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ON THE IRREDUCIBILITY OF THE TRINOMIALS
+x™+1

HELGE TVERBERG
1.

In an earlier paper in this journal, Selmer [1] studied the polynomials
z»+zm+1. He gave a complete discussion, as to the possibility of
factorization in the rational field, of the case m =1. The purpose of this
note is to extend his results to the general case 0 <m <n.

I want to express my gratitude towards Professor Selmer, who called
my attention to the problem, and whose active interest in it was of
great help to me while I was working on the solution.

2.

We write f(x) = a"+ega™+ ¢y,
where ¢ and ¢, take the values +1. As the roots of f(x) are the inverses
of the roots of g(x)=x"+ex™™+¢,, it will suffice for our purposes to
treat the cases with n=2m. This inequality will be assumed throughout
the paper.

We further write o= 3 at,

z;f@)=0

when k is a rational integer. If we assume f(x)=f,(z)f,(x), where fi(x)
and f,(x) are monic rational polynomials of positive degree, then the
corresponding power sums are denoted by o}, and o}. The coefficients of
fi(x) and f,(x) are denoted by a;, a;, i=1,2, ..., with o] +a; =0} +a; =0.
Further, b, b; denote the coefficients of the monic polynomials whose
roots are the inverses of the roots of f,(x) and f,(x), and we have
o +by=0" +b=0.

By a well-known lemma of Gauss, the coefficients a; and a; are rational
integers. As the constant term of f;(x) divides ¢ and hence is equal to
+1, we see that also the coefficients b; and b; are rational integers.
Hence, finally, so are the sums ¢}, and o), too.

Following the idea in Selmer [1], we shall consider the expression
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(2.1) o= 0_p = (03— 014) + (0% —0’y) .
If a root of f(x) is given by
z = R(cosp+1ising),
the contribution from x to o;,—0_ is
(R*— R-*) coskp + t(R¥+ R-*) sinkp .
As f() is a real polynomial, we can, for our purposes, say that the con-

tribution is (R*— R-*) coskp. The same remark applies to ¢}, —¢, and
U;O, - 0'_’_’]‘,.

3.

The structure of the proof of our theorem (see section 5) is quite simple.
In section 4 we prove essentially that the sums o}, —d’, 0} —0d”; have
to be small in absolute value when k <m. In section 5 this ‘“smallness”
is applied, in conjunction with a congruence condition induced by New-
ton’s formulae, to prove that the sums in question have to vanish when
k <m, and an application of a lemma on ¢, —0_,, due to Selmer, yields
the final result.

4.
In this section we prove three lemmas.

Lemma 1. When n>2m, o,—o0c_,=cm. If both f,(x) and f,(x) have
roots with R=+1, then
0<|o,—0c ]l <m 0<|o,—0d"y] <m.
Proor. The first statement follows trivially from Newton’s equations
for the power sums. The second statement follows from the central result

in [1], namely, that the two addends on the right hand side of (2.1) have
the same sign.

LEMMmA 2. S |Rm—R-" < 2m.
2; f(x)=0

Proor. When n=2m, the equation f(x)=0 is quadratic in 2™, and it is
eagily verified that the sum in question is equal to m(1 —e¢,).
When n>2m, we write the sum as follows, making use of lemma 1:

3 |Bn—E-" = 3 (R—E") + 3 (B"—E-")
= Y (R-™—R™)(1+¢ cosme) + 2, (R™—R-™)(1—¢ cosmep) + m
R<1 R>1

=231+ 2t m.
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In order to get the desired upper bounds for ¥, and 3,, we must ex-
amine more closely the equation f(x) =0. Separating its real and imagi-
nary parts, we get

R" cosng + &,eR™ cosmp +¢; = 0,
R” sinng + ¢, R™ sinme =0,
and, by elimination:
(4.1) F(R, cosmg) = R*™— R*—]—2¢R™cosmp = 0.

Elimination of cosmg between (4.1) and the equation

oF
ﬁ‘R’ cosmyp) = 0

yields (2n —m)R2n = m(Rm—1) .

When »n > m, this equation has no real solutions R. As F(0,cosme)= —1
and F(oco,cosmp)=occ, we are thus assured that equation (4.1) defines R
as a positive-valued real function of cosme. We then have, for R<1
R — (Rm—1)2

2Rm
S Y(B-m—RmRo-m,

(BR-™— R™)(1+¢ cosmep) = (R-™—Rm)

where we have substituted for cosmg from (4.1).
By elementary calculus, we find

el < 21— <

n/m
max[(R-™— R™)R2"-m] = ™ (1—?—&) < %n

m
Rx1 n—m n n

n—m
(for the second inequality, remember that n>2m), and this is what we
need to estimate ;.

