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BOUNDS FOR THE DISCRETE PART
OF THE SPECTRUM OF A SEMI-BOUNDED
SCHRODINGER OPERATOR

ARNE PERSSON

Introduction.

Let 2 be an unbounded subset of the real n-dimensional Cartesian
space B". Denote by L?(22) the Hilbert space of square integrable com-
plex-valued functions on £ with the scalar product

(u,v) = Su(x)ﬂx-) dx
2

and the norm |u|= (u,u)h
Let a(x) be a real measurable function, which is bounded from below
for all sufficiently large |x|. If a(x) also satisfies a certain local condition
(see (1.1)), the differential operator in L3(£)
| P=-4 4-32
= —A+a(x). =¢§18—x—i2—’
with domain consisting of functions vanishing at the boundary of £, is
seen to be self-adjoint and bounded from below. Define dp as the largest
real number below which the spectrum of P is discrete or empty. If P
has discrete spectrum, we put dp= +occ. Denote by S, the intersection
of 2 with the sphere || <r. We shall prove (theorem 2.1) that

(1) dp = lim 1,
r—>00

where [, equals the infimum of (Pf,f) when f ranges over all regular
functions with |f]| =1 and with compact supports in £2—.S,. An analogous
result holds for more general differential operators and boundary prob-
lems.

An immediate corollary of (1) is that, if a(z) - + oo as [x| - oo, then
dp= + o, that is, the spectrum of P is discrete. This is the classical
criterion of H. Weyl (cf. [11]). We shall also, in section 3, apply our
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theorem to some other special cases, where further assumptions about
the potential a(x) and the shape of 2 make it easy to estimate the numbers
l,, and consequently also dp.

Results similar to those appearing in section 3 have been obtained by
Glazman [4] [5] and Mol¢anov [7]. They will be referred to in the text.
Birman [2] has treated the case when a(x) is bounded from above.

The problem of section 2 was put to me by professor Lars Garding, for
whose interest and valuable criticism I wish to express my gratitude.

1. The space H.

If w is any domain in B™, we shall denote by 2(w) the set of infinitely
differentiable complex-valued functions with compact supports in w,
and by L%*w) the Hilbert space of all (equivalence classes of) square
integrable functions in w. The scalar product and the norm in L?(w) are
defined by

(u,v), = Su(w);@; dr and |u
Here dz=dx, . .. dz, is the ordinary volume element in R*, When =2
we omit the indices. Similarly we write 2 and L2 instead of 2(£2) and
L3(2). We shall also use the notations

5
%0 = {37 ordn IV = (5

= (u’ u)w}

[~

Consider the differential operator
= —A+a(x)
with domain D(#)=2. On the real measurable function a(x) we shall
impose the following two conditions:
(4) @, = lim (ess inf a(x)) > —oo.

r—>o00 xeN—Sy

(B) If 0 <p < 7, then
(1.1) (lalf.f)s, = 8IVfls,® + M) |fls,? fe2,

where 6> 0 may be chosen arbitrarily small and M(d) depends on g, r,
and ¢ but not on f.
Sufficient for (B) is, e.g., that

gla(x)l*"“ dx < oo

k
for every bounded set K< and some ¢>0 (see [8], where still more
general conditions are given).
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We shall see that & is bounded from below. In fact, it is readily veri-

fied that
(Zf.9) = (Vf,Vg)+(af.9), [9e2D.

Now take p so large that a(z)>a,—1 in Q-8 Then, if r>p, we get
from (1.1)

(Z1S) 2 IVfI? + (ag—DIfla-s,” — 0IVfls,> — M) Ifls?,
and hence
(1.2) (Z1.f) 2 1=0)|Vf[2 = (lag—1|+ M (8))|fI?.

Choosing 4 <1 we obtain the desired result.
Adding a constant to a(z) will not influence our conclusions in the
sequel, so we may assume without loss of generality that

(1.3) (Z1.1) z (£.f)
and
(1.4) ay, > 0.

