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DISTRIBUTIONS INVARIANT UNDER AN
ORTHOGONAL GROUP OF ARBITRARY SIGNATURE

A. TENGSTRAND

1. Introduction.

Let B=B(u,v) be a symmetric real bilinear form on R* x R* and let %
be the group of all linear transformations leaving B invariant. A distri-
bution 7'(u) is said to be invariant under % if

T(Au) = T(u)

for every A in Z. It is very easy to describe e.g. all invariant 7' with
supports at w=0. They are of the form P((0)d(u) where O is Laplace’s
operator B-Y(D, D) (D=(3/duy, . ..,0/0u,)) and P is a polynomial. They
span a linear space which we shall call #,. Let %’ be the space of all
invariant distributions. A rather complete description of .#’ has been
given by Methée [3] [4], when B has Lorentz signature and by de Rham
[6] [7], for general indefinite signature. They show in particular that out-
side u=0 every 7€ %’ has the form

(1) (T.f) = <F,Nf) ,

where f is any function in 2(R") which vanishes in a neighbourhood of
u=0, F is a unique distribution on the real line and Nf is the mean value

W) =  6(r—Bluw,w) f(w) du,

which belongs to Z(R). (We use Schwartz’s notations. 2 is the set of
infinitely differentiable functions with compact supports.) When f does
not vanish at the origin, Nf becomes singular for v=0, but has an ex-
pansion around =0 in powers of v and a suitable additional set of
singular functions. The singular expansion coefficients are linear in-
variant functionals {8,f) of f with support at «=0, that is, every S
belongs to #; and it turns out that % is spanned by the distributions S.

According to Garding and Roos (see [2]) a more concise description of £
can be obtained by putting a suitable linear topology on H=N2. Then
to every T'e %’ there is a unique element F in the dual H' of H such
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that (1) holds. More generally the adjoint mapping N’ is a linear homeo-
morphism of A’ onto .#’. In other words the space H' gives a para-
metrization of #’. Garding and Roos proved this for the Lorentz group.
The main purpose of this paper is to prove the same result when B has
the signature p,q with p+g=n,p=2,9=2. We note in passing that it
holds also when B is definite. In this case the space H=NZ2 is very
simple. Changing if necessary B to —B we can assume that B is positive
definite. Then H consists of all functions 7”~!f(7) where f is infinitely
differentiable for = 0. Its dual can be identified with all distributions
in 7 with supports in 7= 0.

We have assumed that % is the entire group leaving B invariant.
Let %, be the connected component of .# that contains the unit ele-
ment and ¥} > %’ the corresponding space of invariant distributions. It
is easy to see that .Z;=.%" except when B has Lorentz signature (see
remark p. 13). Although this case does not concern us, we mention that
then %, is the direct sum of £’ and a space £ of odd invariant distri-
butions with the property that

T(Au) = e(A)T(u),

where &(A)= —1 if A reverses time, ¢(4)=1 otherwise. The space £’
can be obtained in the same way as %’ by replacing N by

N_f)z) = S (v — B(u,w)) sgn B(u,v) f(u) du

where v is any time-like vector. The space N_2 consists of all functions
of 7 with compact supports which vanish for B(v,v) T < 0 and are infinitely
differentiable for 7z B(v, v) 2 0 (Garding and Roos, see [2])

In outline, our paper runs as follows. In section 2 we introduce the
infinitesimal rotations and prove a lemma which we need in section 5.
In section 3 we describe and topologize some function spaces, H, ,,
where s assumes four values and m all integral values = 1. In section 4
we prove that N is a continuous surjective mapping

