MATH. SCAND. 8 (1960), 127—-136

A SET THEORY BASED
ON A CERTAIN 3-VALUED LOGIC

TH. SKOLEM

Introduction.

In set theory one has to do with more or less extensive forms of the
so-called axiom of comprehension which can be written

(By)(x)(x ey o D)) ,

where @(z) is some propositional function in which the variable z, but not
¥y, occurs. It is well known that a complete axiom of this kind leads to
contradictions. It is worth noticing that this is so even if no quantifiers
occur in D(x). Indeed, letting for example @(x) denote the very simple
propositional function x €z, the equivalence x € y « x € x assumed valid
for all « leads to the contradiction yey < y €y which is the famous anti-
nomy of Russell.

It is the aim of this paper to show that the situation is quite different
if we take into account a suitable 3-valued logic. In [1] I showed that
the antinomies could be avoided in the case of quantifierfree @, if we
applied an infinitely many-valued logic due to Lukasiewicz. However,
it turns out that already a certain 3-valued logic is sufficient for attaining
that. In this logic no further operation concerning propositions are used
than just negation, conjunction and disjunction. I shall first give a
brief explanation of this logic and then prove that it is possible to con-
struct a domain of individuals with a binary relation ¢ therein such that
not only the axiom of comprehension but also the axiom of extension-
ality are fulfilled.

1.

Let p, q,r, ... be propositional variables, taking three values 0, 1, 1.
We may interprete 0 as false, 1 as true and } as something in the middle
between true and false, say ‘“possible” or ‘‘undetermined”. These 3
values are called ‘“truthvalues’”. We assume 3 operations, a unary one,
negation, and two binary ones, called conjunction and disjunction.
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The truthvalues of the result of an operation is determined by the truth-
values of the operands according to the following tables:

Negation of p Conjunction of p and ¢ Disjunction of p and ¢
written 1p written p &q written pvgq
1 q

p|0| 4] AO%I p\“’o;l

.

p‘IH\O olololo ool
31033 P31
10141 11|11

Letting the letters stand for the truthvalues we may replace 1p by 1—p,
p &g by min(p, ¢) and pvg by max(p, g).

It is natural to say that two functions f and g are identical and write
f=g, if they always take the same values. We have for example the
equations

Mp=p, Tp&qg)=1pvig, (pvg) =1p &g

and therefore also

p&q=10pviq), pvg=10p&1q)

so that conjunction can be defined by negation and disjunction or in-
versely disjunction by negation and conjunction. All this is just as in
ordinary 2-valued logic. There are some differences however. Thus the
tertium non datur namely

pvip=1
is not valid here, the value } of p yielding p v 1p=1$. Similarly p & 1p=0
in 2-valued logic, whereas here p & 1p=4 when p=14.

A thorough treatment of this 3-valued propositional logic might be of
interest, but in the following very little knowledge of it is needed. I will
therefore only make a few remarks. Apart from the 3 constants 0, }, 1
there are 8 further functions of one variable p. These 11 functions are
shown in the table below, where the values of the argument p stand in
the first row and the values of the functions in the 2°¢ to 12 rows.

The reader will easily convince himself that no further function of p
is constructible by use of the three fundamental operations.

If the equation f(p)=p takes place for a certain value p of p, we say
that p is a fixed point for f(p). Looking at the table above we see that
all of the 11 functions, possess fixed points. Apart from the constant 0
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Choice of
fixed point
constant 0
p&p
1&p
1&7p
P
constant }
1p
ivp
ivip
pvip
constant 1

Pt et e pop el O O O O O O O
Pt RO DO 0P RO DO RO RO RO MO O 1O
bt e 2Ot bl O O = O O O

P b o R o B 0 O O O

with 0 as fixed point and the constant 1 with 1 as fixed point every
function has } as a fixed point. One observes that the fixed points, can
be chosen in more ways, but it is of some importance in the sequel to
have a unique choice of them. Such a choice is indicated in the table
above.

As a preparation for the proof of the more far-reaching theorem in
section 2, I show in this section that we may determine the values of
&(x,y) for the diverse pairs z,y in the domain of 11 objects 0, 1, 2, 3, 4, 5,
6, 7, 8, 9, 10 such that the axiom of comprehension is satisfied for pro-
positional functions @(x) containing neither quantifiers nor free vari-
ables different from = (parameters). Indeed an example is given by the
following table:

e|01/2|3|4|5/6|7[8|9]10
0{0[0[0[3/0/4|1]3|1[1|1 &(x,0) = 0
1(0(0|0|3]|0]3|1]3|1]|1|1 &(@,1) = min(e(z,2), 1 —e(x,x))
2/0(0[0|3[0]|% |1 3]12|2|1 &(@,2) = min(}, &(x,x))

