PYTHAGOREAN INEQUALITIES FOR CONVEX BODIES

WM. J. FIREY

Consider a convex body in Euclidean three dimensional space and let $\sigma(u)$ be the area of the projection of this body upon a plane with normal direction u. It was conjectured by C. Carathéodory and proved by W. Blaschke [1, p. 148] that if u_1, u_2, u_3 are three mutually perpendicular directions, then

 $\sigma^2(u) \leq \sum \sigma^2(u_i)$.

In this note a class of such Pythagorean inequalities for convex bodies, (which includes that of Carathéodory), is shown to follow from one particular inequality. Also, in a certain sense, the cases of equality are determined.

Let K be a convex body in Euclidean n-dimensional space $(n \ge 2)$, B(u) the breadth of K in the direction u. That is, if h(u) is the support function of K, then

B(u) = h(u) + h(-u).

Suppose $\{u_i\}$, $i=1,2,\ldots,n$, are a set of n mutually perpendicular directions and consider the circumscribing rectangular parallelotope of K which is bounded by the 2n supporting hyperplanes of K having outer normal directions $\pm u_i$. Call this circumscribing body C. Finally, let P(u) be some point common to K and its supporting hyperplane with outer normal direction u. For any u, the points P(u) and P(-u) belong to the body C and so the distance d between them is less than or equal to the length of a diagonal of C, that is $d^2 \le \sum B^2(u_i)$. On the other hand, since B(u) is the minimum distance between points of the hyperplanes containing P(u) and P(-u), we have

$$(1) B^2(u) \leq \sum B^2(u_i).$$

The class of Pythagorean inequalities which we have in mind follow from (1). If $V(K_1, \ldots, K_{n-1}, u)$ denotes the mixed volume of convex bodies K_1, \ldots, K_{n-1} and the unit segment in the direction u, then $V(K_1, \ldots, K_{n-1}, u)$ as a function of u, is known to be the support function of a convex body having a centre of symmetry [2, p. 44]. The breadth

Received October 29, 1959.

of this body in the direction u is then $2V(K_1, \ldots, K_{n-1}, u)$ and so, with the preceding meaning for u_i , we have

(2)
$$V^2(K_1,\ldots,K_{n-1},u) \leq \sum V^2(K_1,\ldots,K_{n-1},u_i)$$
.

In particular, if we let $K_1 = K_2 = \ldots = K_p = K$ and $K_{p+1} = \ldots = K_{n-1} = S$ (where S denotes the unit spherical body), then

$$V(K_1,\ldots,K_{n-1},u) = W'_{n-n-1}(K,u)$$

which is the (n-p-1)th cross-section integral of the projection of K upon a hyperplane with normal direction u [2, p. 49]. In particular, $W'_{o}(K,u) = \sigma(u)$ for which (2) is Carathéodory's inequality.

Returning to (1), we introduce a Pythagorean defect $\delta(K)$ of K by

(3)
$$\delta(K) = \max_{\{u_i\}} \left(\min_{u} \frac{\sum B^2(u_i) - B^2(u)}{B^2(u)} \right)$$
$$= \max_{\{u_i\}} \left(\frac{\sum B^2(u_i)}{\max_{u} B^2(u)} - 1 \right).$$

We have

THEOREM. $0 \le \delta(K) \le n-1$. Both bounds are attained, the lower being attained if and only if K is a segment.

Inequality (1) asserts that δ is non-negative. By Pythagoras' theorem, $\delta = 0$ if K is a segment. On the other hand, if $\delta = 0$, from (3)

$$\sum B^2(u_i) = \max_u B^2(u)$$

for all $\{u_i\}$. Let \overline{u}_1 be a direction in which B(u) attains its maximum and let $\overline{u}_2, \ldots, \overline{u}_n$ be such that $\{\overline{u}_i\}$ form a mutually perpendicular set of n directions. Then $\sum_{i+1} B^2(\overline{u}_i) = 0$, whence $B^2(\overline{u}_j) = 0$ for $j = 2, 3, \ldots, n$ and so K is a one dimensional convex body, that is, a segment.

To show $\delta \leq n-1$ we need only remark that $B^2(u_i)/\max_u B^2(u) \leq 1$ with equality if and only if $B^2(u_i)=\max_u B^2(u)$. Therefore, if and only if K admits a circumscribing hypercube of edge length equal to the maximum breadth of K, we have $\delta = n-1$. This is the case, for example, if K is of constant breadth, or if K is an n-dimensional hypercube.

We finally note that the cases of equality in (2) can be found directly by suitably interpreting the statement of the theorem. Thus, for each $\{u_i\}$ there is a u for which we have equality in Carathéodory's inequality if and only if K lies in a hyperplane. On the other hand, the ratio $\sum \sigma^2(u_i)/\sigma^2(u)$ attains its maximum of n for a body of constant brightness or for a hypercube.

REFERENCES

- W. Blaschke, Kreis und Kugel, Leipzig, 1916, Reprint New York 1949, Second edition, Berlin, 1956.
- 2. T. Bonnesen und W. Fenchel, Konvexe Körper, Berlin, 1934, Reprint, New York 1948.

WASHINGTON STATE UNIVERSITY, PULLMAN, WASH., U.S.A.