9@ -~ H=H,,,

where s and m depend on p and ¢q. The same is true if we replace 2 by
the space & of all infinitely differentiable functions which together with
their derivatives decrease faster than any negative power of |u|, and
modify %’ and H, , accordingly. In section 5 we show that in both
cases N’ is a linear homeomorphism of H; , onto .#’. The rest of the
paper is devoted to some applications of this result. Let G be a linear
operator from #' to #’. Transported to H' it becomes I'=N'GN'-1.
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When G=0 is Laplace’s operator, I" is the adjoint of the differential
operator
D = 4(zD2+¥n—4)D,), D, =d[dv,

which maps H into itself and has the property that NOf=DNf
(fe2(R)). Using D it is easy to write down all invariant fundamental
golutions of (1 (de Rham [7]). We do this in section 6 and in section 8
we prove that the equation P(0)7 =8 where P is an arbitrary polynomial
has a solution 7" in #’ for every S in .%#’. When B has Lorentz signature
this was shown by Methée [3]. Finally in section 7 we get an explicit
expression for I" when G is the Fourier transform &%. In the Lorentz
case, Fourier-transforms of invariant distributions were studied by
Methée [4].

Since the use of the homeomorphism N’ makes the subject very clear
and simple, I have chosen to make the paper self-contained although
this leads to considerable overlappings with the papers by de Rham and
Methée.

The subject of this paper was suggested to me by professor Lars Gar-
ding. I wish to express my gratitude to him for his interest and valuable
advice.

2. Infinitesimal rotations.
We choose a coordinate system so that

p g , ) ,
B(u,v) = Z ;x; -k21?/kyk =xr =Yy ,
=1 =
where u = (z,y) and v=(z',%’), and we put
B(u,v) = uv .
Every Ae.# can be written as
A = A%Av4,,

where A% and A¥ belong to & and leave y resp. z fixed and A, is de-
fined by

@;=ax; when j+1i, gy =y when I[+6£k,
x; = x; coshf+y, sinhf ,

Y = %; sinh 0 +y, coshf .

The group & consists of four connected components %, (=%,), £, _,
&_,, %__, where the transformations of %, _, are characterized
by det A*=1 and det A¥= —1.

Let
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. ) )
5= i
J 1

h=1y 0 Y 0
kl kayl layk’
) )

L, =z, — —

be the infinitesimal rotations. We now have the following lemma:

Lemma 2.1. T belongs to &', if and only if
@ LT =LYl =L, T =0 for 1<ij<p 1<kl<gq,

Proor. Define transformations A3 by

v, =z, if k+i, k+j, y =1y foreveryl,
z; = x; cos0+a;sinb ,

x; = —;8inf+x;cosb .

T is invariant under all these transformations /g, that is,

(T, f(w)y = (T.f(AZw))  for every fe D(R™)
if and only if

2S5y = \T Ry u>> ~ 0

for every fe 2(R™). But as

0
5/ 5w) = (L5(5w)

this is equivalent to Lj;7T'=0.

In the same way we define transformations A¥ and prove that 7' is
invariant under these transformations if and only if L¥ 7 =0 for every
k and l.

Similarly we can prove that 7' is invariant under all the transforma-
tions A, defined above if and only if L,7 =0 for every ¢ and k. Now if
Te%,,, T is invariant under all the transformations A3, AY and 4, and
consequently (2) holds. As an arbitrary transformation 4 in %, can
be written as a product of A5, AY and A, we see that (2) implies that
TeZ,,.

REMARK. Since ¥’ %, it is clear T’ implies (2). Later we
shall see that in fact &'=2. .
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3. Some function spaces.

We are going to define spaces of functions ¢,y,... of one variable t
which are regular for 740 and have a singularity for t=0 defined in
terms of one of four functions y =y (7) labelled by an index s and given by

0(z), 6(x7)(£7)t log|e
according as s=1, + } and [ respectively. Here 6 is Heaviside’s function,
0(r)=11if v=0 and 0(z)=0 if 7<0. Let m be a fixed integer =1 and

denote by P,(t) polynomials of degree <v divisible by v™. In particular
P,=0 unless v >m. It is obvious that

(3) y(t)Py(r)eC® ifandonlyif P,=0.

