PYTHAGOREAN INEQUALITIES FOR CONVEX BODIES

WM. J. FIREY

Consider a convex body in Euclidean three dimensional space and let \(\sigma(u) \) be the area of the projection of this body upon a plane with normal direction \(u \). It was conjectured by C. Carathéodory and proved by W. Blaschke [1, p. 148] that if \(u_1, u_2, u_3 \) are three mutually perpendicular directions, then

\[
\sigma^2(u) \leq \sum \sigma^2(u_i).
\]

In this note a class of such Pythagorean inequalities for convex bodies, (which includes that of Carathéodory), is shown to follow from one particular inequality. Also, in a certain sense, the cases of equality are determined.

Let \(K \) be a convex body in Euclidean \(n \)-dimensional space \((n \geq 2) \), \(B(u) \) the breadth of \(K \) in the direction \(u \). That is, if \(h(u) \) is the support function of \(K \), then

\[
B(u) = h(u) + h(-u).
\]

Suppose \(\{u_i\}, i = 1, 2, \ldots, n \), are a set of \(n \) mutually perpendicular directions and consider the circumscribing rectangular parallelepiped of \(K \) which is bounded by the \(2n \) supporting hyperplanes of \(K \) having outer normal directions \(\pm u_i \). Call this circumscribing body \(C \). Finally, let \(P(u) \) be some point common to \(K \) and its supporting hyperplane with outer normal direction \(u \). For any \(u \), the points \(P(u) \) and \(P(-u) \) belong to the body \(C \) and so the distance \(d \) between them is less than or equal to the length of a diagonal of \(C \), that is \(d^2 \leq \sum B^2(u_i) \). On the other hand, since \(B(u) \) is the minimum distance between points of the hyperplanes containing \(P(u) \) and \(P(-u) \), we have

\[
B^2(u) \leq \sum B^2(u_i).
\]

The class of Pythagorean inequalities which we have in mind follow from (1). If \(V(K_1, \ldots, K_{n-1}, u) \) denotes the mixed volume of convex bodies \(K_1, \ldots, K_{n-1} \) and the unit segment in the direction \(u \), then \(V(K_1, \ldots, K_{n-1}, u) \) as a function of \(u \), is known to be the support function of a convex body having a centre of symmetry [2, p. 44]. The breadth

Received October 29, 1959.
of this body in the direction \(u \) is then \(2V(K_1, \ldots, K_{n-1}, u) \) and so, with the preceding meaning for \(u_i \), we have

\[
V^2(K_1, \ldots, K_{n-1}, u) \leq \sum V^2(K_1, \ldots, K_{n-1}, u_i).
\]

In particular, if we let \(K_1 = K_2 = \ldots = K_p = K \) and \(K_{p+1} = \ldots = K_{n-1} = S \) (where \(S \) denotes the unit spherical body), then

\[
V(K_1, \ldots, K_{n-1}, u) = W'_{n-p-1}(K, u)
\]

which is the \((n-p-1)\)th cross-section integral of the projection of \(K \) upon a hyperplane with normal direction \(u \) [2, p. 49]. In particular, \(W'_0(K, u) = \sigma(u) \) for which (2) is Carathéodory's inequality.

Returning to (1), we introduce a Pythagorean defect \(\delta(K) \) of \(K \) by

\[
\delta(K) = \max_{(u_i)} \left(\min_u \frac{\sum B^2(u_i) - B^2(u)}{B^2(u)} \right)
\]

\[
= \max_{(u_i)} \left(\frac{\sum B^2(u_i)}{\max_u B^2(u)} - 1 \right).
\]

We have

Theorem. \(0 \leq \delta(K) \leq n - 1 \). Both bounds are attained, the lower being attained if and only if \(K \) is a segment.

Inequality (1) asserts that \(\delta \) is non-negative. By Pythagoras' theorem, \(\delta = 0 \) if \(K \) is a segment. On the other hand, if \(\delta = 0 \), from (3)

\[
\sum B^2(u_i) = \max_u B^2(u)
\]

for all \(\{u_i\} \). Let \(\bar{u}_1 \) be a direction in which \(B(u) \) attains its maximum and let \(\bar{u}_2, \ldots, \bar{u}_n \) be such that \(\{\bar{u}_i\} \) form a mutually perpendicular set of \(n \) directions. Then \(\sum_{i+1} B^2(\bar{u}_i) = 0 \), whence \(B^2(\bar{u}_j) = 0 \) for \(j = 2, 3, \ldots, n \) and so \(K \) is a one dimensional convex body, that is, a segment.

To show \(\delta \leq n - 1 \) we need only remark that \(B^2(u_i)/\max_u B^2(u) \leq 1 \) with equality if and only if \(B^2(u_i) = \max_u B^2(u) \). Therefore, if and only if \(K \) admits a circumscribing hypercube of edge length equal to the maximum breadth of \(K \), we have \(\delta = n - 1 \). This is the case, for example, if \(K \) is of constant breadth, or if \(K \) is an \(n \)-dimensional hypercube.

We finally note that the cases of equality in (2) can be found directly by suitably interpreting the statement of the theorem. Thus, for each \(\{u_i\} \) there is a \(u \) for which we have equality in Carathéodory's inequality if and only if \(K \) lies in a hyperplane. On the other hand, the ratio \(\sum \sigma^2(u_i)/\sigma^2(u) \) attains its maximum of \(n \) for a body of constant brightness or for a hypercube.
REFERENCES

WASHINGTON STATE UNIVERSITY, PULLMAN, WASH., U.S.A.