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ON THE MINIMUM MODULUS OF ENTIRE
FUNCTIONS OF LOWER ORDER LESS THAN ONE

BO KJELLBERG

1. Introduction.

Much work has been performed to find the connection between the
minimum and the maximum modulus of an entire function. Many prob-
lems concerning these moduli still remain unsolved. A survey of this
field has been given by W. K. Hayman [1].

Let f(z) be an entire function. We denote max|f(z)| and min|f(z| on
|2| =7 by M(r) and m(r) respectively. The order ¢ and lower order i are
defined as limsup and liminf of loglog M (r)/logr as r — oo.

Many years ago it was proved that

. log m(r)
(1) hgl::p log 21(r) = cosmp
if 0<g<1, a result later on sharpened by Beurling (cf. [2, pp. 14-16],
the result was Theorem II below with g instead of 4, 0 <o =< 1}).

The author has earlier proved (cf. [3]) that cosmp in (1) can be re-
placed by coszd if 0 <4<g<1. Our purpose now is to remove the condi-
tion g < 1.

It is the fact that log|f(z)| is subharmonic which is used in the proof
of theorems such as (1). Also in the following the theorems stated for
entire functions could be given as theorems for subharmonic functions

u(z), replacing log|f(z)|.

2. Three theorems.

TrEOREM I. Let f(2) be an entire function of lower order A, 0<A<1.
Then

= coszA .

X logm(r)
2
® oD g 1)

TarorEM II. Let f(2) be an entire function of positive or infinite order.
Suppose that
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log M
3) limint 822" _ o

A
r—>00 r

A being a number in 0<i<1. Then
(4) logm(r) > cosnl log M(r)
holds true for certain arbitrarily large values of r.

TrHEOREM III. Let f(2) be an entire function of positive or infinite order.
Suppose that
logM
(5) liminf %8 @ < oo, but limsup
r—>00 7"" 7—>00

log M(r)
= o0

’
rl

A being a number in 0<i<1. Then again
4) logm(r) > coszd log M(r)
holds true for certain arbitrarily large values of r.

Perhaps it should be mentioned here that it is impossible in Theorem I
to replace (2) by (4). At the beginning of this century, Wiman [5] con-
structed functions having 1= for which (4) does not hold.

Theorem I follows from Theorem II so we have only to prove the last
two theorems.

3. Decomposition of f(z).

For the sake of simplicity we first suppose f(0)=1, a restriction which
will be removed later on.

Let us fix a number R, large enough for zeros of f(z) to exist within
|2| < R, these zeros being denoted by a;,a,,...,ay.

Our function f(z) must have an infinity of zeros. Suppose there were
only a finite number, say a,,a,, ...,a,. Then

g(2) = f(z)

h (z—a))(z—ay) ... (2—ay)

would be an entire function without zeros. Furthermore
lg@)] < e, 0<i1<1, e>0,

for certain arbitrarily large values of |z|. By a standard argument (cf.
Titchmarsh [4, Theorem 8.24]) we then conclude that logg(z) must be a
polynomial of degree zero and thus f(z) a polynomial of degree p. This
is contrary to the supposition in Theorems I-III, hence there must be an
infinity of zeros of f(z).
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‘We now define

N
(6) fik) = 1;[1 (1-2/ay),
and

N
(7 fol2) = 1;[1(1 +2f|a,l) .
A function f,(z) is defined by the identity
(8) f(2) = f1(2)fs(2) .

We observe that f5(z) =0 for |2| < R.

4. Estimation of |f,(2)] and |f,(2)].
The maximum and the minimum of |f(z)|, »=1,2,3, on [z|=r are
denoted by M,(r) and m,(r). Obviously
(9) my(r) < my(r) < My(r) £ My(r) .
Let n(t) be the number of zeros of f(z) for |z| <t. Jensen’s theorem gives
2Rn(t)
(10) S “Rat < logM(R) thus n(R) log2 < log M(2F)
0
We then estimate log M,(R):

log My(R) = g log(1+ R/|a,|) log (1+ R/t) dn(t)
1

]
oty

R

R n(t)
R)log2+ \ —— —
) logz | g

n(t)

< n(R) log2 + & dt

ot ©

IIA

n(R)log2+log M(R) < 2 log M(2R) .
Hence
(11) log M,(R) < logM,(R) < 2log M (2R) .

