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COMPARISON BETWEEN PLANE SYMMETRIC CONVEX
BODIES AND PARALLELOGRAMS

EDGAR ASPLUND
Introduction.

Every plane symmetric compact convex body contains at least one
parallelogram which expanded by £ will cover the original convex body.
This is the main result of this paper, which thus gives a quantitative
estimate of the ‘““parallelogramness’ of a general plane symmetric convex
set. The writer is indebted to Dr. B. Griinbaum for the statement of
the problem as well as for much help and encouragement.

In order to fix our ideas in a more general frame of reference, we make
the following definitions. Let I" be the set of all compact convex bodies
in the Euclidean plane which are symmetric with respect to the origin
and which have a non-empty interior. Let y be the set of classes of
affinely equivalent elements of I" and let ¢:I" - y be the canonical map.
By e, p and hey we denote respectively the class of all ellipses, parallelo-
grams and affinely regular hexagons. The set ¥y becomes a metric space
with the following definition of a distance.

d(a,b) = loginf{h >0| 34 ei-Y(a), Bei-'(b): 4 < B < hA}.

It is easy to verify the postulates of a distance function on the expression
above. We can now state our result in the following manner.

THEOREM 1. For any ¢ € y, d(c,p) <log$ with equality only for c=h.
Another result is
THEOREM 2. For any ¢ € y, d(c,k) <log$} with equality only for c=1p.

It is part of a result of F. Behrend [1], that for any C' € I there is a
unique inscribed ellipse £ of maximal area and that for this ellipse
C<2tg. Also if and only if C is a parallelogram, < C' < kE is impossible
for any ellipse B and any number k < 2. With the notations that we have
introduced this would be stated as follows.

THEOREM 3 (Behrend). For any ¢ € y, d(c.e) < } log 2 with equality only
Jor c=p.
Received November 14, 1959.
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It might also be of interest to know the diameter of the space y. It
follows immediately from Theorem 3 that the diameter is not larger
than log2. This is not a particularly good estimate and it is easy to
find lower estimates with the help of Theorems 1 to 3. The author
believes the following conjecture to be true.

CoNJECTURE. For any a, ¢ € y, d(a,c)<log$ with equality only for
a=pand c=h or a=h and c=p.

F. John [2] has an extension of Theorem 3 to higher dimensions.

1. Two lemmas on affinely regular hexagons.

The proof of Theorem 1 uses properties of circumscribed affinely
regular hexagons. We introduce the following coordinates to describe
the points on the perimeter of an affinely regular hexagon. Beginning
with one of the vertices, the points on the side next to this vertex in
the positive direction are measured from it so that the next vertex will
have coordinate 1. Coordinates referring to this side will be indexed with
the index 0:x,, y,, etc. The next side in the positive direction is coordi-
natized in the same way with coordinates indexed with 1 and the third
side with coordinates indexed
with 2. This is illustrated by
Figure 1. Because of the sym-
Side 2 Vertex 2 metry in the situations this

1 coordinatization is sufficient

. for our purposes. We will also

Side 1 - regard the indices 0,1,2, as

elements of the field J; of in-

Vertex 1 tegers modulo 3. We make the

convention that Yw;, T1y;

mean respectively x,+ x, 4+,

Side 0 and y,y,y, and that the ex-

1 pression ‘“‘for all ¢’ means

“for all ¢ € J3”. Finally, we

index the sides and the ver-

tices of the hexagon in the

same way, as indicated in
Figure 1.

Given any convex set C € I' we define a family of functions f,(C,H),
O<a<$%, H € t-1(h) as follows. Let s(4) denote the area of the set 4.
Put

1

fe—— g

Lo
Vertex 0

Fig. 1.

f(CH) = as(H-HnC) + (1-x)s(C—HNC).
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These functions are continuous on :-(k), provided with the evident
topology. The subsets V,, 5, <4~(k) defined by

Vs = {H | Hei-Y(h), mC<H<MC, m and M real and positive}

are compact in this topology. It is also clear that there exists an m(x)
small enough and an M(x) large enough for the inequality

fC,H) 2 0s(C)

to be satisfied on the complement of V,, 5 for some positive number
g¢=0(x). Consequently the function f,(C,H) assumes its minimum in
¢~1(h) for some hexagon H.