We shall consider functions of class C” outside the origin with the prop-
erty that

(4) p—yP,el?

at the origin for at least one polynomial P,. It follows from (3) that P,

is uniquely determined by ¢. Further, if v <m, P,=0 so that ¢ is itself
of class C™ at the origin. It is clear that the coefficients 4,(¢) of P,

P7) = 3 4,(9)7 ,

are linear functions of ¢ and that 4,(p)=0 if peC’ at the origin. In
particular 4,(p)=0 if ¢ vanishes in a neighbourhood of the origin. We
shall find it convenient to write P, as

hm=§&wﬂ,

where, by definition, 4,(p)=0 when j<m. Expanding (4) in a Taylor
series around =0,

wme&m=§&Mﬂww>

we obtain another set B; of linear functionals of ¢ with supports at the
origin. Thus every ¢ with the property (4) has a unique expansion of
the form

Wﬁ=§&WNHﬂﬂ§&@hudﬂ~

Now let >0 and let C? and H®, be the space of all peC” with support
in |7|<a and the space of all ¢ with the property (4) and support in
|| < a respectively. It is clear that both spaces decrease when v increases
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and that H; > (%. More precisely any pe H? has a unique decomposition

(5) ¢ = (p—yP,)+yP,,
where the first term belongs to C. Hence H, is the direct sum of C”

and a space of dimension max (v—m,0). With the norms

(6) lpl, = max max [¢g®(7)|
ksv T

and

(7) go(®) = I<P—7Pvlv+§ |4;(9)]

C; and H; become Banach spaces. It is clear that the 4; and B; with
j Sv are continuous on H,. Equipped with the norms (6),
C.=cx=Mc
v20
becomes a reflexive Fréchet space. The reflexivity follows from the
classical fact that the injections 0% — C” are completely continuous.
Since, obviously, the injections H%"' — H® are also completely continu-

ous, the space
H, = H:) = n H;

v=20

equipped with the norms (7), is also a reflexive Fréchet space. All the
4; and B; are continuous on H,. It is clear that H, consists of all ¢ with
support in |7| <@ which are in C* for v+ 0 and for which there exists a
formal power series

P(r)=Ya7, a;=0 if j<m,
0

with partial sums P,(7) =Zgaj-rf such that
(8) ¢—yP,eC® atv=0 forallv.

In particular, a;=A4,(p) so that P is uniquely determined by ¢. The
direct decomposition (5) fails to hold in the infinite case. Instead we
have

Lemwma 3.1. ¢ belongs to H, if and only if
(9) @(7) = @i(7) + Y(T)@a(T)T™, where @1, 9,€C, .

Proor. It is clear that any ¢ of the form (9) is in H,. Conversely,
let peH,. Then, by a classical result due to Borel, we can find a ¢,eC,
such that t™p, has the Taylor series P at the origin. Hence

@—yt"p, € C,.
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Finally, we shall define spaces of functions with arbitrarily large sup-
ports having the property (4) for all ». This can of course be done in
various ways. We choose to define the analogue of L. Schwartz’s space
9(R) which is the inductive limit (Bourbaki [1, Chap. II p. 61-65]) of
the spaces C, when, for example, a=1,2,.... We let H be the inductive
limit of the spaces H, for a=1,2,... . It consists of all ¢ with compact
supports, belonging to C* for 7+ 0 and having the property (4). We have

LemmMma 3.2. H is reflexive.

Proor. H is in fact the strict inductive limit of the H, and hence H
is reflexive (Bourbaki [1, Chap. IV, p. 95, Exc. 17Db]).
A complete set of seminorms for Z(R) can be obtained by putting

) = Zk:maxlhk(f)w""(r)l ,

where the %, are continuous functions with the property that for every
compact K there is a A(K), such that s,=0 in K when k>2. Corre-
spondingly, we obtain a complete set of seminorms on H by choosing a
function ye2(R) which is 1 in a neighbourhood of 7=0 and putting

9(p) = Mg—yxyP,) + ? [4@)l

where v> A(K), (K=suppy) and u is an arbitrary integer. Changing y,
we get an equivalent set of seminorms.

Any element F in the dual H' of H can be described in terms of a
distribution and the functionals 4;. We have

Lemwma 3.3. F belongs to H' if and only if F has the form

v
(10) (F,p) = (Fop—27Pp) + % ¢; 4;(p) ,
where F, belongs to D'(R) and the order of F on the support of y s less than v.

