SOME ARITHMETIC SUMS CONNECTED WITH THE GREATEST INTEGER FUNCTION

L. CARLITZ

1.

Jacobsthal [3] has introduced the sum

(1)
$$S(a,b,m;r) = \sum_{k=0}^{r-1} D(k) ,$$

where

(2)
$$D(k) = D(a,b,m;k) = \left[\frac{a+b+k}{m}\right] - \left[\frac{a+k}{m}\right] - \left[\frac{b+k}{m}\right] + \left[\frac{k}{m}\right];$$

here a, b are arbitrary integers while $m \ge 1, r \ge 1$. Jacobsthal proved the inequality

$$S(a,b,m;r) \ge 0.$$

The writer [1] has given another proof of (3) making use of the representation

(4)
$$S(a,b,m;r) = -\frac{1}{m} \sum_{s=1}^{m-1} \frac{(\zeta^{-sa}-1)(\zeta^{-sb}-1)(\zeta^{-sr}-1)}{(\zeta^{s}-1)(\zeta^{-s}-1)},$$

where $\zeta = e^{2\pi i/m}$. If we put

(5)
$$J(a,b,c) = -\frac{1}{m} \sum_{s=1}^{m-1} \frac{(\zeta^{-sa} - 1)(\zeta^{-sb} - 1)(\zeta^{-sc} - 1)}{(\zeta^{s} - 1)(\zeta^{-s} - 1)}$$

for arbitrary a, b, c, then clearly J(a,b,c) is symmetric in a,b,c; also it is evident that S(a,b,m;r) = J(a,b,r).

It follows easily from (5) that

(6)
$$J(a,b,c) = J(-a,-b,-c).$$

Since J(a,b,c) has period m in each variable and

$$J(a,b,c) = 0 \qquad (abc = 0),$$

we may assume that

(7)
$$1 \le a \le m-1, \quad 1 \le b \le m-1, \quad 1 \le c \le m-1.$$

Received June 13, 1959.

60 L. CARLITZ

Moreover in view of the symmetry and (6) we may also assume that

$$(8) b \leq m - a \leq c$$

and

$$(9) b+c \leq m.$$

It is proved in [1] that when (7), (8), (9) hold, then

$$J(a,b,c) = b.$$

We recall that the Bernoulli function $\overline{B}_{p}(x)$ is defined for $0 \le x \le 1$ by

$$\bar{B}_p(x) = B_p(x), \quad \bar{B}_p(x+1) = \bar{B}_p(x),$$

where $B_p(x)$, the Bernoulli polynomial of degree p, is defined by

$$\frac{t e^{xt}}{e^t - 1} = \sum_{n=0}^{\infty} B_p(x) \frac{t^p}{p!}.$$

Now put

(11)
$$D_{p}(k) = D_{p}(a,b,m;k)$$

$$= -\overline{B}_{p}\left(\frac{a+b+k}{m}\right) + \overline{B}_{p}\left(\frac{a+k}{m}\right) + \overline{B}_{p}\left(\frac{b+k}{m}\right) - \overline{B}_{p}\left(\frac{k}{m}\right).$$
(12)
$$S_{p}(a;b,m;r) = \sum_{k=0}^{r-1} D_{p}(k).$$

Making use of the formula [2, p. 521]

$$\bar{B}_p\left(\frac{r}{m}\right) = \frac{B_p}{m^p} + \frac{p}{m^p} \sum_{s=0}^{m-1} \frac{\zeta^{-rs}}{\zeta^s - 1} H_{p-1}(\zeta^{-s}) \; , \label{eq:barpoone}$$

which holds for all integral r and $p \ge 1$, we get the representation

$$(13) \quad S_p(a,b,m\,;\,r) \;=\; -\frac{p}{m^p} \sum_{s=1}^{m-1} H_{p-1}(\zeta^{-s}) \frac{(\zeta^{-as}-1)(\zeta^{-bs}-1)(\zeta^{-rs}-1)}{(\zeta^s-1)(\zeta^{-s}-1)} \,,$$

where $H_n(\lambda)$ is defined by

$$\frac{1-\lambda}{e^t-\lambda} = \sum_{n=0}^{\infty} H_n(\lambda) \frac{t^n}{n!} \qquad (\lambda + 1).$$