The convex set C inter-
sects each side of H in a
closed interval, which we
will denote [z;y,] in our
coordinatization. Suppose
that C is strictly convex,
i.e. that the boundary of
C contains no nondegene-
rate line segment. If the
function f,(C,H) attains its
minimum for the hexagon
H, we find by studying the
variation of H indicated in
Figure 2, that a necessary condition on the numbers z;, y; is

—ofrl+ (1 -0yl —22) —ad(1 —y2) — oz g +
+ (L= ) (Y41 —Zis1) —x(1 —¥44q1) = 0.

Fig. 2.

If we introduce the notations

3y +2;) = 2z, Yi— % = Uy,

we get

(1) 2y = 30— Ugyy
Similarly, we find

(2) (I—2z)u; = Jo—u;y .

Adding these relations we get Su;=3x. We know by the definition of

z; and u, that
02 =1, 0w =1, du, £z, £ 1-3%u,;.

From equations (1) and (2) we then obtain
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u; £ 3o
and
Uy Z Jo—tgyg +dugy® 2 ol
Thus ;>0 for all <. Now from equations (1) and (2) we can deduce the

relation
Tz =11 (1-2).
We collect our principal results in a lemma.

Lremma 1. Let C € I be strictly convex. If f (C.H), 0<x< %, attains
its minimum for the hexagon H € i~Y(h), then the lengths w, of the inter-
vals in which C cuts the sides of H satisfy the inequalities

(3) DR E
and the coordinates z; of the midpoints of these intervals the equation

(4) MMz =TI1-2).

Our aim is now to preserve equation (4) while « tends to zero and
while we drop the requirement that C be strictly convex. To do this we
choose a sequence {x,} of numbers satisfying 0 < «,, < % and lim,, ,  «,=0
and a sequence {C,} of strictly convex sets in I" tending to the arbitrary
set C € I. We construct a corresponding sequence {H,} of solutions
in +71(h) to the respective problems of minimizing f, (C,,H). It follows
from the properties of the hexagons H, and the convergence of the
sequence {C,} to a convex body C with interior points that the H, are
contained in some compact subset of i-1(h). We can therefore, by
passing to a subsequence if necessary, think of the sequence {H,} as
having a limit H € ¢-1(h). By further selection of subsequences we may
assume that the sequences {z,;} of midpoints of the intervals which are
cut out from the sides of H, by C, also converge to points z; which then
by the closedness of the sets must belong both to C' and to the appro-
priate sides of H. The relation (4) is of course preserved. Also we must
have H>(, since otherwise the relation (3) would be contradicted for
small enough «, in the sequence. However, it is no longer certain that
the points on the sides of H with coordinates z; are midpoints of those
intervals on which C touches the sides of H. We have proved the follow-
ing lemma.

LemMa 2. For any C € I there exists an H € 1-(h) such that H>C
and such that for each side of H there is a point on this side with coordinate
x; which also belongs to C (i.e., H is circumscribed to C), and the numbers

z; satisfy the relation
' MMz =TI(-2).
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This proof of lemma 2 is based on an idea of professor A. Beurling.
The writer first used the fact that those circumscribed H which have
extremal area do satisfy the required relation, but this leads to much
less perspicuous computations.

2. Proof of Theorem 1.

As we now go on to prove the inequality d(c,p)<log} we need a
couple of lemmas to single out the freak case c=h.

LemmMma 3. d(p,h)=Ilog}.
This lemma is proved by elementary computation.

Lemma 4. If for a given C € I' one can find a parallelogram P € i-1(p)
such that P < C < P but such that at least one pair of opposite vertices of P
lie in the interior of C, then d(i(C),p) <log 3.

Project the two vertices of P that lie in the interior of C by a line
through the origin onto the boundary of C. Then take the two projec-
tions together with the
other pair of vertices of P
as the vertices of another
parallelogram P’ € i~1(p).
It is obvious that

P < CckP

for some k< §. This proves
Lemma 4.