Proor. Clearly FeH' if F is defined by (10). Let FeH' and let F,
be the restriction of F to 9(R). Then F,c2'(R), and if v > the order of F,
on the support of y, we define F; by

Fop) = Fo,p— 2P0 -
Then we have F,=F when A4;(¢)=0, j <v, which implies

F = F1+zc]Aj.
0
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CoroLLARY. Any FeH' with support at v=0 has the form

2¢iBj+2¢"4;,
where the sums are finite.

REMARK. We can also define H as the analogue of the space %
(Schwartz [8]), i.e. the space of all functions peC* for which the norms

2 17¢® ()l

I ksv
are finite. The lemmas 3.1-3.3 are still true.
ReMaARK. When we want to exhibit that H and H' depend on s and

. 4
m we write H, , and H, .

4. The mapping of Z(R") onto H, ,,,
Let ge2(R) and fe2(R") and consider the integral

S g(uw)f(u) du .
Make a change of variables such that
20 = wu, 20 =ax+tyy, «= (9+G)}wx) y= (Q_U)*wys

where w, belongs to the (p— 1)-dimensional sphere, S,_;, and w,eS, ;.
Then the integral becomes

: S 9(c) Mf(g,0)(¢ + 0)?(e —0)2 dg do,

e=|d]
Up)e,0) = { £+ (0=0Phw,) duo, duv,

dw, and dw, are the surface elements of S,_, and S,_; and p=}(p—2)
and g=4$(¢—-2).
Hence letting g approach é(7 — o) we get

where

Jowu—nr@ au = { M@ e+ ePle—ide.
ezl
We observe that d(uu—t)eZ’ and that the support of d(uu—7) is the

hyperboloid wu=17.
Define the mapping N by

(Nf)(r) = S S(uu—17)f(u)du for every feD(R").

Put R (0}, @={@0);ezlo} and Q =@Q-{0}.



DISTRIBUTIONS INVARIANT UNDER AN ORTHOGONAL GROUP ... 209

LemMMA 4.1. M defines linear surjective continuous mappings

(11) Z(B*) -~ 2(Q),
(12) 2(2) ~ D(Qo)

Proor. (12) follows from (11). We prove (11).

The only thing which is difficult to prove is that Mf has continuous
derivatives of any order in (0,0) which evidently is equivalent to proving
the same property for M,f, where

Mif(Em) = Sf(&*wz,n*wy) dw, dw, = p(u,v)

with p2=§&, v2=7. We observe that pyeC®(R?) and that v is even in u
and v. We have

(@[28)(Mf) = (21)7(@[ou)y = 1(w,0)
where 1y, is continuous and even in yu for (2/0u)y is odd in u. Now it
follows by induction that an arbitrary derivative of M,f is continuous.
Furthermore we have

REMARK. From the above proof it follows that
DDy (M[f)(0,0) = 3 ¢ (D, f)0),
la|=2(8+y)
where some ¢, + 0 with || =2(8+7).

LeMMA 4.2. N is a linear continuous surjective mapping 2(2) - Z(R).

Proor. According to Lemma 4.1 it is sufficient to prove that the
mapping L: 2(Q,) —~ Z(R) defined by

(Lo)(®) = { gle, 7)o+ P~ vV do
o2l
is a linear continuous surjective mapping. As g(p,0)=0 in a neighbour-
hood of (0,0), it is easily seen that Lge Z(R). Clearly L is linear and con-
tinuous.
Let pe2(R) and put K =suppep. Let <R be a compact interval so
that Ix K is contained in the interior of @, and let ye2(I) so that

Sw(e)d9=1-

I _ B
k(o,0) = y(o)p(e)(e+0)P(e—0)?

we have Lh(t)=¢(z) and hence N is surjective.
Now we can prove the following basic lemma.

Math. Scand. 8 — 14
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LemmA 4.3. N is a linear, continuous, surjective mapping D(R*) - H, .
where m =[4(n—2)] and

I) s=1 if p and q both are even,

II) s= +4% if pisoddandqiseven,

II') 8= —3% if piseven and qis odd,
IIT) s =1 if p and q both are odd.

