence of (7), again provided p=>0,%

(8) Ut(x) £ 27— everywhere .

For the interior capacity of order « of a set £ we use the notation
cap,,f. It can be shown that

(9) cap, B = sup cap,,K

as K ranges over the class of all compact subsets of E.
The exterior capacity of order « of a set E is defined by

(10) capy E = inf cap, @
as @ ranges over the class of all open sets containing E. The set function

4 In fact, if p denotes the shortest distance between S(u) and a given point xzeR?,
there is a point 2’€S(u) with |x—2’|=p. For any other point yeS(u), the inequality

2e—y| Z le—y|+|x—2'| = |2'=y|

shows that
@) = | le—yI" " du) < 2—0L@) < 2.

S
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capX is countably subadditive. A set E is called capacitable of order o«
if cap,, B =cap} E. For such a set we shall often write cap, to signify
the capacity of B (=cap,,H =capXE). Since the kernels of order « are
perfect, it follows by application of Choquet’s theory that all analytic
sets, in particular all Borel sets in R™ are capacitable (cf. [11, Theorem
4.4] and Choquet [3, § 30.2]).

A property P is said to subsist nearly everywhere of order « if P fails
to subsist at most in some set N with cap,, N =0. Similarly, P is said
to subsist quasi-everywhere of order « if capX N =0.

THEOREM 2.1. With any set E < R™ of finite interior capacity of order «
can be associated a unique positive measure A such that

(11) A(B") = |A]l,2 = capy. B
and :
(12) Ul(x) 2 1  nearly everywhere of order x in E,

(13) U*(x) £ 1 everywhere in the support of A .

(Cf. [11], Theorem 4.1.) This measure 4 is called the interior capacitary
distribution of order « associated with E. As shown by Frostman [8,
p. 37] it follows from (12) that

(14) Ulz) 2 1 everywhere in the interior of K .
As pointed out earlier, (13) implies
(15) U*@x) < 2>  everywhere in R".

There is an analogous theorem concerning the exterior capacitary distri-
bution of order « associated with an arbitrary set E such that capX £ < + o
(cf. [11], Theorem 4.3).

3. On the set of points of infinite potential.
TreEOREM 3.1. If pe M, p20, and 0<x<mn, then

capy{r e R": Uk(x)= + oo} = 0.

This result is due to H. Cartan [2, théoréme 3, p. 95]. Previously it
was known that the corresponding interior capacity is zero (cf. G. C.
Evans [7, Theorem I], Frostman [8, p. 81], or De la Vallée-Poussin
[17, p. 21]). Actually, the set {x € R*: U%(x)= + oo} is of class G4 and
hence capacitable, as mentioned above. It suffices, in the proof of
Theorem 3.1, to consider the case where S(u) is compact. For any num-

ber ¢, the open set
G, = {x € R*: Uk(x) >t}
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contains the set in which U* is infinite, and hence it suffices to prove
that cap,,G; > 0 as t - +oo. Denoting by A the capacitary distribution
on an arbitrary compact subset K <(,, we obtain from (5) and (15), § 2,

t cap, K < SU{;d/’l - SUid,u < gn-ap(Rv) .

This implies on account of (9), § 2,
cap,G, < t12n—>y(R") .

It follows from Theorem 3.1 that U is defined and finite quasi-

everywhere of order « provided u € .#,.
In order that a set £ < R” be of the form

E = {x e R*: Ul(x)= + oo}

for some positive u € # ,, it is necessary that £ be of class G5 and that
cap¥ E =0 (Theorem 3.1). The question whether this condition is suffi-
cient was answered in the affirmative by J. Deny [6] in the Newtonian
case o =2. (The first result in this direction is due to Evans [7, Theorem
I1], who treated the case where F is closed and « =2.) We shall, however,
restrict the attention to the simpler problem of characterizing the sets
contained in some set of the above type. The answer to this question
was given by H. Cartan [2, théoréme 3bis, p. 96], likewise for «=2.
The same method applies, however, in the general case 0 <« <n, the
crucial point being the existence of an interior capacitary distribution
on any open set of finite capacity.

