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ON INEQUALITIES OF POINCARE’S TYPE

KJELL BJORUP

1. Introduction.

Let 2 be an open connected domain in real n-dimensional Euclidean
space E». We shall assume that £ has finite Lebesgue measure m(Q).
Denote by €!(£2) the class of all infinitely differentiable functions on
for which

2

et = § (3 o2

ox
2! i

+|u|2)dx < +o0.

If we close €(£2) in the norm [ju|l,, we get a Hilbert space &(2) with
the inner product

won = (32 fuv)de

o \T ox, 0z,

A well-known fact is that if 2 is a cube [1, p. 488] or a Lipschitz image of
a cube [7] then there is a constant ¢ such that Poincaré’s inequality

2 1
)dx'f'm

ou 2

%,

Sudx

1 2

(1.1) ‘S?|u]2dx < a!S)(E

is satisfied for all ue£*(2). A domain 2 with this property is usually
called a domain of Nikodym type.

The aim of this paper is to show that the integral in the last term of
(1.1) can be replaced by other linear functionals. We obtain in this way
inequalities, which are equivalent to (1.1), i.e. are valid if and only if Q
is of Nikodym type. We also study the corresponding question for in-
equalities similar to (1.1) but containing derivatives of higher order.
Finally we study the behaviour of unbounded domains of Nikodym type
at infinity.

2. Preliminaries about Beppo-Levi functions.
Concerning the details we refer to Deny and Lions [3], and Nikodym [6].
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DEFINITION. A distribution u on 2 (we2D'(RQ)) is said to be a Beppo-
Levi function on 2, if the distribution derivatives oufox;, i=1,...,n,
belong to L¥(R2), the class of all square integrable functions on Q.

Let BL(£2) be the topological vector space of all Beppo-Levi functions
on 2 with the topology defined by the seminorm

e (1)

Denote by A the constant functions on £. Then |u|; is a norm in the
quotient space BL(£)/A, which is complete in this norm (cf. [6], [3]).
The functions in the space &(£2) are Beppo-Levi functions, &1(Q)=
BL(2)nL*£).

It is known [3] that a domain 2 is of Nikodym type if and only if it
satisfies the condition

A: If Oufox;eL¥Q) for ¢=1,...,n, then ueL?).

ou
ox

b

3. The inequality.
We are now going to show an inequality, which is equivalent to (1.1).

Using the notation 3
julo = {Slulzdx} :

Q

THEOREM 1. If there is a continuous linear functional L on the space
&YRQ) with L(1)+ 0 and a constant ¢ such that
0))E
lulg £ of|ul; + % |L(w)| for all w e £YQ),
then £2 vs of Nikodym type,

ProoF. Put wuy=u—(L(1))"*L(u), where u,c€(R2) and L(u,)=0.
Then

[uglo® < olul,?

L(w)
u_ —

L(1)

and .

inf |u+ 4] <
2

= |uylo? < olul,®, A = constant.

0
The inequality
influ+4|2 < olu|,2 forall wedY Q)
1

is easily seen to be identical with (1.1).

TrEOREM 2. If Q is of Nikodym type, and if L is a continuous linear
Sfunctional on the space &(L2) with L(1) % 0, then there is a constant o such that
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O
luly < otlul, + %%f;% [L(u)]  forall weYRQ).

Proor. Let IV be the class of all functions » in &) for which L(u) = 0.
As L is continuous, N is a closed hyperplane in £1(2). N is a Banach
space with the norm

P fulle = (Jo?+ fasl?)t

Let M be the class of all functions in BL(Q) for which L(u)=0. Then
{#|; is a norm in M, since L(1)=+ 0. Furthermore, M is a closed subspace
of BL(£). For let {u,} be a Cauchy sequence in M.

[Up—Uply >0 as m,m—>o0.
Denote by #% the element in BL(2)/A that contains weBL(2). With
this notation w, €, € BL|A .