But then it is clear that ((f,g)) = (£f,¢) becomes a scalar product on 2.
Denote by H the Hilbert space obtained by completing & in the corre-
sponding norm ||f|| = (Zf.f)}. Obviously H < L2 and it follows from (1.2)
that all first order weak derivatives of weH are also in L2. Thus we
may write
[l = [Vul?+ (au, %)
for all ue H. Moreover, every ucH vanishes at the boundary of 2, at
least in a generalized sense.
In section 2 we shall make use of the following property of H.

Lemma 1.1. If ¢ is infinitely differentiable and @ and Vo are both bounded
in Q, then pueH for all ue H.

Proor. Clearly it is enough to prove that, if f,eZ and ||f, —u|| > 0
as n — oo, then also ||¢f, — pu|| > 0 as n - co.

By use of (1.1), (1.3), and (1.4) we see that ||f, —u| - O implies that
the expressions

|fn"u|’ lv(fn_u)l’ (Ial(fn_u); fn_u)

all tend to zero as m - co. But, if C; and C, denote the bounds of ¢
and Vg, respectively, we have

||<an—‘P“||2 = IV‘P(fn—u)lz + (“‘P(fn"“), ‘p(fn_u))
< 202V(f—w)|® + 2C2/f,—ul® + O X(lal(fu—u), fa—u).
Hence the lemma follows.

Math. Scand. 8 — 10
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2. The operator P.
It is easy to see that

(w,v) = ((Ru,v)), wel? wveH,

defines R as a bounded self-adjoint mapping from the whole of L? onto
a dense subset of H. Moreover, P= R~ exists and is self-adjoint, P> Z#
and (Pu,w) = ((u,%)) = (u,u) for every « in the domain D(P) of P. The
operator P is called the Friedrichs extension of P (see [10, p. 329]).

Let C(P) denote the continuous part of the spectrum of P and put

dP = min A .
AeC(P)

l, = inf(Pff), fe2(R2-8,), |fi=1.

Define

l

It is clear that I, is a non-decreasing function of r, so that Ip=lim, I,

exists and 151, < + oo,

We shall prove that dp=1[p. This is carried out in two steps, lemmas
2.1 and 2.2. Lemma 2.1 is very general. It is valid for any semi-bounded
gelf-adjoint operator P in L% with 2 < D(P). The proof of lemma 2.2 is a
modification of a method used by Glazman in [5]. In fact, when a(x)
is continuous, this lemma is a consequence of the results in [5].

LeMmA 2.1, Let lp and dp be defined as above. Then lp2dp.

Proor. We shall use the following fact: if M is a compact subset of
L?(R"), then

(2.1) sup. \ |uw(z)]2dex -0 as r—>o.

ueM
|| >r

This is easy to prove. For if ¢> 0 is given, it is possible to find a finite
number of functions (f,) in 2(R") such that every ue M satisfies the
inequality |u—f,|g2<e, for at least one ». Since all f, vanish outside
a fixed sphere about the origin, the assertion follows.

Let P={7"AdE, be the spectral resolution of P. For any u<dp put
H,=E (L?), and denote by M, the closed unit sphere in H,. By hypo-
thesis, H, is of finite dimension and thus M, is compact (see [1, p. 29]).
Hence, in virtue of (2.1), if ¢> 0 is given, there exists a number 7 such
that

(2.2) [ulg-s, < ¢

for every ueM,. Now let f be any function in 9(Q-8,) with |f|=1.
feD(P), so that f=wu,+u,; where u,eH, and u,e L2OH,. Since
() + uy(x) = 0 almost everywhere in §,, we also have
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|y ()2 + uy(x)ug(x) = 0  ae.in §,.

Integrating this relation over S, and using the fact that (u,,u,) =0 we get
[uy]s,2 = (%1,%s)q g, -

By Schwarz’s inequality and (2.2) it then follows that

|’“1|,S,.2 S |uylo-s, |"'2|n-s, Seluy se.
Thus, if e< 1, we have

[u [ = |u1‘S,.2+|u1|Q—S,2 S ete? < 2

[ugl® = |fIP=ug|® > 1—2e.