THEOREM 3.2. Let O<x<n, E<R", and suppose cap*E =0. Then
there exists a positive measure ue M, such that UL(x)= + oo for every

x e E; that s,
E < {x e R*: Uk(x)= + oo} .

Proor. Choose open sets G, > F so that cap,G,<27%, k=1,2,...;
and denote by 4, the interior capacitary distribution associated with
G, (Theorem 2.1). Since

> A(B™) = > cap,G) < oo,
% %

the sum 3,4, defines a bounded measure . It follows from (14) that
U¥x)= + o for z € E. Moreover, u € &,<.#, because

2 Al = X (cap,Gy)/2 < .
k k

Lemma 3.1. capy E=0 implies capy E=0 provided 0<f <x<n.
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Although a more direct proof could easily be given, we shall derive this
well-known result from the two preceding theorems: If 420, ue .#,,
and UL= + oo everywhere in E, then ue .#; and a simple estimate
shows that Uj(x)= + oo for every x € £, the masses outside B,(x) being
of no influence upon the infiniteness of U%(x) (or of U(x)).—The follow-
ing simple lemma will be used in § 4:

Lrmma 3.2. Let 05601, 0<fB<n, 0<y<n, and write x =08+ (1—6)y.
Then Uka) < [UH@P U]
for every x € R™ and every positive measure p.

We interpret (4 o)’ as +o0 or 1 according as 6>0 or §=0. The
proof of the lemma consists in a straightforward application of Hélder’s

inequality Sf"gl—"dy < (Sfd,u)e (S J dﬂ)l-o

to the functions f(y)=|z—y|f-* and g(y)=|r—y|*—™

4. The Lebesgue classes.

For any number p>1 we denote by #? the class of all Lebesgue
measurable functions f on R" such that {|f(2)|Pdx < c. Moreover, we
write £, for the wider class of all measurable functions f on R" such
that {.|f(x)|Pdz < oo for every compact set K <R". We use the nota-

tions

1/p
19le = | § 1@ da]™, 1fllrm, = {S If(w)l"dx] :
E

We denote the conjugate exponent of p by p'=p/(p—1).
Levma 4.1, Let p>1, fe £P, and ap<n. Then fe M ,, and
UJ; = |w|*—n *fE Pnp/(n—ep)

This result is known as Sobolev’s lemma. As to the proof, see Sobolev
[16, théoréme III]. In the sequel we shall merely use the fact that any
function of class #?, p=1, is finite of order « provided «p <=, and this
is easily verified directly by application of Holder’s inequality.

There is a local version of Sobolev’s lemma asserting that

Ule #ppln-=p)  provided feFP,N M, p>1 ap<mn.

The following more elementary lemma which can be extracted from
Frostman [9, no. 2], gives a less precise extension of this local version to
the cases p=1 or ap=n.

Math. Scand. 8 — 19
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Lrmma 4.2.
(@) If ue M, then Ut e L{, for any q<n/(n— ).

(b) If fe LPnAM, and ap=n, then U e LL, for any q < + oo.
(c) If fe PN M, and xp > n, then U is finite and continuous everywhere.

Proor. As usual, it suffices to consider the case where u or f has
compact support, in which case the result follows from the fact that the
kernel function |z|*—" is of class ¥}, for any s<n/(n—«). Writing
p=min(l, [x[*~") and ¢ = |x|*~*—yp, we have |z|* =@+, where ¢ € ¥*
and y is bounded and continuous. (In case (b), one applies L. Schwartz
[15, ch. VI, § 1, formula 2] to ¢ and f. In case (c) one applies Holder’s
inequality to ¢ and f. The continuity of yx*f follows easily by applica-
tion of Lebesgue’s theorem on dominated convergence.)