RemMark. We observe that II' follows from II by interchanging «
and y.

Proor. At first we show that N(2(R"))<H, . Clearly Nf has com-
pact support and is of class C* for v+0. Put (Mf)(e,0)=h(o+0,0—0)
with h e D(R*+x R*). We examine Nf in 0 ={v; |tr|<4}. It is easily
seen that

[ ate+me— e+ Pie—miide € C=(0).
1

I. p and q both even. It is easily seen that

1
{ite+mo— e+ 1ite—vde € Ci(0) .
Iz

If we put h, ,=D{D}h we get by developing in a Taylor series and inte-
grating by parts

1
8@ =3 (P47 V1,000 (o + 0P80 — vt +

B+y=sv ﬂ 14
= 0(vr) X aﬂ,7ﬁ+3+‘5+"+1hﬂ,y(0, 0)+ X hg (0,0)ws , +w,
B+ysv B+ysv

where we C*+(0) and w, ,eC®(0) is independent of f, and

ag, = I’(ﬁ—l—_ﬂtl)l’@+y+ 1) . (’3+7) 2D+T+B+y+L |
IF'p+3+p+7+2) p
Hence N(2(R")<H,,,, and the expression for Nf shows that
(13) Am+k(Nf) = z Ca('Daf)(O) ’
ol =2k

where ¢, + 0 for some «, |x|=2k.
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I1. p odd, q even. It is easily seen that
B
| he+re=mle+mi+He—rde € O (0).
Izl
By developing in a Taylor series and integrations by parts we get

1
@ = 3 (757000 { @+ oo —firde +w

Btysv /3 7l
= 0(7)(27)t Z aﬂ’y-,5+i+ﬁ+r+ihp,y(0, 0)+ Z hﬁ.y(o’ 0)wy,, +w,
ptyso B+y<sv

where we(C**(0) and w;,eC®(0) is independent of f. Hence
N(2(R™)<H +3,m and the expression for Nf gives again (13).
III. p and q both odd. It is easily seen
1
| hle+mo—)e+mi+He—tidg e Ci+i+3(0) .
Il
We get by developing in a Taylor series and integrating by parts

1
@) = 3 (P27) 1y,00,0) § 0+ 000 ivrdg +
Btysv 3

= 2n~tlog|7|"t 3 @, ,tPtEHPHIh, (0,0)+
B+y=v

+ 3 ke (0,0)w, , +w,
B+ysv
where weC*+(0) and w,;,e(0®(0) is independent of f. Hence
N(2(R"))<H,, and the expression for Nf gives again (13).
We shall now show that N is surjective. Let peH, ,,. From the cal-
culations above it follows that there is an k € Z(R+ x R+) so that

S hlo+7,0—7)(0+)P(e—7)7de
eslt

has the same singular part as ¢. Take an f,e2(R") so that
Mf,=h(o+7,0— 7). We have Nf, —p € Z(R). By Lemma 4.2 there is an f,
in 2(2) so that Nf,= Nf, —p. We now have Nf=¢p with f=f, — f,e Z(B").

Proof of the continuity of N: Let f; > 0 in 9(R"). It is easily seen
that supp (Nf) is contained in a fixed compact set K < R. From (13) it
follows that 4,(Nf;) - 0. Furthermore we have with 0<d# <1

14+
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IDYNS;) — 75(7) 2(2) P (7))

1
£ Df(S 2 cﬁ,yhj.ﬂ,v(ﬁ(g"'t)’ﬁ(Q"T))'(Q‘i‘7)5+ﬁ(9“7)a+yd9+

Hﬁﬂ/év
+ 3 by, (0,0)w, Sh,(e+f e—1)(e+7)P(e— r)%)
Bry=v H
+ CkEOIAk(ij)I

which tends to zero uniformly in K and hence N is continuous.