Finally, as Pu,eH, and Pu,e L’OH ,,, it follows that

and

(BLS) = (Pug,u)) + (Pg, ) Z (0, %) + pa(Ug, Ug) Z plttp, Ug) > p(1—2¢) .

This holds true for every fe 2(2—8,) and therefore, because I, increases

with r, Ip 2 p(l—2¢) .

Since we may take u as close to dp as we like and since ¢ > 0 is arbitrary,
we conclude that Ip>dp. The proof is finished.

LemMmaA 2.2. Ip and dp satisfy the inequality lp <dp.

ProoF. Let 4 be a given element of C(P). We shall prove that I, <A.
Let us first choose a sequence (u,);” of approximate eigenfunctions in
D(P) such that (see [10, p. 361])
lw,| =1, alln,
u, - 0 weakly as #n— oo,
|Pu,—Au,| -0 as n->oo.

We observe that our choice of (u,); implies that

(2.3) |Uplg >0 a8 n—> oo,
and
(2.4) (la|wy, uy)c >0 a8 n—>o0

for all bounded K =Q. In order to prove this, keep K fixed and take S,
so large that a(x)>0 almost everywhere in 2—8,. Then, in virtue of
the properties of (u,);’,

1 2 |Pu,—2uy| Z (P, uy) =24 2 [V, |24 (aUy, uy)g, — 4

for all sufficiently large n. Estimating the term (au,,u,)s, by (1.1) with
6=1% we get

10*
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(2.5) [Vu,|? = C,
where C'=2(1+ 2+ M(})). Obviously we make no restriction by assuming
that K equals some S,. We then have

[V, |g 2+ luyls,2 < C+1.

Since all ,, vanish at the boundary of §, except at the very regular part
along |z| =g, it follows from a well-known lemma by Rellich ([3, p. 489])
that (u,); contains a subsequence (u,.);’, which converges in the norm
[%y|s, Because wu, —0 weakly as n' — oo, the limit function must
be zero, that is, |u,lg, >0 as n' — oo, But then the original sequence
itself must have this property, since otherwise we could get a contradic-
tion by applying the arguments above to a suitable subsequence. Hence
(2.3) is proved.

Putting (2.5) into (1.1) we get

(lalug, un)s, < 0C+M(0) |unls,® 7 >0,

and therefore (2.4) is an immediate consequence of (2.3).

Now let o > 0 be a fixed number and define the infinitely differentiable

function ¢ such that g@)=1 in 0-8,,
0o =1,

Ve(x) bounded in £ .

Then, by lemma 1.1, pu, e H. We are going to prove that
(2.6) lpual? = Alpu,|® + o(1),

where o(1) - 0 as # —.co. In order to do this we observe that
(2.7) lpuall* = |Vou,|* + (agu,, pu,) ,

and that the properties of (u,)}" give the relation

(2.8) [unll® = |V [*+ (a2, w,) = Alug]®+0(1) .

Moreover, using (2.3)—(2.5) and the assumption about ¢ we obtain for the
first term in (2.7)

IVou,|* = |9V, [*+2 Re(u, Vo, pVu,) + v, Vo|* = [Vuy|®+0(1) ,

and for the second
(mpu’w(Pun) = (aun’un)+0(1) .

Hence, using first (2.8) and thereafter (2.3),
@uall? S |Vaty|?+ @ty un) +0(1) = Au,[2+0(1) = Agu,|*+0o(1),
which is exactly (2.6).
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Now let ¢>0 be a given number. It follows from the definition of I,
that there exists an S, such that

(2.9) IfI? z Ce—e)IfI?

for all fe2(2-8,). By an approximation with functions in 2(2-8,)
(2.9) is seen to hold also when feH and the support of f is contained in
2-8,. Therefore, if we choose ¢(z)=0 in S, and take p>r, (2.6) and
(2.9) give the inequality

(lp—&)lpua|® = llpuy|® = Algu,|* + o(1) .
This together with the fact that |pu,| - 1 as n — oo shows that
lp < A+te.