Theorems 4.1 and 4.2 below may be regarded as refinements of Theo-
rems 3.1 and 3.2, respectively, in the particular case where u has a
density f of class #?, p>1. References concerning these two theorems
were given in the introduction (Part 1° and Part 2°, respectively).
Throughout the present section we suppose ap<mn. (The case ap=n
leads to the logarithmic capacity and will be treated in § 7. The case
ap>n is of no interest in view of Lemma 4.2 (c).)— A glance at Theorems
4.1 and 4.2 reveals that quite precise results are obtained only for p <2
(in Theorem 4.1) and for p=2 (in Theorem 4.2). As we shall see, there
is, in a certain sense, a duality between the two cases p <2 of Theorem
4.1 and p=2 of Theorem 4.2. If we define

(1) p'=p/(p—1), & =a(p-1),
the transformation (p,«) - (p’,«’) is involutory and preserves the cru-
cial product «p, whereas the inequality p <2 is transformed into p’ = 2,
and conversely.

THEOREM 4.1. Let f20, fe £P, 0<ap<n, and write

= s U () =
Then E = {xeR”. Ul(x)= + oo} .

(i) cap} E=0 provided 1<p<2,

(ii) capy, H =0 for every ¢>0, & <xp, provided p> 2.

We consider the two cases (i) and (ii) separately and apply the method
described in du Plessis [13]. The case p=1 is covered by Theorem 3.1.

(1) The case p<2. We shall assume p>1, and we begin with a lemma.

LeEMMA 4.3. Let 1<p=2, O<ap<n, p'=p[(p—1). For any positive
measure u on R”,

1/p
U < wa,,W[supUz,xx)] PO

xeR"
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Proor. Since 0<ap/2=ax<ap<n, we may apply Lemma 3.2 with
B=apl2, y=ap, 0=2p=2-2/p.

Raising the resulting equations to the power p’ and integrating over
R™ we obtain

\@eyde < {007 @z)p* de
P—20
< [supng(x)] S (U N dx.
reR"
Using (5) and (6), § 2, we obtain, moreover,
S (Ulty) do = w""’S Ut,du < w,, [flllglUﬁp(x)} u(R)

and the stated inequality follows.
In order to prove Theorem 4.1 in case (i), we introduce the open sets

G, = {xeR":Ul@)>t}, t>0.

Since G,> K, it suffices to prove that cap,,&; -~ 0 as ¢t > +oco. De-
noting by i the capacitary distribution of order «p on an arbitrary
compact set K =@, we obtain from (5), § 2,

) t\ar < (vlar = (visde < 1001 0
Applying the above lemma to u=4, and inserting A(R")=cap,, K and
sup, Ul (x) 2n-P <27 (cf. (11) and (15), § 2), we obtain
tca’papK é wapl/p, 2n/p (ca‘po‘pK)l/p’ ”f”]’}’ ’
from which it follows that
cap,, & = 2"w,, P! gfpdx-t—l’ (~0ast > +o0).
(ii) The case p>2. Since « is no longer located between «p/2 and «p,

Lemma 4.3 is inapplicable and must be replaced by the following less
satisfactory result:

Lemma 4.4, Let p>q>2, O<ag<n, p'=p[(p—1). For any number
R >0 there is a constant C(R), depending further on n, p, q, and «, such
that the inequality

1/p ,
mmwwgamkgvmﬁ (B

holds for any ball B of radius R and any positive measure u concentrated
on B.

19*
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Proor. Applying Lemma 3.2 with f=x(p—q)/(p—1), y=xg, 6=1/p' =
1—1/p, we obtain after raising to the power p’=1/6 and integrating
over B

{ sy @ < { vy 0@ do
B B

v'lp
< [sup fo‘q(x)] S Uj(x) da .
xeB
B
Denote by Cy4(R) the supremum of the bounded potential Uj of the

characteristic function g=¢5 associated with the ball B. It follows
from (5), § 2, that

{vsde = (vgpar = {Ugan < o) (au.
B v

This implies the assertion of the lemma with C(R)=Cy(R)'/7".

In the proof of Theorem 4.1 in the remaining case p>2 we may sup-
pose that e<oa(p—2). We define g=p—¢/x and observe that 2<g<p
and xg=ap—e. It suffices to prove that capy,(En4)=0 for every closed
ball 4. Let B denote a ball of radius R containing 4 in its interior, and
put p=gp. Since the potential U”, differs from U¥ by a function U/ %
which is finite in 4, we have U¥ = + o0 in EnA. Thus we might as well
suppose from the beginning that f vanishes outside B. Writing

G = {xed: U@ >t},

we proceed as in the case p <2 and conclude, after application of Lemma

4.4, that
cap’(En4) < cap,,G, < 2%0(13)@8 frde-t-v

from which it follows that capy,(En4)=0. This completes the proof of
Theorem 4.1.