5. Parametrization of .#’.
Lrmma 5.1. If Te#’ there is one and only one distribution Fe%'(R)

such that (T.f> = (F,NfY  for every fe D(Q)

Proor. After having in a convenient manner introduced new coordi-
nates 7(x,y) = (o, 0,0,,0,) where 20 =xx + yy and 20 =wuu, using Lemma 2.1
we can prove that 7oy is independent of (g,6,,0,). Hence we easily get
the existence of F. (We have here defined T'on by (Ton,f)=
(T,fon~|J(n1)|), where J denotes the Jacobi determinant; we assume
that inf[J(5)| > 0 in the set). By use of lemma 4.2, the uniqueness of F
follows from the fact that N(2(R2))=2(R). (Cf. de Rham [6] [7] and for
the case p=1 Methée [3].)

LemMa 5.2. Te %’ and suppT <{0} if and only if T'=P(00), where P
s a polynomial.

Proor. In fact, every such 7' has the form @Q(D)é(w) where @ is an
invariant polynomial and hence of the form P(00)4.
We observe that if FeH’ then F defines a distribution 7€ %’ by

(T.f> =<(F,Nfy forevery feD(RB").
Put T'=N'F where N’ is the adjoint mapping to N.

LemMA 5.3. Te %’ and suppT < {0} if and only if T=3c;N'A;, where
the sum is finite.

Proor. Let @, be all distributions in question whose orders are =< 2w.
Lemma 5.2 shows that dimG@,=v+1. From (13) it follows that
N'A,, . €8, for every k <vand that the N'4,, ,, are linearly independent,
and hence we have the lemma.

Now we can easily get the parametrization of #’.
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THEOREM 5.1. N' is a linear homeomorphism H, , —~ &', where s and
m depend on p and q as in Lemma 4.3.

PrOOF. At first we prove that N'H, ,=%". Clearly N'H, , %"
Let Te#’. From Lemma 5.1 it follows that there is a unique Foe 2'(R)

such that (T.fY = (Fo,Nfy  forevery feP(RQ).

If v= the order of F, in suppy, we define an extension F, of F, by

(Fr,0) = (Fo, 9=y 1) 2(7) 3 As(p)e7)  forevery geH,,.

7=0
But as supp (7' — N'F,) < {0} we have T — N'F,=3c;A; (Lemma 5.3) and
consequently 7'=N'F with F=F,+3c;A;.

Now the theorem follows from general theorems if we observe that
£ (see Bourbaki [1, Chap. IV, p.80, Exc. 9a] and Schwartz [8,
I, p. 72]), that the spaces H, ,, (inductive limits of Fréchet spaces) are
barrelspaces, and that N is continuous and surjective Z(E") - H, ,,.
For the general theorems see Bourbaki [1, Chap. IV, p. 70, 102-104].

REmMARK. Lemma 5.1 holds even if we only suppose 7%’ , which
depends on the fact that %, as well as & acts transitively on Q
(which is not true when p=1 or ¢ =1), which implies that the distribution
F is independent of the set in which we introduced new variables. As
also Lemmas 5.2 and 5.3 hold if we change %' to %, , Theorem 5.1
holds if we change %’ to %", and consequently &' =&, ..

Remark. We put 7Z=}(n — 2) and m=[%]. From the proof of Lemma
4.3 we get

(14') N'A,, = 2r)*H1§/I(m+1) when pq is even,
and
(14 N'A,, = (2n)"+18/(x[(R+1)) when pq is odd.

6. Fundamental solutions of .
By direct calculation we get
Lemma 6.1. N Of=DNf for every fe D(R"), where
D = 4(zD2+3(n—-4)D,).
We make the following

DeriniTiON. Define Pf. %, v<m+1, by
+00

(Pf.72,f) = p.v. S ( f(t)—[vg( £9(0)19) (j1)* do

—00

for every feH, ., where p.v. denotes the principal value of Cauchy.
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Now we get the following theorems from the parametrization of .#’.

THEOREM 6.1 If we put
E = }(2n) " I'(m+1)(n—2) Pf.v™
when at least one of p and q is even, and
E = L2n)»I'(n+1)B;
when both p and q are odd, we have ON'E =4.