Clearly {u,} is a Cauchy sequence in BL/A. As BL|/A is complete u, has
a limit #e BL[A in the norm | |;, when n tends to infinity. Take u,cu

nd put
mep L
L)’

Then u belongs to M and
|#,—u|;~0 when = -—>o.

As Q is of Nikodym type and therefore satisfies the condition (A), N and
M are algebraically isomorphic. Let ¢ be the identical mapping of N
on M. If u, tends to zero in the norm | |; and to ¢ in || ||;, then as a
consequence of the inequality |u|, <|lu|l; g is zero. The theorem of the
closed graph [2] then shows that ¢ is continuous, e.g. there is a con-
stant o’ such that

llully = o'|uly

or lulg < otlul, forall umelN.

L(w)
"I’

For ue&* we write
U= u

where u,eN.

u0+L—(@

Ot
M= [glo + (m(@)

0 IL(1)]
(m(@))t
IL(1)|
(m(@)*
L)

lulp =

[L(w)|

< otlugl; + [L(w)|

= otful, + |L(w)] -
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REeMARK. The inequality
| L(w)]

lulg < ot|ul; +

IL(I)I
can be improved to
[ule? = o'|ul;® +
if and only if L(u)= constant-{,udz.
Let ue 8! be realvalued and & a real constant. Then

IIA

|L(u)?

lll(l)l2

lu+kle® < o' |ut+kl® + T(_l_)lwé | L(u + k)|?

or
2kmL(u

R

ulgt + 2w ds < o'fuly? + o L@ +

lL(l)l2
for all & gives
L(u) = m~1L(1) S wdz .

Q

4. A generalization of the preceding result.

Let > 5 \: 3 \on
where
o = (0 - v y0), || =20‘¢,
and
¥ =2 x,

Denote by BL,,(£2) the class of all Beppo-Levi functions of order m on
0, that is, all ue2'(2) such that

D*ue L¥Q2) forallx with |x| =m.

||, defined by
ula? = 3 §1Dup
!

a=m9

is a seminorm in BL, (). Let Z be the class of all u such that |u|,, =0,
that is, the class of all polynomials of degree less than or equal to m — 1.
The quotient space BL,,(2)/Z is a complete [3], normed space with the
norm |u|,,.

We denote by A the following condition on the domain Q.

An: If ueBL,(Q) then D* ueL¥Q) for all «, |x|<m—1.

Lemma. If a domain 2 satisfies (A), it satisfies (Am).
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ProoF. weBL,(2) and (A) implies that Du, ||=m—1, belongs to
L3Q). Also DPuelL¥Q) for all B, |f|=m—1, and (A) then gives us
DrueL?(Q2) for |y|=m—2 ete.

&™) is the class of all ue2’(2) such that D*ueL? for all |x|<m.
The space £™(£2) is a Banach space with the norm

3
o = (3 (19w
|a|§mg

TaEOREM 3. Suppose that 2 satisfies (Am) and let L,, x| Sm—1, be a
collection of continuous linear functionals on &™(82) such that det (La(x’g)) +0,
|BlSm—1. Then there are constants ¢ and z, such that

[ullny < oluln + 3 TalLy(w)l .

|a|Sm—~1
Proor. Let IV, be the hyperplane in §™(£2) defined by L, (»)=0. Then
N= (N N,
|a|=m—1

is a closed subspace of &™(f2). The space M of all we BL,, (), which
satisfies L (u)=0 for all |x|<m—1, is a normed space with the norm

3
1u|m=( 3 ﬂlD“uP) :
la|=mb

This is a consequence of the assumption that det(L,(x"))+0.
In the same way as in theorem 2 one sees that M is complete in the
norm | |,,, and that N and M are topologically equivalent, i.e. there is a

constant ¢’ such that . , .
ullm? S 0" ||y

or
[ullyey < ol|w|, forall uedlN.

If ue&™(Q) we write u=wu,+p, where uye N and p is a polynomial of
degree less than or equal to m — 1, and get
-1 = Wollm-1 + P(@) -1 = Ululm+| l?_ T ILo(w)] 5

where the constants 7, depend only on 2 and L”.