3|01 3| 414 3538381 &(x,3) = min(}, 1 —e(x,x))
4103|333 3|8 |3|2|2|1 &(x,4) = &(x,x)
5003|3333 2 33|81 &(x,5) = %

6013|3332 |%|3]3|2|1 &(x,6) = 1—e(x,x)
7/0(0[4(0|1[3|0{1]}[1]|1 &(x,7) = max(}, e(x,x))
8104|3358 33|8|1 &(x,8) = max(}, 1—e(x,x))
9/0(0|4/0f1|3/0/1|}|1|1 &(z,9) = max(s(x,2), 1 —&(z,x))
10(0(0[4({0{1{4{0|1|}|1|1 e(x,10) = 1
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One observes that two different individuals do not have the same ele-
ments, that is, if ¥ and z are two different individuals from the sequence
0,1,...,10 we dont have &(z,y)=¢(x,z) for all . Therefore, also the
axiom of extensionality is fulfilled. Curiously enough however, different
elements x and y are sometimes elements of the same sets, that is,
&(x,2) =¢(y,z) for all 2.

2.

I consider now propositional functions which can be constructed
by use of the 3 operations from the fundamental binary function &(z,y).
The reader may interprete ¢(x,y) as the membership relation “z is ele-
ment of y”’. For each pair of individuals # and y the truthvalue of
&(z,y) may be 0, 3 or 1. A general propositional function can then be
written
Uz, 2, %5, ...,%,),
where U is built up by the 3 operations from atomic statements e(z,x),
e(x,2,), &(x,.2), e(®,2,), 7r,8=1,2, ..., n independently.

I shall now show that it is possible to construct a domain of individuals
together with the relation & between them such that the following
comprehension statement is valid:

Given for arbitrary m an arbitrary propositional (n+ 1)-ary function U
together with n arbitrary individuals x,, x,, ..., %,. Then there exists an
individual y such that for every x the truthvalue of e(z,y) ts just equal to
the value of Uz, y, ..., ,). Of course y varies according to the choice of
n, U, and the individuals z,, . .., z,.

In order to prove this I make use of an enumeration of the proposi-
tional functions U. Let the n* of them be written U, (z, z,, , . . ., Z,(y)-
The individuals of the domain shall be constructed from an original one,
0, by use of the following procedure. To every U,(z, 2,, ..., Z,()) Wwe
associate the expression f,(z;, ..., Z,¢,). Then, when # is an arbitrary
positive integer, z,, . . ., 2,(, arbitrary previously constructed individuals,
fol®y, . . ., %,¢) shall be a new individual. In case g(n)=0, I write simply
fn. Now, I shall prove by induction that it is possible to determine
successively the truthvalues of e(u,v) for the diverse pairs %, v such that
for v=f,(,, ..., 2,) the value of ¢(z,) is, for all x, just the same as
the value of U, (x, %y, ..., Zyu). This inductive proof is in so far a little
complicated as it contains another proof by induction as a part of itself.

I introduce the notion “height’’ of an individual in the following way.
The original individual is said to have the height 0. If 4 is the maximal
height of z;, ..., %,¢), then A+1 shall be the height of the individual
Ja(@, - .., Zy00). For g(n) =0 we take f, to be of height 1.
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Now &(z,0) is chosen equal 0 for all individuals z. Then &(u,v) is deter-
mined for all u,v of height 0, namely u=0, v=0. Letting Uy(x) denote
the propositional constant 0, we have &(x,0)=Uy(x) for all x, hence &
fortiori &(x,0)=Uy(x) for all  of height 0, namely the individual 0.
Let us now assume that we have been able to determine the value of
&(u,v) for all u,v of height <k in such a way that, if v=fi(z,, ..., z,¢),
then e(uw) = Uyfu, 2, ..., 2,0) .

Then I show that this determination can be continued so that the same
equation holds for all pairs w,v, where  and v have heights Zh+1,