Since ¢> 0 is arbitrary, the lemma follows.
Combining the last two lemmas we immediately get the following
theorem.

THEOREM 2.1. Let a(x) satisfy (A) and (B) and let P be the Friedrichs
extension of — A+ a(z) with domain 2. Then

dp = lp = lim ( inf (Pf,f)) R
r—>00 |fl=1

feQ(Q—Sr)
where dp=min, o p)A.

ReMARK 1. We have assumed in the proofs that Ip< +oco. But it is
easy to modify them to treat also the case Ip= + oo.

REMARK 2. So far we have excluded the case, where 2 is bounded.
However, it is readily verified that in this case dp= + co. In fact, the set

M = {u: (Pu,u) £ C, ue DP)}

is easily seen to be precompact (use (B) with §,=S8,=0 and Rellich’s
lemma). Hence the assertion follows from a well-known criterion by
Rellich ([9]).

REMARK 3. It is possible to prove theorem 2.1 for more general opera-
tors. For instance, we may start with a hermitean differential form

a|a| ot ton

Bff = 3 @) D,f(2) Dyg®), D, =

laj=m o 0x,™. .. 8x,7"’
|8l=m
of double order m;m. The principal part p of Bis supposed to be
uniformly positive definite and bounded, i.e.,
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% 3 IDf@)? = pff < Ool g 1D, f(@)I* .

a|=m
If we put a=B-p, and a has properties corresponding to (A) and (B),
that is,
lim ( inf S affdx) > —oo
r—>00 \|flg_g,=1 s,

and

g aff dx
S

then B is bounded from below. After addition of a suitable constant

it follows that _
B1.) = \Bffds = (£5).
and hence, if we complete & in the norm ((f,f))}=(Bf,f)}, we get a
Hilbert space H < L2. Tt is easily verified that the relation
(Pu,v) = ((u,v))

defines P as a semi-bounded self-adjoint operator in L2. All results in
this section may be applied to this operator. The proofs will contain
nothing essentially new, so we do not go into details.

< 6| 3 IDfer e+ MoIS1s?,

a|=m

REeMARK 4. Even more general boundary problems may be treated in
the same manner, as soon as (B) is fulfilled for every fe&, where & is
the set of smooth functions defining the boundary problem in question.
We only have to change the definition of I, by taking infimum over
those functions in & which have their supports in 2-8,.

Remark 5. Let P be a formally self-adjoint hypoelliptic operator
with constant coefficients defined in any domain £ in R*. Then P is
semi-bounded (see [6, p. 233]). Let P be any semi-bounded self-adjoint
extension. Using the methods of this paper it is possible to prove that

dp = lim ( inf (Pf, f)) ,  the support of f contained in 2—-K,
K—>9 \ |fl=1
feDP)

where K runs through an increasing sequence of compact subsets of £.
However, in proving the important relation (2.3) one has to use a Fourier
transform and Arzeld’s theorem (cf. [6, p. 202]).

3. Applications.
It is immediately seen from theorem 2.1 that

(3.1) dp 2 a, = lim (ess infa(x)).

r—>o00 \ xeQ-Sp
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However, special assumptions about a(x) and the shape of Q make it
possible to get more precise information. In particular we are able to
generalize (proposition 3.1 and 3.2) the following result, appearing in
[4] (see also [5]): if 2=Rm, a(x) is continuous, and a,=lim, , a(x)
exists, then dp=a,. Proposition 3.3 gives a sufficient condition on 2
for the spectrum of P to be discrete. More precise results in this direction
are proved in [6]. Before stating the results we shall give two definitions
and make some preliminary remarks.

For any open set Q< R", put b,=suppy, where g, denotes the radius
of the sphere 3 and ¥ runs through all spheres contained in 2. We
allow b, to be + .