5. Estimation of |f3(2)].
We obtain from (8)

(12) log M4(r) < logM(r)—logm,(r) .
Because |a,| < R, that is |1 —2R/|a,|| > 1, we get
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N
(13) my(2R) 2 my(2R) = [T |[1-2R/|a,|| > 1,
1
and so from (12)
log M,(2R) < log M(2R).
Thus
(14) log M4(R) < log M(2R) .

Since f,(2) # 0 for |2| < R we can define

(15) W(z) = logf3(z) ’

where y(z) is regular for |z] < R and 9(0)=0. By a well-known theorem
of Carathéodory (ef. [4, Theorem 5.5]) we get for [z| < R

2A4(R)|z|
(16) lv(z)| = ——R:‘l;r

where A(R)=max,_gRe{p(z)}=log M,(R). Hence

) oglf| = Refre] < fyial 5 2o 20
For |2| 5 4R, we get the formula

(18) fogrey| = 2ETE .

From (14) we at last obtain

(19) foglra)| s 2B,

valid for 2| £ }R.

We may observe that, given a function f(z) of lower order 4, 0<i<1,
it is possible to choose a sequence R, R,,...,R,, ... — « such that the
right-hand side of (19) tends to zero uniformly in every circle 2| < R,,.
Thus f(2) can be uniformly approximated in |z| <R, by means of a
sequence of Weierstrassian products of the simplest kind.

6. A formula for |f,(2)|.
Let 0< R, < R,. By taking the integral

log(1+2/|a,
(20) Sﬁg(_zd;/illdz,

where 0 <4 <1, around the upper half of the annulus R, <|z| < R,, one
can deduce (cf. [2, p. 16], and [3, p. 136]) that
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1) Igzlogll——r/lanll—c;zd log (1 +r/la"|)dr
Ry
log (1+ Ry/|ay|) log (1 + Ry/la,|)
The value of k(1) is (cf. [2, p. 18])
1—si -2
(22) k(i) = _;“jgl__%fl

The best value of K(1) seems to be more difficult to obtain, but a rough
estimation gives K(1)< 10.
Summation with respect to » from 1 to N gives from (21)
log My(R,)

Ry
» logmy(r) — cosmA log M y(r) log M,(R,)
S = dr > W) == 5 - K () 2 p T,

(23)
31
valid for 0<i<1, 0<R, < R,.

7. Proof of the theorems in the case of 2 < 1.
Let us add the integral

Ry
logmy(r) — cosmA log M 4(r
(24) 18, By = | EROTE BT,
By
to both sides of (23). Denoting
Rg
logm,(r) m4(r) — coszwi log Mo(r) M 4(r
(25) A(Ry, Ry) =S g My 3 s g M o(r) Mo )dr
Ry
we then get from (23)
log M,(R log M,(R
(26) AR Ry > K2 ) gy ETH) L yg py.
1 2

We shall now prove that it is possible to choose arbitrarily large R, and
R, such that the right-hand side of (26) is positive. Let us set

log M log M
(27) « = lim inf ogﬂ (T), B = limsup Ogra (r).

r—>00 r—>00

We have supposed in Theorem II that « =0, and, in Theorem III, that
X < oo,

We choose a number ¢>0. For certain arbitrarily large values of R
it then holds that
(28) log M(2R) < (x+¢)(2R)*.

Math. Scand. 8 — 13
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Let (28) be true for a value B. We then choose R,=3}R and estimate
the terms in the right-hand side of (26). To begin with (the value of R,
will be chosen later)
(29) log My(R,) = log My(R,) M4(R,)—log My(R,)

2 log M(R,)—log My(R,) .
From (19) and (28) we get

4log M(2R
Ogﬁ—(———)Rl < 4(x+e)22R*1R,

= (o) 23R, [R) R,

(30) logMy(R,) <

Hence
(31) log My(R;) > log M(R,)— (x +&)2**3(R,[R)*E;* .
Furthermore, from (11) and (28).
(32) —logMy(R,) = —log My(3R) > —log My(E)

> —2logM(2R) > —(x+¢g)21HRA,
By (19), for r< iR,
4 log M(2R)