Let us first consider &(x,y), where x is still of the height =4, whereas
y has height A+ 1. We have then y=f,(,, ..., %,(,), Where the heights
of 2;, ..., %, are all Zh. According to supposition all atomic proposi-
tions e(x,x), e(rzx,), &=,), &,z;) from which U,(z,,, ..., %,q) is
built up have got values in accordance with the statement of comprehen-
sion. Then the value of U, can be computed and determined as the value
of e(z,y). Now let « be of height A+ 1. Then I first prove, again by
induction, that the values of (x,2) for the diverse 2z of height Zh+1 can
be preliminarely determined as functions of p=¢(x,x) in such a way that
all equations of comprehension become identities in p. This is certainly
true when z is of height 0, because ¢(x,0)=0 and Ugy(x) =0 so that p does
not occur at all. We assume this determination carried out for z of
height =k, where k2 h. I write e(x,2)=f(2,p). Now let z be of height
k+1 and =f,(xy, ..., Z,y). Then according to supposition the atomic
propositions &(z,z,) in U,(x, xy, . . ., Z,y) are determined as functions of
p while all &(z,,x) have determined values according to the procedure
already explained because x, is of height » at most and z of height A + 1.
Further, the values of all ¢(z,,z,) are known. Then U,, can be computed
as a function of p and this function can be put equal to &(z,z). Thus
the determination of the &(x,z) as functions of p in accordance with the
comprehension principle can be extended to the z of height £+1 and
therefore to all z of height <h+1. In particular, in the case z=x we get
p=¢(x,x)=f(z,p). Now the equation p=f(x,p) has a fixed point. We
may choose that as indicated earlier. Then p is determined so that the
value of e(z,x) is equal to U,(x, 2, ..., ¥y if 2=f (2, ..., Zye). By
insertion of this value of p in the diverse f(z,p) we find values of the
diverse &(x,2) so that the statement of comprehension becomes true for
all these z. Finally, if also y is an individual of height A+ 1, different
from z, and say y=f,(2y, . . ., Z,(»), then we now know the values of all
atomic statements in U,(z, #,, . .., %,(»). Thus we have only to compute
the value of U, and take it as a value of ¢(z,y). Then the comprehen-
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sion requirement is fulfilled for all individuals up to height 2+ 1. Hence
it follows that the construction can be continued to individuals of ar-
bitrary heights in such a way that we get a domain in which the axiom
of comprehension is satisfied.

3.
The axiom of extensionality says that if e(u,z)=e(u,y) for all u,
then ¢(z,v) =¢(y,v) for all ». I shall prove that also this axiom is fulfilled
in the domain constructed in section 2.
Let e(u,x) =¢(u,£) for all u. I assert that e(x,x)=¢e(£,£). Indeed, let

X = fn(xl’ ceey xy(n))’ &= fv(él’ ) g(v)) .
Then

s(u,x) = U,(u, 25, ..., Tyen), e(w,g) = Uyu, &, ..., K

Here U,(u, %y, . . ., %,¢y) is a function of &(u,u) with coefficients depend-
ing on the other atomic propositions in U,. Similarly for U,. These
coefficients must be such that we get in both cases the same function of
&(u,u), say F(e(u,u)). Indeed, if we had two different functions F, (e(u,u))
and Fy(e(u,u)), we could by suitable choice of the value of &(u,u) get
F, % F,, that is, &(u,x) +¢(u,5). Hence we may write

e(u,x) = F(e(uw), e(u,g) = F(e(u,u)),
e(x,x) = F(e(w,x), &) = F(e(8,8)) .

Because of the assumed unique choice of fixed points, &(z,x)=¢(£,8).
Now let y=f,(x;, ..., %,¢») be of height A+ 1 assuming that we al-
ready know that &(z,v) =¢(&,v) is correct for all v of height S /. Now

whence

8(95,?/) = Un(x’ Lys o v e xg(n))’ 8(5,?/) = Un(§7 L1y ooy xﬂ(n)) .
Here the atomic propositions building up U,(x, ;, ..., %,()) namely
e(z,x), e(x,.x), e(z,,), e(x,,x;) are equal those building up
Un(f’ Lys oo ey xa(n))

namely &(£,£), &(z,.£), e(&,x,) (this according to the hypothesis of induc-
tion), &(x,,z,), respectively so that one obtains

e(x.y) = e(&y) .

Thus this equation is generally correct so that the axiom of extension-
ality is valid in the constructed domain of individuals.

By the way we may prove that the domain D just constructed does
not possess the strange property we encountered in the domain of 11



A SET THEORY BASED ON A CERTAIN 3.VALUED LOGIC 133

objects mentioned in section 1, namely that two different objects 2 and
y existed such that (x,z)=¢(y,2) for all 2. Indeed, let z and y be two
different individuals in D. Then an individual z exists such that
&(z,x) % ¢&(z,y). One of the propositional functions U(z, ,, ...) has the

simple form
e(xy,) .

Now, for every individual , there exists an individual % such that for

all ¢
e(tu) = e(xy,t) .

Choosing z for x, we get
& 1ve 8 e(t,u) = e(z,t)

for all ¢ and therefore in particular

&(x,u) = e(z,x), e(y,u) = e(z,y) .

Hence, because of ¢(z,x)+¢(z,y),

e(x,u) + e(y,u) .

4.

For the development of a set theory which could be sufficient for
the foundation of mathematics it would of course be necessary to extend
the axiom of comprehension to propositional functions with quantifiers.
By the way, the use of quantifiers means the same as the use of minimum
and maximum extended over arbitrary sets. We may distinguish be-
tween absolute and relative quantification. The relative one means that
we take the minimum or maximum of all values of a propositional func-
tion A(z) just for those x for which a function B(x) has the value 1.
Some time ago, I found that it would scarcely be difficult to develop
mathematics, if we were allowed to use relative quantification as well
as the absolute. However, it turns out that then our theory would be-
come inconsistent. This can be proved in the following way.