When we gave the upper bound for (R-™— R™)(1+ ¢ cosme), we did
not make full use of the fact that R is the modulus of a root of f(x), as
we applied just equation (4.1). We shall not need more to find an
upper bound when R>1. Taking (4.1) into account, the expression
n(R™— R-m)(1 —¢ cosmep) can be regarded as a function G(cosmg). For
a fixed value of m, we get a family @,, of functions as n takes the values
2m, 2m+1, 2m+2,.... The corresponding functions R, as defined by
(4.1), share the property

(4.2) R>1 < gcosmp > —4%.

This is seen by noticing that the above inequalities are both equivalent
to F(1,cosmp) < 0. We shall now see that the family G,, is a monotonous
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family on the domain ¢ cosme > —}. This enables us to find a common
upper bound for all members of the family G,,.
Let R, > 1 satisfy
R — R —1—2¢R™ cosmp = 0.
Then
R¥™2_R*™ _1—2¢R™ cosmep < 0,
which means that R,_, > R,. Furthermore

n—1

> 1+ R™RB™+ 2¢ cosmg) = R2* .,

RX"D = 14 R™ (R™, + 2¢ cosmgp)

The inequality is correct because R, ,>R, and the expressions

R |+ 2¢ cosmeyp, R+ 2¢ cosme are both positive by property (4.2).
Hence, by the above inequality,

- (m loan_l)2r+l

(n—1)(RB7, —R.") = 2(n—1) go @r+1)!

= (m1g R, )"
o (2r+1)!
® (m log R,)*

1 R2n
> M08 "Eo (2r+1)!

= m log R2" 2

= n(By—R,™).

As (1—¢cosme) =0, we have now proved the monotony of the family
G

Thus, if B> 1 for s roots of f(x), we have

2, < (s/n) max [n(By — B;™)(1—¢ cosmep)]

< (s/n) max [2m(RE, — Bg)(1— ¢ cosmg)]
Rom=1

= (fr)-2memax gy (“tgi)]

_ @-y-1? _
= (2ms[n) nyl;i: [%—T] = (s/n)m .

We thus have, finally,
S|Bm"—R-™ =3,+3;+m £ (n—8)(m[n)+(s/n)m+m = 2m .
LEMMA 3. When 0< k<m, then

lop—olil = lof —o’4l < k.
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Proor. For the values of k£ in question, it is immediately seen by

Newton’s formulae that o, —o_;, =0, whence ¢, —d’ ;= — (0}, —d”’;). Now,
D |R¥*—R¥|coskg| = 3 |R*—R* < (kfm) 3 |Rm™—R-m|.
; f(@)=0 ; f(@®)=0 x; f(x)=0

We can replace the last < by <, as ¢;,—0¢’ ;=0 quite trivially if all R’s
are equal to 1. Thus, taking lemma 2 into account, we have finished the
proof.

5.

THEOREM. The trinomial f(x) is irreducible whenever no root of f(x) has
the modulus 1. If f(x) has roots with modulus 1, these roots can be collected
to give a rational factor of f(x). The other factor of f(x) is then irreducible.

Proor. We first show, by induction on k, that
0,—0 4 = 0y —0" = ap—b, = ay—bj, =0
for 1 <k<m. We need Newton’s formulae
04+ 0% 1+ ... +ap_ 0y +ka, = 0
o+ 030 gyt .. by 0l +kb, = 0.

By means of the induction hypothesis for smaller values of & (or directly,
if k=1), we conclude that

(5.1) 0,—0 = k(b,—a) = 0 (mod k).

By lemma 3, the congruence (5.1) leads to o;,—o’ =0} —0”;=0, and
then the equation (5.1) gives
a,—b, =a,—b, =0.

The proof of the first statement of the theorem differs a little for the
two cases n>2m and n=2m. We start, in both cases, with the assump-
tion that f(x) is reducible.

Case 1: n>2m. It is seen that the deduction of (5.1) is valid also for
k=m, hence '

Gm

On the other hand, by lemma 1,

-0, =0 (modm).

0<|o,—0 . < m.

The assumption of reducibility thus leads to a contradiction.

Case 2: n=2m. The polynomials 2" + 2™+ 1 have R=1 for all their
roots. If the polynomical %™ — exm—1 is reducible, one concludes from
the equations
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aj—by=a/-b' = ... =ap_~bp =0

that either f,(x) or fy(x) is symmetric, namely the one of them with +1
as its constant term. But it is immediately seen that if x is a root of
x¥m —ggm—1, -1 cannot be, and the symmetry of any factor of f(x) is
then impossible.

The second statement of the theorem is taken from theorem 3 of [1].
The above proof needs only minor amendments to be at the same time a
proof of the third and last statement. i
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