DzriNiTION 3.1. Q 18 said to be regular of order x» (1 <x< o), if every
compact set K <82 can be covered by a finite number of closed parallelepipeds
(B,)Y in such a way that

1) every E, has at least one side that does not meet K,
2) the altitude of E, against this side is less than or equal to b,
3) every xe K belongs to at most x of the E’s.

Lemma 3.1. If Q is regular of order x, then
(3.2) IfI? = %302 |Vf%  feD.

Proor. Let feZ. Since f has compact support, it is clearly enough to
show that

(3.3) Ifle* = 3b5° V15

for any parallelepiped with the properties 1) and 2). But the inequality
(3.3) is well known and easily proved. In fact, choose a coordinate
system (yy, . ..,¥,) such that % is contained in y; 20 and such that the
side that does not meet the support of f is contained in %, =0. Applying
Schwarz’s inequality to the identity

Y1
f(y) = Sfyl(t:y2’ .. °>y'n) dt ’
0
we obtain v b
P < n1f e s {19712 dys
0

0

b being the altitude of E. If we now integrate over E, (3.3) follows.
Hence the lemma is proved.

When 2 is a sphere with radius o, we shall denote by A, the best
possible constant appearing in (3.2). The number 4, is the smallest
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eigenvalue of the operator —4 with vanishing boundary values in Q.
Moreover, 4, > oo as ¢ — oo and 1, is a continuous function of .
We borrow the following definition from Glazman [4].

DEriNITION 3.2. 2 i3 said to be quasi-conical, if it contains arbitrarily
large spheres. Q 1s called quasi-cylindrical, if it is not quasi-conical, but it
contains an infinite sequence of disjoint spheres with fixed positive radius.
In this case we also define the radius of 2 as being the supremwm of all such
radii. Finally, we say that Q2 is quasi-bounded, if it is neither quasi-conical
nor quasi-cylindrical.

Thus every domain 2 belongs to exactly one of these three classes. It
is clear that a quasi-conical domain is regular of order 1.

ProrosITION 3.1. Let 2 be quasi-conical and let a(x) have the limit a, on
a quasi-conical part w of 2. Then dp=a,.

Proor. In virtue of (3.1), it is sufficient to prove that Ip<a, By
assumption, for any given 7, the set w —S,nw contains a sphere ¥ with
arbitrarily large radius g such that a(x) <a,+¢ in 3. Moreover, we can
choose ge 2(3) such that |g|=1 and

IVg|2 < 4, +e¢.
It follows that I, < |Vg*+(ag.g) < A1+ ag+ 2
for all r, and consequently
Ip £ A, 4ag+ 2.
Letting ¢ — oo and & — 0 we get the desired result.

ProrosiTION 3.2. Let 2 be a quasi-cylindrical domain, which has radius
a and is regular of order x. If ay=lim,_,  a(x) exists, then dp = ay+p,
where 2x~1x-2 < p < 4,71,

Proor. Given ¢>0, we can find R such that |a(zx)—a, <e in 2-8,
and bQ_Sr < o +¢ whenever r> R. Hence, on account of lemma 3.1,

l, 2 2x Ya+e)2+a,—e, allr>R.

On the other hand, let (3,)}° be a sequence of spheres in 2 with common
radius larger than o« —¢. Take out one 3, situated in 2—.8,. Then, by
a convenient choice of ge 2(3,), we get

l, £ (A,—¢)'+e+ag+e, alr>R.
Obviously, these two inequalities together imply the proposition.
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ProrositioN 3.3. If 2 is quasi-bounded and regular of order x < + oo,
then the spectrum of P is discrete.

Proor. We shall prove that lim, | l.= +oco. Given ¢>0, there exists
R such that a(z)20in 2—8, and b, ¢ <& for all > R. Hence

l, 2 2x%2 r>R,
which proves our assertion.

REMARE. A necessary and sufficient condition for discrete spectrum
when a(z) is continuous and £ is arbitrary was given by Mol¢anov [7].
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