Let
min, (4(x) | B(x))

denote the minimum of A(xz) for all # for which B(z)=1. Let on the
other hand an arrow — indicate the implication in the 3-valued logic
according to L.ukasiewicz. The operation — is defined by requiring the
value of 4 -~ B to be

min (1, 1 — the value of A + the value of B).

Then, putting 4 (x)=1-—A4(x), B(x)=1— B(z), we prove that if
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P = min (min,(B(z) | 4(x)), min,(4(x) | B(x))) ,
then P=Q. Q = minm(A(x) - B(x)) )
Let @ have the value 0. Now

Q = min, (min(1, 1- 4(z) + B(x)))
= min (1, min,(1 - 4(z) + B(z)))

so that 1—-A(x)+Bx) = 0

for some xz, whence A(x)=1, B(x)=0. This yields P=0. Let inversely
P=0. Then there is at least one x such that A(z)=1 and B(x)=0. For
such an x we get 1 —A(x)+ B(x)=0, whence @ =0.

Now let @ =4%. Then always 1 —A4(x)+ B(x) 2 }, with equality holding
for at least one x. Hence A(x)=1 implies B(x) is =}, and B(z)=0
implies A(x) < 4. This yields P2 }. For an x such that 1 —A(x)+ B(z) =}
we must have 4A(z)=1, B(x)=4% or A(x)=1%, B(x)=0 so that P=4}. Let
inversely P=4%. Then for B(x)=0 always A(z) <}, and hence

1-A(x)+B(x) = 3

for all z. There is an « such that A(z)=1, B(x)=1} or B(z)=0, 4A(x)=1}.
In both cases 1 — A(x)+ B(x)=34. Thus Q=14.

Finally let Q=1. Then A(x) < B(x) for all « so that also B(x) < A(x)
for all . This yields P=1. Let inversely P=1. Then B(x)=1 if
A(xz)=1 and A(x)=0 if B(x)=0. This means that A(x)<B(x) in all
cases, whence @ =1.

The result is, therefore, that by taking into account relative quantifi-
cation, we may construct such propositional functions as

min, (4(x) > B(x)),

where the arrow denotes Y.ukasiewicz’s implication.

According to the axiom of comprehension a set m exists such that for
all 2 &(z,m) = e(z,x) .
Here m depends on z, or in other words, m is a set function of x. Indeed,
let the sets 0, M, V be defined by

&(x,0) = 0, ez, M) = 4, ez,V)=1.

Then m=0 for all 2 for which &(z,2)=0; m=M for all # such that
e(x,x)=13; and m=V for the z for which ¢(z,x)=1.
Now, let us look at the proposition

min, (e(z,m) > &(z,m))
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which, according to what we have just proved, belongs to our theory.
Since &(z,m)=¢(x,x), the proposition can be written

min, ((x,x) - &(x,x))

which clearly is the same as
e(x,x) - é(x,x) .

In virtue of the axiom of comprehension there exists a y such that

for all «
e(x,y) = (s(zx) - &(x,x)) .

In particular it follows that

e(wy) = (slyy —~&y.y)) .

This, however, is a contradiction because &(y,y)=0, 4, 1 are all impos-
sible.

Therefore, we can not use relative quantification in a completely gene-
ral way to define propositional functions in the axiom of comprehen-
sion. A suitable restriction may yield consistency, but how is not known.
One might therefore ask if it could be possible to develop mathematics
using only the absolute quantification. I do not know whether this
is possible or not. An investigation concerning this must be postponed
to a later occasion.

The reader will notice that I have not even proved the consistency of
the theory with only absolute quantification. It might be inconsistent as
well, but that appeares to me improbable.

Assuming that our theory is consistent when only absolute quantifica-
tion is allowed, I will at last set up a table giving the values of &(,y)
for some sets with particularly simple definitions. Let O, 0,0,V,V,V,
W, W be defined as follows

ex,0) = 0, &,0) = e(z,z),
&(x,0) = max, (min(e(z.y), £(y.2))) ,

e@,V) =1, e@V)=1—ea),
&(x,V) = min, (max(l—e(x,y), 1—&(y,2))) »

&(x, W) = max(e(z,x), 1 —&(z,2)),

&(z, W) = min(e(,2), 1 —¢(z,2)) .

The e-values for the pairs of these 8 sets are given in the table below.
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olo|o| V|V |V W|W
ololojof1|1]1|1]0
olo|s|1|1]3l0|3|3
olof1]|1]1 0ol1]0
vio|1|1|1]0]0o|1]0
Vio|s|1]|1]3/0]|3|%
Viols 3|13 |41
wlo|s|1]1]3]0]3]4
Wlols| 3|1 4|88
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