If we put

$$(14) J_p(a,b,c) = -\frac{p}{m^p} \sum_{s=1}^{m-1} H_{p-1}(\zeta^{-s}) \frac{(\zeta^{-as}-1)(\zeta^{-bs}-1)(\zeta^{-cs}-1)}{(\zeta^s-1)(\zeta^{-s}-1)}$$

then $J_p(a,b,c)$ has period m in each variable and is symmetric in a,b,c; also

$$S_n(a,b,m;r) = J_n(a,b,r).$$

Comparing (14) with (5) it is clear that

$$J(a,b,c) = J_1(a,b,c).$$

2.

It is by no means evident how to extend (10) to the case of arbitrary $p \ge 1$, or, in particular, to frame a theorem that will reduce to (3) when p=1. In the present note we limit ourselves to the special cases p=2 and 3. It is easily verified that

$$H_1(\lambda) = (\lambda - 1)^{-1};$$

thus (14) becomes

$$J_2(a,b,c) = -\frac{2}{m^2} \sum_{s=1}^{m-1} \frac{(\zeta^{-as}-1)(\zeta^{-bs}-1)(\zeta^{-cs}-1)}{(\zeta^s-1)(\zeta^{-s}-1)^2}.$$

It follows easily from (15) and (5) that

(16)
$$J_2(a,b,c) + J_2(-a,-b,-c) = -\frac{2}{m}J_1(a,b,c).$$

As above there is no loss in generality in assuming that (7), (8), (9) hold. We rewrite (15) as

$$\begin{split} &-\tfrac{1}{2}m^2J_2(a,b,c)+(m-a)bc\\ &=\sum_{s=0}^{m-1}(1+\zeta^s+\ldots+\zeta^{(m-a-1)s})(1+\zeta^{-s}+\ldots+\zeta^{-(b-1)s})(1+\zeta^{-s}+\ldots+\zeta^{-(c-1)s}) \end{split}$$

and apply the familiar formula

(17)
$$\sum_{s=0}^{m-1} \zeta^{rs} = \begin{cases} m & (m \mid r) \\ 0 & (m \nmid r) \end{cases}.$$

Making use of (7), (8) and (9) we get

$$\begin{split} -\frac{m^2}{2}J_2(a,b,c) + (m-a)bc &= m\sum_{i=0}^{m-a-1}\sum_{\substack{j=0\\j+k=i}}^{b-1}\sum_{k=0}^{c-1}1\\ &= m\sum_{i=0}^{b-1}\sum_{\substack{j+k=i}}1+m\sum_{\substack{i=b\\j+k=i}}^{m-a-1}\sum_{j< b,\, k< c}1\\ &= m\sum_{i=0}^{b-1}(i-1)+m\sum_{i=b}^{m-a-1}b\\ &= \frac{1}{2}mb(b+1)+mb(m-a-b)\\ &= mb(m-a) - \frac{1}{2}mb(b-1)\;. \end{split}$$

62 L. CARLITZ

It therefore follows without much trouble that

(18)
$$\frac{1}{2}m^2J_2(a,b,c) = -(m-a)(m-c)b + \frac{1}{2}mb(b-1).$$

Combining (18) with (16) and using (10) we get also

(19)
$$\frac{1}{2}m^2J_2(-a,-b,-c) = (m-a)(m-c)b - \frac{1}{2}mb(b+1).$$

Thus by means of (18) and (19), J_2 is evaluated for all a, b, c, the notation being such that (7), (8), (9) are satisfied. In particular note that (18) and (19) imply

$$(20) -(m-a)(m-c)b \leq \frac{1}{2}m^2J_2(a,b,c) \leq \frac{1}{2}mb(b-1),$$

$$(21) -\frac{1}{2}mb(b-1) \le \frac{1}{2}m^2J_2(-a,-b,-c) \le (m-a)(m-c)b;$$

these inequalities may be compared with (3).