REMARK. An example in N. du Plessis [13] shows that one cannot
conclude cap., £ =0 in case (ii).

THEOREM 4.2. Let p>1, O<ap<n, E<R®, and suppose cap;"pE’ =0.
Then there exists a function f= 0 such that f e £ for all g < p, and

Ul(z) = 400 foreveryxe k.
If p22, f may be so chosen that, in addition, f e 7.

(i) The case p=2. The following lemma is simply the dual of Lemma
4.3 under the involution (1).
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Lemma 4.5. Let p=2, ap<n, p'=p[(p—1). For any positive measure
u on R, ’

WU hpvllr S wep''?

ip’
sup Uty (e)| ey
xeRn

In order to prove Theorem 4.2 in the case p=2, we proceed as in
Cartan’s proof of Theorem 3.2. We choose open sets G, FE so that
cap,, @, < 27%, and denote by 4, the interior capacitary distribution of
order «p associated with ) (Theorem 2.1). Then A,(E")=-cap,,G,,
and Uj{;g 27P < 2", Defining

fo= Ul [=3Ji.
we obtain from (4) and (14), § 2,

T — Ak
Uk = ¢ Uk ze

= Ya,ap—-a

xy ap—a everywhere in G, > E |

and hence U/ = + oo everywhere in E. Next, we infer from Lemma 4.5
(with u replaced by 4;) that 3 ||f.ll,» < oo, and hence fe £P. In fact,

”fk”LP s wapl/P on/v’ 9Q-kip .

The function f has the required properties except possibly for the property
fe &£ for all ¢<p. If we replace f(x) by f(z)/(1+ |z|)¥ for a suitably
large N, we obtain a new function possessing all the desired properties.

(i1) The case 1 <p<2. Applying Lemma 4.4 with p, ¢, and « replaced
by ¢'=q/(¢g—1), p'=p/(p-1), and &' =x(p— 1), respectively, we obtain
the following lemma:

LEMMA 4.6. Let 1<g<p<2, 0<ap<mn, ¢'=q/(g—1). For any number
R >0 there is a constant C'(R), depending further on n, p, q, and «, such
that the inequality

1/q¢
uwwhmg0w$gmwﬂuww
X e

kolds for any ball B of radius R and any positive measure u concentrated
on B.

In the proof of Theorem 4.2 in the case 1<p<2 we may suppose
without loss of generality that E is contained in some closed ball 4.5

5 In the general case we cover R™ by a sequence of congruent closed balls A4y,
j=12,..., and denote by Bj a larger ball concentric with 4;. Choose functions f;20
so that f; € £4 for all ¢<p and U£‘7'= +00 everywhere in ENA;. As above, we may sup-
pose that f; vanishes outside B;. Replacing, if necessary, f; by a suitably small multiple
thereof, we may assume, moreover, that ||fj| Lp—1/j<2”1. We proceed to verify that
J=13f; has the properties stated in Theorem 4.2 for the case p<2. It is clear that
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Let B> 4 denote a larger ball concentric with A. Choose open subsets
G, > E of B so that cap, @, < 2%, and denote by 4, the interior capacitary
distribution of order xp associated with G,. As in the case p= 2, write
fe=U%__,, and define f=3,f,. Then U/ =+ everywhere in K, and
it follows from Lemma 4.6 that 3;fillzem) < oo, and hence fe £(B).
Replacing f by ¢ f, we obtain a function possessing all the stated proper-
ties.

REmMARrk. The question remains open whether there is, in the case
1<p<2, a function f=0, fe £», such that U/ = + oo everywhere in £
(when it is given that cap},E =0).

5. The logarithmic potential in R"™.

In order to extend the results of § 3 and § 4 to the case x=n and
ap=mn, respectively, we shall make use of certain properties of the log-
arithmic kernel —log|x—y| in B® which are established in [12].

