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FJELDSTAD’S SERIES
AND THE ¢-ANALOG OF A SERIES OF DOUGALL
H. W. GOULD

1.
Fjeldstad [3] proved the identity
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and later Carlitz [1] gave its g-analog
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It may be of interest to show how (1) follows from a general formula of
Dougall [2] and how (2) leads to the g-analog of Dougall’s formula.

2.
As a special case of his more general theorem, Dougall [2, formula (10)]
gave the relation
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which may be rewritten in the form
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We note the binomial coefficient identity
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and let == be a non-negative integer. Then the relation (4) implies that
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When y and z are non-negative integers this is equivalent with (1).

3.

To obtain the ¢g-analog of (4) in the case where z=n is a non-negative
integer we proceed as follows. From (2) we have
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Now, obviously the identity (5) applies to the g-binomial coefficients
also, and applying this to our equations we find that we have

BlHlH

P

M S(=1F
k=0

[m+n+p]! [m]! [=»]! [p]!
[m+n]! [m+p]! [n+p]!’

which is the desired g-analog of (5) when x=m= non-negative integer.

4.
An interesting special case of (7) might be noted. Since
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Therefore, setting p= —m—1 in (7) we have
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it follows that
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