Given a convex set Cel’,
we now circumscribe a he-
xagon H € i-1(h) about C
in such a way thav there
are three tangent points
(points where C meets the
boundary of H) on succes-
sive sides of H whose coor-
dinates «; satisfy [Jz; =
I1(1 —=,). This is possible
because of Lemma 2. We trace the tangents to C' parallel to those lines
which join the midpoints of opposite sides of H. These tangents together
with their respective opposite sides of H, suitably prolonged, form three
parallelograms circumscribed to H. We contract these three parallelo-
grams by the factor §. For clarification see Figure 3, where we have
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also introduced three lengths a,, @, and a, which determine the configura-
tion. All measures have not been written out in order not to clutter up the
figure needlessly. By Lemmas 3 and 4 we have proved Theorem 1 if we
can show that among the three dotted parallelograms P, there is at least
one which is included in C' and that, unless C is a hexagon in i-1(h), at
least one of the vertices of this parallelogram lies in the interior of C.
We proceed to do so by splitting up the possible configurations of Figure 3
in different cases. First, if a;=0 for all ¢, the set C reaches out into
every vertex of H and thus coincides with H. Next, suppose a,+0 for
exactly one ¢ € J,. We will find that the corresponding dotted pa-
rallelogram P; satisfies the condition of Lemma 4, which thus settles
this case. To do so we will need another lemma.

Lemma 5. If C meets a certain side of H in one of its closed outer third
part intervals and the other end of the same side corresponds to an a;=+0,
then the vertex of P, nearest to the side in question lies in the interior of C.

Lemma 5 is proved by elementary computation from Figure 4, where
A € C denotes the given point in the (closed) outer third of the side
and B is constructed as
indicated and must be an
interior point of C since
otherwise the indicated
tangent would not touch
C.

Fig. 4. Reverting to our case

a,+0 for exactly one i,

Lemma 5 now shows that P; will satisfy the conditions of Lemma 4,
hence we are through with that case.

Now, suppose a, =0 for exactly one :. Then by Lemma 5 the parallelo-
grams P,,, and P,_, have at least one vertex each in the interior of C.
To arrive at the desired conclusion through Lemma 4 we have thus to
show that at least one of the two vertices nearest to the 7+ 1-st side
are in C.

DerFiniTION. C 18 arrow-shaped with respect to the i-th side of H if
for some real number k, 0<k <1, the closed straight line segment bounded
by ;=% and z, =k and the segment bounded by r;,_;=1—k and z;=}%
both belong to the boundary of C.

CoroLLarY. If C is arrow-shaped with respect to more than one side of H,
then C is the hexagon with vertices x;= 3.
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LemMMA 6. Suppose a;, a;,,+0. The corresponding vertices enclose the
i-th side of H. Then either the vertex of P; nearest to the i-th side of H or
the vertex of P, nearest to the same side belong to the interior of C, or else C
18 arrow-shaped with respect to the i-th side, in which case both vertices lie
on the boundary of C.

To prove Lemma 6 we first note that by Lemma 5 it is possible to
assume that C meets the ¢-th side in a point with coordinate z; € (3,%).
We now assume that .
none of the two vertices r—— x,—j
lies in the interior of C. %1 \fiﬂ 3a.:
Join the point z;,,= AN ’
3a;, and the vertex of / Py +1\\

P, with a straight line. ! A

It is clear that the con- Fig. 5.

tinuation of this line

beyond the vertex contains no interior points of C. It follows that
3a;.4>2a; and

3a;.1

Qi1 <1

-x;.

Sap—a;
By the same construction from the other side we have 2a,,; <3a; and

a;

— Sz;.
3a;—
We add these two relations and get
& @y (@t a,)? — 2(a—a,4,)?

v

3a;—ayy 3a;,—a;  (@;+0.,) — Ha;—ay,)?

Under the conditions 3a; > 2a,,,, 3a,,,> 2a, this relation is possible only
if @;=a,,, and x;=13, and by the construction made, one finds that this
possibility exists only when C is arrow-shaped with respect to the ¢-th
side.

Now Lemma 6 is proved. Substituting ¢+ 1 for ¢ in Lemma 6 settles
the case a; =0 for exactly one 4.