The logarithmic potential U* of a measure u of compact support is
defined by

Ur(z) = - {logle~y| du(y) = U*"(@) - U"(a)

at any point « € R» where U""(x) and U* (z) are not both= + co, thus
in particular if x> 0. Instead of the restriction to measures x4 of compact
support it would suffice to assume that u be logarithmically finite, that is,

(1) < log|z| |[du(z)] < +oo.

¢
|x|=1 v

The mutual logarithmic energy {u,v) of two positive measures u and »
of compact supports is defined by

() = — SS log |z — y| du(z)ds(y) = S Urdy = S Udp .

For v=u we obtain the logarithmic energy {u,u).

The inequalities (2) and (3) below, serving as substitutes for (4) and
(6), § 2, respectively, are contained in [12, Lemmas 3.2 and 3.3]. By 4
and B we denote two concentric balls in R” of radii p and 3p, respectively.

U£= 400 everywhere in each EN Ay, and hence everywhere in E. To see that fe £¢
for any given g <p, we observe that X ;||f;ll 14< +00. Restricting the attention to indices
j>(p—g)1, that is g<p—1/j, we obtain, in fact, by application of Ho6lder’s inequality,
denoting the measure of each B; by V (which we may assume to be >1):

1/q
flze = [S (f,-)‘ldw] < fjllgp-1 VY@ 1 @11 < VUla 2
B.
]
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M(p) is a certain constant (depending only on g, &, and n, 0<x<n),
and o, is the surface of the unit sphere in R*. We write g5 for the
characteristic function associated with a set E.

For any measure u=0 supported by A we have, writing f=pg - Uh__,

1
@) - V@)~ Mu(EY) 5 Us) S — Ul@) + Mu(R).

n wn
If, in addition, {u,p) < + oo, then

1 e
(3) l(mu)———\[UZ/g]z d

®
"B

< M(g)u(R»).

From now on we shall restrict the attention mostly to measures sup-
ported by some fixed closed ball 4 = R® of sufficiently small radius p.
The restriction of the logarithmic kernel to such a ball 4 is a positive
kernel if p<}; and it follows from the main result of [12] that this
restricted kernel is perfect in the sense of [11] (in particular strictly
positive definite) provided p<a,. Here a, denotes a certain constant.
The positivity (o< %) implies that the usual concepts of inferior and
exterior (Wiener) capacity are well defined (with reference to this re-
stricted logarithmic kernel), and the exterior capacity, cap*, is count-
ably subadditive. Also, the concepts “nearly everywhere” and ‘“‘quasi-
everywhere” are well defined for this kernel. We refer to [11, § 2.3] for
details. The perfectness (o <a,) implies the existence of a unique interior
capacitary distribution to be associated with any given set £ < A4, cf. [11,
Theorem 4.1]. This distribution is a positive measure A supported by 4
(but not necessarily by E unless E is closed), for which

(4) MBY) = (A,2) = cap, F
and

(5) U 21 nearly everywhere in ¥ ,

(6) U <1 everywhere in the support of 1.

The following two consequences of (5) and (6), respectively, can be
obtained in the same way as in the case of potentials of order « (§ 2):

(1 Urz1 everywhere in the interior of £ ,
(8) U* = 1+ (log2)cap, B everywhere in B” .

REMARK. Although the exterior Wiener capacity cap*Z has been
defined above only for sets contained in a ball of radius ¢ <4, we shall
need the concept of a set E of zero exterior capacity (with respect to
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the logarithmic kernel in R") without any such restriction. Following
a convention introduced by Deny [4, p. 165], we shall write
cap*l = 0

if and only if cap*(EnA4)=0 for every ball A <R" of radius p<3}. (It
suffices to verify this condition for a family of such closed balls covering
Rr. This follows from the subadditivity of the exterior capacity on
subsets of 4.)—There is of course a corresponding extension of the con-
cept ‘‘quasi-everywhere”. It is easily shown that, for a bounded set
E = R», the relation cap*E =0 (in this extended sense) is equivalent to
the condition y*(E)=0. Here y* denotes the exterior logarithmic
capacity, cf. [12, § 2].