Proor. It is easily seen that if FeH,, and D'F=A, then
O(N'F)=ké, where m=[n] and k=k(p,q) is given by (14) and D’ is the
formal adjoint of D. When at least one of p and ¢ is even it is immediately
verified that D'E=A4,[/k. When both p and ¢ are odd the equality
D'E = A4,/[k follows from the asymptotic development of Dg at the origin

1Dy ~ 3 (B;j(j—7)+ 4,2 —7)) v~ +1log 7|1 3 4,(j ~ 7)o
@ ~ 3 Biwi+log|t|-t > A7

THEOREM 6.2. Put Q=DB; when at least one of p and q i3 even, and
Q=Pf. 7" when both p and q are odd. Every solution Te %' of 0T =0
can be written in the form aN'G +b.

Proor. It is easily seen that D'F =0 if and only if ON'F =0. When at
least one of p and ¢ is even, the equality D’'G'=0 follows from the asymp-
totic development of Dy at the origin where ¢~ 3 B;ti+y, 3 A;7.

I. p and q both even.

1Dp ~ 3 B;j(j—7)v + 0(z) 3 A;(j+1)(j—m+1)7 .
IL. p odd and q even.
Dy ~ 3 B;j(j—m)v=t + 0(v)7t 3 4;(G+ D -n+ 3.

When both p and g are odd it is directly verified that D'G=0. As lis a
solution of D'F=0 and 1 and G are linearly independent, the theorem
follows.

7. Fouriertransforms in .#’.

Everywhere in the above sections we can (with obvious modifications)
change 9 to & and 2’ to &’. In the following the spaces H, ,, and
&' refer to &. The elements of H,, then have other properties at
infinity.

Define the Fourier transform & and its inverse %! by
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(FNw) = @i fluje-ime du
and
(F1)w) = @myin{ flujee du
for every fe &, where uyu is defined on p. 203 above. Define #7T where
TeT'DY  (gp gy = (T, F-f5 forevery fe&.

Put #'=N""FN’, where 4" is a linear homeomorphism of H, ,, onto
H, . As H, , is reflexive, it follows that .#" is a linear homeomorphism
of H,,, onto H,,. Let H, ,>¢p=0Ng. We have

(F. N @) = (N'N'F.g) = (FN'F,g) = (F.NFg)

for every FeH, ,. This implies that #/"Ng=N%-1g, and we have the
following theorem

THEOREM 7.1. F induces a linear homeomorphism N =N""FN' of
H, ,, onto H, .. Iis adjoint A" is a linear homeomorphism of H, . onto
H, ,, defined by N = ((Ng, NFg]} .

Furthermore A 2=1,

The last statement follows from A"2Ng=NF-1F-1g=Ng=Ng.
We shall now give an explicit expression of the kernel of A4".
Let p=Ng. We have
N p(r) = NF-1g(7) =Rlim S o(uw—1) du S eturg(u) du
|=

-
°°|u <R

and
enln = S €d(up — o) do ,

where 7(0) is a function so that nm=o0, and where 4,=4€% and
Ap=n(uu). Now
Hp(r) = lim S 6(uu—1:)(Se""(/"lﬂ)d(mu—o)da) g(u) dudu

R—>+o00 lulsR

= lim S( g 8(ww—1)eivn duNg(a))do‘

Bortoo Y\ i<R

= Lim S Ag(o, ) Ng(o) do .

