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PYTHAGOREAN INEQUALITIES FOR CONVEX BODIES

WM. J. FIREY

Consider a convex body in Euclidean three dimensional space and let
a(u) be the area of the projection of this body upon a plane with normal
direction u. It was conjectured by C.Carathéodory and proved by
W. Blaschke [1, p. 148] that if u,,u,, u; are three mutually perpendicular

directions, then
o¥u) £ o(uy).

In this note a class of such Pythagorean inequalities for convex bodies,
(which includes that of Carathéodory), is shown to follow from one
particular inequality. Also, in a certain sense, the cases of equality are
determined.

Let K be a convex body in Euclidean n-dimensional space (n 2 2),
B(u) the breadth of K in the direction . That is, if A(u) is the support
function of K, then

B(u) = h(u) +h(—u) .

Suppose {u}, 1=1,2,...,n, are a set of » mutually perpendicular direc-
tions and consider the circumsecribing rectangular parallelotope of K
which is bounded by the 2n supporting hyperplanes of K having outer
normal directions + u,. Call this circumscribing body C. Finally, let P(u)
be some point common to K and its supporting hyperplane with outer
normal direction ». For any w, the points P(u) and P(—wu) belong to
the body C and so the distance d between them is less than or equal to
the length of a diagonal of C, that is d?<3 B%(u,). On the other hand,
since B(u) is the minimum distance between points of the hyperplanes
containing P(u) and P(—u), we have

1) Bu) = 3 BXw,) .

The class of Pythagorean inequalities which we have in mind follow
from (1). If V(K,,...,K,_;,u) denotes the mixed volume of convex
bodies K;,...,K,_; and the unit segment in the direction u, then
V(K,,...,K,_;,u) as a function of u, is known to be the support function
of a convex body having a centre of symmetry [2, p. 44]. The breadth
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of this body in the direction u is then 2V(K,,...,K,_;,4) and so, with
the preceding meaning for u,, we have

(2) VK, .. Ky yu) €3 VHEKy .. Kpguy) .

In particular, if we let K;=K,=...=K,=Kand K,,=...=K, ;=8
(where S denotes the unit spherical body), then

V(Ky, .. Kyyu) = Wy y(K,u)

which is the (n—p—1)th cross-section integral of the projection of K
upon a hyperplane with normal direction % [2, p.49]. In particular,
W' o(K,u)=o(u) for which (2) is Carathéodory’s inequality.

Returning to (1), we introduce a Pythagorean defect §(K) of K by

. . 2 Bu;)— B%(u)
(3) 0(K) = max,, (mmu ———_B%(u—)— )

2 B¥(w,;) _ 1) )

max, B%(u)

MAX ;) (

We have

THEOREM. 0 6(K)=<n—1. Both bounds are attained, the lower being
attained if and only if K is a segment.

Inequality (1) asserts that d is non-negative. By Pythagoras’ theorem,
0=0if K is a segment. On the other hand, if §=0, from (3)

2 B*(u;) = max, B*u)

for all {u;}. Let %, be a direction in which B(u) attains its maximum
and let @,,...,%, be such that {#;} form a mutually perpendicular set
of n directions. Then 3., B%%;)=0, whence B%(u;)=0 for j=2,3,...,n
and so K is a one dimensional convex body, that is, a segment.

To show d<n—1 we need only remark that B2(u;)/max,B*u)<1
with equality if and only if B?(u,;)=max,B%u). Therefore, if and only
if K admits a circumscribing hypercube of edge length equal to the
maximum breadth of K, we have == — 1. This is the case, for example,
if K is of constant breadth, or if K is an n-dimensional hypercube.

We finally note that the cases of equality in (2) can be found directly
by suitably interpreting the statement of the theorem. Thus, for each
{u;} there is a u for which we have equality in Carathéodory’s inequality
if and only if K lies in a hyperplane. On the other hand, the ratio
2 0%(u;)[o*(u) attains its maximum of » for a body of constant brightness
or for a hypercube.
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