5. Examples.

1. Let 2, be a Lebesgue-measurable subset of 2 with {, dz>0. Put
L(u)={,udx. L is a continuous linear functional on the space &(92).
According to theorem 2 the norms

Math. Scand. 8 — 11
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llull,  and ]y + | L
are equivalent, if 2 is of Nikodym type.
2. Let 2 be of Nikodym type and let I" be a compact sufficiently

smooth part of the boundary of 2. Then we can define a continuous

mappiilg (Cf- [5]) éal(g) SU —> YUE Lz(]“)

such that if « is continuous in QuUI" we have u(x)=yu(x) for zel'. If
moreover g€ L*(I") and {,ods+ 0, then

L(u) = Sgu ds
r

defines a continuous linear functional on &*(£2) such that L(1)=0.
Hence according to theorem 2 there is a constant ¢ wuch that

Sguds
r

lulp < oluly +

mt
|Sr9d3 |
(See also Sandgren [7].)

6. A boundary problem.

Let 2 be an open connected domain in E™ such that there is a domain
2, of Nikodym type containing 2. m(£2,—2)>0. For uePD(E") put

7 | ou |2 7 | oy |2
g = § (3] +attult) o + a{ (3|22 ao,
to | @

1 8:8‘. 1 3xi

where » and a>0 are real constants. If we close 2(E") in the norm
lu)lg, we get a Hilbert space H with the inner product

n ou 0D » ou 00
= —— +x2uD | d —|d=x.
(%) S (zaxiaxﬁ” uv) o a,!S) (?axi 89:,-) v

The restriction of ueH to £, is of course in &*(£2,). Hence (example 1)
there is a constant ¢’ such that

§llu|2 de £ ¢’ |:_§1($ % 2) dx + nlS_gu dx z]
< [S@ g— )dx+ S |u|2dw],

and we get
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(6.1) f1up dz < clplar.

o

We denote by V the vector space of all functions ueH with the prop-
erty that there is a function we L?(2) such that

(6.2) aSw@ de = (u,0), forall veH.
2

The mapping P defined by

Vou 5 we L¥(Q)
is linear and closed. Let D(P) and R(P) be the domain of definition and
the range of values of P, respectively. By definition D(P)="V.

THEOREM 4. P is a selfadjoint extension of the Laplace-operator —A
defined on 2(R2), and R(P)=L*).

Proor. That P is selfadjoint is obvious, and that it is an extension of
— A follows from Weyl’s lemma [4].
Let g be an arbitrary function in L*Q). The functional F' defined by

F(f) = \ofde, fem

is a continuous linear functional on H. Indeed, using (6.1) we have
(e s {iseds§ioede < o ige aisie.
Q2 Q Q2

Then, according to the theorem of Riesz—Fréchet, there is an element
heH such that

F(f):ngdx=(h,f),, forall feH,

Q2

where g=Ph. As ¢ is arbitrary in L%(£2), we have proved that R(P)=
L¥(Q).
The space V. For ueV we get from (6.2)

n ou o
0 = (u,v)g = S (?igx% + x2’u,’TJ) dx
Ca

= S w(—A+x®ode forall ve2([Q).
Ca
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We use Weyl’s lemma and get that u is equal, a.e., to an infinitely
differentiable function %, in (£, and that

Aug—rPuy = 0.

Because V < BL(E™), the functions in V are absolutely continuous over
the boundary of 2 on almost every line parallel with any co-ordinate
axis [8].

If the boundary of 2 is sufficiently smooth, we get from Green’s for-
mula that o ou

_— g — ,
on, on,;

where 0/on; and 0/on, are the interior and exterior normal derivatives

taken in the same direction.

7. Unbounded domains of Nikodym type.

In this section we are going to study the behaviour at infinity of
unbounded domains of Nikodym type.
Let Cy be the sphere of radius R around the origin in E™ and put

Qp=92n0Cf.
THEOREM 5. If Q2 is of Nikodym type, there is a constant k>0 such that
(7.1) m(Qg) = O(e*E)  when R > +oo.
Proor. Put

L(u) = S wdx, m(QnCg)>0.