R—>+o00

Clearly Ag(o,7) tends to an element of H, ,,(s), the element 4(c,7) say,
as R — oo.
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(i) If ¢ = yy>0 we have

A(o,7) = (@) | dun—z)e'etndu
lu|<R
R
= 2-70(g+ 1) S (@+7)P(e— r)qdes eieroteos? (sin g)7 4
|7] 0
R2

290G +1)\ e+ 1o~ 15 ((olo+)t) do
I
Here J, denotes the Bessel function of order v. If we put t=(o(o+ 7))}
and a(7) = (max (0, 7)) we get
(o(R2m)}
(15  Agp(o,7) = 290G+ 1)o7 g (82— 270)aT() dt
a(éw)

(ii) If we have o=m2n<0 we get in the same way

(~o(R24))}
(18") dglo,7) = 21 PI'(H+1)"1e™" S 124182 — 270)P J4(t) dt .

a(207)
Introduce the notations

0pol0) = 2-A0(G+ 1) 1o-R,  #, (k) = St“+1(t2+k)-ﬂJa(t) dt
a(k)
In order to give &, 4(k) a meaning when « =% and f=g, we prove the
following lemma

Lemma 7.1. Let k be fixed.

For fized B, #, 4(k) can be continued to a function of x which is analytic
in the whole complex plane.

For fixed «, H#, 4(k) can be continued to a function which is analytic in
the whole complex plane if k< 0 and analytic in the whole plane except when
£=2,3,..., where it has simple poles if k> 0.

Proor. Let k>0. When the integral converges we have

(16) o, 4k) = \t=r(e2—k)-0J (t)dt

e g

= I(1—pB)kte+6-D(esntJ_, , (kt)—1i sinam HY, , (k).

Here H! is a Hankel cylinder function which is analytic in ». Hence
the lemma follows for %> 0.
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Let k<0. When the integral converges we have
an #,,0 = {ene-prs o
0
= i(—k)@-P2ee-Pai22=0-1 (B + 1)1 H, ,((—k)}).

Hence the lemma follows.—For the formulas (16) and (17) see Nielsen [5.
pp. 222-224].

By analytic continuation and from (15') and (15") follows
THEOREM 7.2. The kernel A(a,7) to A is given by

Hp,_(207) Pl.c, (o) when ¢ >0
and
Hy _p(207) Pl.c, (o) when ¢ < O.

8. Solutions in %’ of P(O)S=T.

Lemma 8.1. If P is a polynomial, the mapping H, .29 — P(z)peH, ,
has a continuous inverse.

Proor. As P(7)=a,[I(t—4;) it is sufficient to prove the lemma when
P(r)=v—A.
If Im A0 the lemma is trivial.

Let A be real +0. Let 9,(t)e2(R) so that ¢,(r)=1 for 7| <|}4|, and
9;=0 for |z|>[§4]. Let g;e(r—A)H,,, and let ¢; > 0 in H, ,. Clearly
@i(7) Fy(z)(v—=A)1t -0 in H,,

and as in Schwartz [8, p. 123] it is proved that
i(t)(1=9x7))(r—2)1 >0 in D(R).

Now we prove the lemma for 1=0. Let ;e tH, ,,. It is easily seen that
supp (@,/7) is contained in a fixed compact set K <R and that
A, (p;/t) — 0.
We have Wil >
SUEIDi’wjl 0, where y;(z) = ¢;(7) —ys(T)2(V)Py(7) ,
TE

and

o0

Bi17)= 3 Al ey o)e(n) = vy = {witeord.
- 0

Now the lemma follows from the inequality

1

Sy)j-”)(ar) o tdo
0

< vl sup|Dyy;l.

Dv—l . —
gg}gl »(pi(v)[7)] sup sup
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CoroLLARY. P(7)H, ,=H, ,.

THEOREM 8.1. The equation P(Q)S=T with Te¥’' has a solution
n Z.

Proor. We shall prove that P(0).#’=.#’ which clearly is equivalent
to proving that P(D')H, ,=H, ,. It is well known that FOF 1 is
multiplication by wu. Hence 4~ D’'A" is multiplication by 7; for if
H, ,>9=Ng where ge Z(R"), then

(N"TDNF, @) = (N' A D' N'F,g)
(FN'D'N'F,g)
= (F, ¥ NOF-1y)
= (F,NFOF1g) = (iF,¢).
Clearly P(D')H,, ,,=H, ,,, if and only if "' 7'P(D')¥"H, ,,=H, ,,, and as
N'TPDVN' = P(NTID'A) = P()

this is true by the corollary of Lemma 8.1.

ReMARK. This result is also true relative to 2.
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