"In the last two sections the results of § 3 and § 4 are carried over to the
case « =7 and ap=mn, respectively. Briefly speaking, the extension con-
sists in interpreting the potential U4 and capacity cap, of order f=n as
the logarithmic potential U* and the corresponding Wiener capacity
cap. (Only in one instance, viz. Lemma 3.2, we use the trivial inter-
pretation {du of U,.)

6. Extension of the results of § 3 to the case a.=mn.

The extension of Theorems 3.1 and 3.2 to the logarithmic case x=n
will be undertaken, for simplicity, only when the support of u, resp.
the set E, is bounded.

THEOREM 6.1. For any positive measure p of compact support, the
logarithmic potential of u is finite quast-everywhere:

cap*{x € R*: UMx)= + o0} = 0.

Proor. It suffices to consider the case S(u)<A4, where 4 denotes a
closed ball of radius p<a, (cf. § 5). The set {x € R*: Ur(x)= + oo} is
then contained in 4, and the method used in the proof of Theorem 3.1
is now applicable.

It follows from Theorem 6.1 that the logarithmic potential U* of any
measure u of compact support is defined and finite quasi-everywhere
in R», The same is true in case of a logarithmically finite measure u
(cf. § 5).

THEOREM 6.2. For any bounded set E < R™ with cap*E =0, there is a
measure u=0 of compact support and of finite logarithmic energy, such
that the logarithmic potential U* equals + oo everywhere in E.

Proor. Since E may be covered by a finite system of closed balls,
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each of radius p<a,, 0<%, it suffices to consider the case where E is
contained in one such ball 4. The method used in the proof of Theorem
3.2 is now applicable.

Lemma 6.1. cap*E =0 implies cap; E=0 for every order f<mn.

Again, it suffices to consider the case £ < A4, and the previous method
applies.

Finally, we observe that Lemma 3.2 holds with unchanged proof even
for f=m, y <n, provided U}, is interpreted simply as {|x —y|°du(y) =\du,
not as the logarithmic potential.

7. Extension of the results of § 4 to the case ap=n.

We leave out the case p=1, which was treated in the preceding
section. Hence o =n/p <n, so that the potential U/, of order « preserves
its original sense (§ 2). We begin by extending Theorem 4.1 to the log-
arithmic case ap=n.

THEOREM 7.1. Let f20, f € £P, ap=mn, and suppose f is finite of order o.
Writing B = {x € R*: Ul(x) = + oo}, we have

(i) cap*E =0 provided 1<p<2,

(ii) cap)X B =0 for every ¢>0, e<n, provided p> 2.

Proor. The proof of case (ii) of Theorem 4.1 covers the present
case (ii) since f is now assumed to be finite of order x =n/p. In case (i)
we shall need the following substitute for Lemma 4.3:

LeMMA 7.1. Let 1<p=<2, ap=n, p'=p[/(p—1). Consider two concen-
tric, closed balls A and B of radii ¢ and 3p, respectively. For any positive
measure yu supported by A,

N\ w de 5 (G lucar+ M) Ay
"B

Here M(p) denotes the constant mentioned in § 5. The proof of
Lemma 7.1 is quite parallel to that of Lemma 4.3. One merely has to
replace U4, by {du (not by the logarithmic potential of x) and to apply
(3), § 5, in place of (6), § 2.

Returning to the remaining case (i) of Theorem 7.1, we show that
cap*(End,) =0 for every closed ball 4, of some given radius g,< @,.
Let 4> .4, denote a closed ball concentric with 4, and of radius ¢ <a,.
Replacing, if necessary, the given function f by ¢,'f, we may suppose
from the beginning that f is supported by 4. (In fact, f—g¢,f has a
finite potential of order & everywhere in 4,.) Now there is no difficulty
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in copying the proof of case (i) of Theorem 4.1, the attention being con-
fined to the ball 4: Introducing the relatively open subsets

G ={xed:U)>t}, t>0,

of A, and denoting by A the capacitary distribution (corresponding to

the logarithmic kernel, cf. § 5) on an arbitrary compact subset K of G,

we get

e\ar < (vLdr = (UL de < |00 F o
A

Raising to the power p’, and applying Lemma 7.1 with y =41, we obtain,

since A< B, o'ip
w7 < [(cap )+ ()] (| o).