4 log M(2R)
r, _— 7.
R

—log M > -
og My(r) =z 7

logmy(r) = —

Thus
8log M(2R
(33) logmg(r) —cosmd log My(r) > — - OgRL_) r > —8(x+e)22RA1r .,

Inserting this in (24) we obtain
3R

d
(B AR) > — (x+) 200 R | ﬁr - — ?I‘—Jr—; QIRA-LI(JR)A — B 1)
) -
and then ‘
(34) I(B,3R) > —f;fi; 9242

Combining (26), (31), (32) and (34) we get

log M(R,)

T k() e) 2Ry R -
1

(35) A(Ry,4R) > k(2)

— KX)o+ e)21+2"—(:—+—: 9%+2

Let us now consider the case «=0. For an arbitrarily chosen R; the
first term on the right-hand side of (35) is some positive number. We then
choose & small enough (that is R large) to make the right-hand side of

(35) positive.
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If x>0 we have supposed that f=oo. Then, by appropriate choice of
R,, the first term on the right-hand side of (35) can be as large as we
wish. Thus there exist also in this case arbitrarily large R, and R such
that A(R,,4R)>0.

Remembering (25) we conclude that

(36) log my(r) mg(r) — cosmd log Mo(r) M4(r) > O

for certain values of r - oo. Since f(z)=f;(2)f53(2) we have

(37) m(r) 2 my(r)mg(r) 2 my(r)ms(r)
and
(38) M(r) £ My(r) My(r) = My(r) My(r) .

Because, in this section, we have 1<}, that is cosmi=0, (36), (37) and
(38) yield what is to be proved in Theorems IT and III:

(4) logm(r) — cosmd log M(r) > O
for certain values of 7 — co.

8. Proof of the theorems in the case of 4> 1.
This time we add the integral

R

¢ (1 —cosmA) logmy(r)
(39) J(Ry, Ry) = \ o dr

Ry

to both sides of the inequality (23). We perform all the estimations in
exactly the same manner as before and finally we conclude that

(40) logmy(r) ms(r) — cosmd log M o(r)ma(r) > O

for certain values of r— co. Because coszd<0, the inequality
M,(r) = M,(r) now goes in the wrong direction. We avoid this difficulty
in the usual manner (cf. [4, Theorem 8.74]): Let z, be a point on |z|=r
where m,(r)=|f1(z,)|. Then

N N
(41) my(r) Mo(r) = 1:[ [1=7%/la,? = III |1 —2%/a,?|

If1(zo)|* [f1(—2)| S my(r) My(r) .

]

Hence, by means of (40),
(42) my(r) My(r) Z ma(r) My(r) > My(r)Heo =my(r)ces=~t

_?__ MI(T) 1+cosni.m3(r)cos ni—-1 ,
which gives

13*
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m1(")m3(7’) > Ml(r)m”‘ma(r)cowz
or
(43) logm,(r)ms(r) — cosmA log M, (r)my(r) > O.

Since m(r) = m,(r)my(r) and M(r) = M,(r)ms(r), we obtain, once again, in
the case } <1<1 that
(4) logm(r) —cosmA log M(r) > 0

for certain arbitrarily large values of r.

9. Zeros at the origin,

For simplicity we have up to now supposed f(0)=1. If there are p
zeros at the origin, the entire function can be written

(44) f(z) = Az2fi(2)f4(2) -

There f,(z) is defined as in (6) and f5(z) by (44) and by f3(0)=1. To
complete the proof in order to cover also this case, we must in addition
add to (23) the integral

(45) 1§2 1- cosnl)(lcig |A| +p logr) ir.
. r +4
R

The small changes in the proof which are necessary do not affect the
conclusions about the positive sign of the right-hand sides of the formulae
corresponding to (35). Thus (4) still holds, and Theorems I-III are
proved without any restriction on f(0).

In Theorem III, the condition §=co is stronger than necessary. As
we can see from (35), 8 should be larger than a certain multiple of «:

(46) B > Y

but, of course, the value of the factor is far from being the best. But if
B < oo, the function is of order 4, 0<A<1, a case not of much interest
here.

21+21 K 2
( (l)+1—2)“’
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