.QI'ICRO

According to theorem 2 we have
[ule?2 < o(|ul2+|Lul?) forall wedYRQ).

Choosing u=wu,,

0 when |z| £ R
- R>Ry r=(Sad,
Un(®) {(r—R)” when |z| > R > By r= Q)

we get

S |, 2 dz < anzs |2 d -

Qr Qr
(1.2) S]unlzdx < o (n!)*m(Qp) .

2R

On the other hand we have
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(7.3) S|u,,|2 e = §|r—R|2n iz 2 S r—Ri™n dz = R*nm(Qyp) .

Qp QR 2R
From (7.2) and (7.3) we get
m(2,r)

< O-n(n!)z_R—%z =_<_ Com,n2n+le—2nR—2n ,

m(Q2g) -

in the last step using Stirling’s inequality, where C is a constant in-
dependent of ¢, » and B. Now we choose n=[Ro-t] and get

m(£2, 2R) —4

m(2g)

mQp) S O om0, 6> 0.

< C'[Ro-t]e 20

Iterating this inequality once we have
m(Rg) < C"e—R”_*.
The estimation (7.1) is best possible in the sense that there are domains
with the property lim e®m(Qp) = 1,
R—o00

which satisfy Poincaré’s inequality. We will show that the domain D
in E? defined by

2, >0, 0<xy<e™
is such a domain. We first prove the following lemma.

Lemma. All functions of one variable ve £1(0,c0) satisfy

00

2
S ve—i dy
0

(o)

Tl dw 2
(7.4) S|v|2dx < 45 2 ol de +
J d dx

Proor. We observe that £1(0, ) is the closure in the norm

(S(\ +|v|2>dx>&

of the linear closure of 2(0,cc)ue-*. Putting v =1v,+ e, v, 2(0, ),
A= constant, we obtain

2

(7.5) S lo]2 dar —
0

[o0] o0
S ve todx| = S |vol2 dx ,
0 0

and
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C +00 +o00
1 4 - .
@6 (orde = - {ude < —  oigiee ae
0 ——oo —00
v dv, 2 T | dv 2
§idx+%vo dx (S)‘dx-i-%v de ,
where

(o]

Do = g e~ yy(z) do .

Combining (7.5) and (7.6) we get (7.4).
By the transformation
x =@y, X = we™, v = ue?H,
the inequality

ou |2 2
(7.7) Slulzdx§o'|:S( el ou )dx+ Sudx ]
ox, Buz
D D D
is transformed into
ow 2 | oy |2
(7.8) S[dex <o S +3v+x,— ov + P Ve ) dae +
o 0%, 0%,
.
2
+ Sve“*”ldx ],
.2

where D' is the stripe z; >0, 0 <z,< 1.
Instead of (7.8) we prove a somewhat stronger inequality

(7.9) §’|v|2dx§ [S( o 2)d:,;+ 2].

0%,
If ve £1(D'), then v(-,x,)e £*(0, ) for almost every x,, 0 <x,<1. Hence
v(*,x,) satisfies (7.4). Integrating (7.4) from zero to one we get

1
=+
0

2

S ve ¥ dy
5

8:1:2

d:::2

(7.10) S w2 de < l-— +yo|d S 41 4,
D 0 |

For u(z,)e 6(0,1) we have

1

§udx2

1

1

du

(7.11) S|u|‘~’ dz, < S —
0

° 2

2 2
dxy+

Putting
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u(xy) = Sv(zl,xz)e‘*“l dx,
0

we obtain

d_u _ S ov o1 g
dz,

0z,

Then (7.11) gives us the inequality

1|00

(7.12) | §oeri= da, Idx2 < S
old
.

ov |2
8902

2
dx + Sve‘*”l dz| .
>

Combining (7.10) and (7.12) we have the desired inequality (7.9) with
o=4.
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