The same inequality subsists with cap@, in place of cap K, and we con-

clude that cap@; — 0 as t - + oo, whence cap*(EnA4,)=0.

TaEOREM 7.2 Let p>1, ap=n, E<R", and suppose cap*E =0, i.e.,
E is of zero exterior capacity with respect to the logarithmic kernel.
Then there exists a function f=0 such that f e L2 for all g < p, and

Ul(x) = +o00  for everyx e E .
If pz2, f may be so chosen that, in addition, f € £P.

(Note that f is automatically finite of order « because ag <ap=n, cf.
Lemma 4.1.) In proving Theorem 7.2, it suffices to consider the case
where E is contained in some closed ball (no matter how small). This
follows by the argument employed in the proof of Theorem 4.2 in the
case p<2.

(i) The case p=2. The following lemma is the dual of Lemma 7.1
above under the involution (1), § 4:

Lemma 7.2. Let pz2, ap=n, p'=p/(p—1). Consider two concentric,
closed balls A and B of radii ¢ and 3p, respectively. For any positive
measure u supported by 4,

1
— (Ut dr < [Gu (A + M (@) ) .
"B

In order to prove Theorem 7.2 in the case p=2, K <A, (where A4,
denotes a closed ball of radius g,<a,), we apply Cartan’s method just
as in Theorem 4.2. First we choose a closed ball 4> A4, concentric with
A, and of radius g <a,. Then there are open subsets ¢}, E of 4 such
that capG, <2~*. Denote by 1, the interior capacitary distribution as-



ON GENERALIZED POTENTIALS OF FUNCTIONS ... 303

sociated with G, the kernel being the logarithmic kernel on A4 (cf. § 5),
and apply (2), § 5 with u replaced by 1,. Denoting by B the closed ball
concentric with 4 and of radius R = 3p, we define

Jr = 9B Uflk—uc >
and obtain 1
— Uk z v - .

Wy

According to (7), § 5, this implies
1
— Ul 2 1—- M(g) cap@,  everywhere in G, ,
wn
in particular everywhere in E. Writing f=3 f,, we conclude that
Ul =3 U= 4+  everywhere in E .
e

The preceding part of the proof was independent of the assumption
p=2. We proceed to apply Lemma 7.2 with u replaced by 4,. Thus

Ifdlpr = @,1P(1+ M (o) cap Gy)'/? (cap Gy)''?",

which shows that X[|f,»<c, and consequently fe #”. Since f
vanishes outside B, we conclude that fe .#4 for all ¢ < p.

(ii)) The case 1<p<2. As mentioned above, we may suppose that E
is contained in some closed ball A4, of radius g, <a,. Using the notations
introduced in the discussion of the case p=2, we have again U{;: + oo
everywhere in K. In order to prove that fe #¢ for every ¢<p, we
merely have to use the following lemma analogous to Lemma 4.6 (with
A, in place of p):

Lemma 7.3. Let 1<q<p<2, ap=n. For any number R >0 there is a
constant K(R), depending further on n, x, and q, such that the inequality

1Us-allze = K(B) (B)

holds for any ball B of radius R and any positive measure p concentrated
on B.

Proor. Applying Lemma 3.2 with «, 8, y, 0 replaced by n—«, n—ag,
n, 1/g, respectively, we obtain after raising to the power ¢ and inte-

grating over B: 10
S[U;;_a]q dz < (S dy) S Us_,, da.
B B

(Recall that U should be interpreted as {du in Lemma 3.2, cf. the con-
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cluding paragraph of §5). Denoting by C,(R) the supremum of the
bounded potential Uj?, we infer from the formula of reciprocity (5), § 2,
in the manner explained in the proof of Lemma 4.4, that

SUgdx < O4(R) de.
B

Hence Lemma 7.3 follows, with K(R)=C,_,(R)"?, and the proof of
Theorem 7.2 is complete.
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