Finally, we suppose a;+ 0 for all 7 so that Lemma 6 is applicable to all
sides of H. If C is arrow-shaped with respect to more than one side of H,
then C is a hexagon. If C is arrow-shaped with respect to exactly one
side of H, then it is easy to see on Figure 3 that by Lemma 6 at least one
of the parallelograms P, satisfies the requirements of Lemma 4. We may
thus suppose that C is not arrow-shaped with respect to any side. Then,
by Lemma 6, at most one of the two parallelogram vertices pointing to-

Math. Scand. 8 — 12
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wards any given side is not in the interior of . Furthermore, unless it
be immediately possible to pick out a wholly interior parallelogram
among the P,, the non-interior
vertices must be arranged in
the pattern of Figure 6 (or in
the opposite pattern, which can
be treated in exactly the same
way). Indeed, these vertices
must even be exterior to C lest
the conditions of Lemma 4 be
apparently fulfilled for some P,.
Similarly, by Lemma 5, we may
suppose that x,>% for all s.
As in the proof of Lemma 6,
we now find

a;

Fig. 6.

x; > —-
3a;—a; .,

and, moreover, 2a;>a;.; for all <. Hence we get

o 11 a; ] _ H (2a;—a;,,)
I1 (3a;—as) <Mz IT0-a) < H (3a;— 1,+1)

Because of the equation [Tz;=1IT (1 —=x;) these two relations imply
H a; 2 = H a’zl—.[ ;g < H Qi1 2“1!—'0’”—1 H ai2

the last step consisting of the familiar inequality between arithmetic
and geometric means, which is applicable since 2a;—a,,;>0 for all 3.
But this last relation is impossible and we thus have the final contra-
diction needed in the proof of Theorem 1.

3. Proof of Theorem 2.

To prove Theorem 2 we will first show that it is possible to regard
the set of all hexagons H € i~Y(h) circum-
scribed to C as the set of values of a function C.
defined on a circle. Take the ellipse of maxi- 8
mal area that is inscribed to €' and make it
a circle 8 by an affine transformation, car- \ tI\A4
rying C into C'. Take a point ¢ € S and
trace the tangents to ¢’ parallel to the line
joining ¢ to the origin. This line cuts the
frontier of ¢’ in a point A. We may trace
the two half-tangents to C' at 4 and con- Fig. 7.
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struct the (possibly degenerate) parallelogram which has for sides
these two half-tangents between A and their intersections with their
corresponding tangents to C’, see Figure 7. Unless this parallelogram
contains the origin in its interior there will be a unique hexagon H(t)
in 3-1(h) circumscribed to C’, which has one pair of sides parallel to the
given direction. In case the parallelogram has the origin in its interior,
there is a family of hexagons H(t,0) € i-1(h) with vertex A that all
fulfill the above conditions, and it may be parametrized e.g. with the
angle 6 that the side of H issuing from A4 in the positive direction makes
with the direction from the origin to 4. However, this case can happen
only for a finite number of points ¢ € 8, and it is easy to arrive at a
definite estimate of this number by means of the inclusion 8<(C’<2%8.
Thus, we can cut § at these points ¢, and piece in the corresponding
functions H(¢,,0) so that we get the desired function, and it is easy to
see that this may be done so that the function becomes continuous.
We rename the resulting function H(t), t € S.

Now we consider three consecutive vertices of H(t) and follow their
variation as ¢ runs through the circle 8. To each vertex ¢ there is a con-
traction number k;, which is the fac-
tor by which H has to be contracted
to bring that particular vertex to
the boundary of C’. Thus we have
three continuous functions k,(t) on S.
Moreover, all these functions have
the same range of values. Accord-
ingly, there must be some ¢ for which
two of the functions k,(f) are equal
and the third function larger than or
equal to this common value of the
two others.

We will now show that for the cor-
responding H(t), C'>%H(t) and C’
will contain kH(t) for some k> % unless it is a parallelogram. This proves
Theorem 2, since " represents the same class in I" as does C. The proof
is immediate from Figure 8. Let ky(f) =k,(t) < ko(t). Then C cannot meet
every side of H unless k=%, > %, and in case ky,=k, =% this can only be
done by letting C be the parallelogram with vertices at the midpoint of
side 0 of H and at vertex 2 of H.

12+
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