It is also clear from (18) and (19) that $\frac{1}{2}m^2J_2$ is integral; indeed we have $\frac{1}{2}m^2J_2(a,b,c) \equiv -abc \pmod{m}$, $\frac{1}{2}m^2J_2(-a,-b,-c) \equiv abc \pmod{m}$.

3.

For p=3, since

$$H_2(\lambda) = \frac{\lambda+1}{(\lambda-1)^2},$$

we find that

$$(22) J_3(a,b,c) = -\frac{3}{m^3} \sum_{s=1}^{m-1} (\zeta^{-s}+1) \frac{(\zeta^{-as}-1)(\zeta^{-bs}-1)(\zeta^{-cs}-1)}{(\zeta^s-1)(\zeta^{-s}-1)^3}.$$

Then

$$\frac{1}{3}m^3J_3(a,b,c) = \frac{1}{2}m^2J_2(a,b,c) - 2K,$$

where

(24)
$$K = \sum_{s=1}^{m-1} \frac{(\zeta^{-as} - 1)(\zeta^{-bs} - 1)(\zeta^{-cs} - 1)}{(\zeta^s - 1)(\zeta^{-s} - 1)^3}.$$

Now it follows from the identity

$$\sum_{s=1}^{m-1} \frac{\zeta^{-rs}}{\zeta^{-s} - x} = \frac{mx^{r-1}}{1 - x^m} - \frac{1}{1 - x} \qquad (1 \le r \le m)$$

that

(25)
$$\sum_{s=1}^{m-1} \frac{\zeta^{-rs}}{\zeta^{-s}-1} = \frac{1}{2}(m+1)-r \qquad (1 \le r \le m).$$

Rewrite (24) as

$$K = \sum_{s=1}^{m-1} \frac{1}{\zeta^s - 1} \left(1 + \zeta^s + \dots + \zeta^{(m-a-1)s} \right) \cdot \\ \cdot \left(1 + \zeta^{-s} + \dots + \zeta^{-(b-1)s} \right) \left(1 + \zeta^{-s} + \dots + \zeta^{-(c-1)s} \right).$$

Then by (25) we get

(26)
$$K = \sum_{i=0}^{m-a-1} \sum_{j=0}^{b-1} \sum_{k=0}^{c-1} \left\{ \frac{1}{2}(m+1) - R(j+k-i) \right\},\,$$

where R(k) is defined by

$$R(k) \equiv k \pmod{m}, \quad 1 \leq R(k) \leq m.$$

Next, assuming that (7), (8) and (9) are satisfied, we have

$$\begin{split} \sum_{i=0}^{m-a-1} \sum_{j=0}^{b-1} \sum_{k=0}^{c-1} R(j+k-i) &= \sum_{\substack{i,j,k \\ i < j+k}} (j+k-i) + \sum_{\substack{i,j,k \\ i \ge j+k}} (m+j+k-i) \\ &= \sum_{\substack{i,j,k \\ i \ge j+k}} (j+k-i) + m \sum_{\substack{i,j,k \\ i \ge j+k}} 1 = S_1 + mS_2 \;, \end{split}$$

sav. Clearly

$$\begin{array}{lll} S_1 &=& -\frac{1}{2}(m-a)(m-a-1)b\,c \;+\; \frac{1}{2}(m-a)b\,c(b-1) \;+\; \frac{1}{2}(m-a)b\,c(c-1) \\ &=\; \frac{1}{2}(m-a)b\,c(a+b+c-m-1) \;, \end{array}$$

while

$$\begin{split} S_2 &= \sum_{i=0}^{b-1} \sum_{j=i} \sum_{k \leq i-j} 1 + \sum_{i=b}^{m-a-1} \sum_{j < b} \sum_{k \leq i-j} 1 \\ &= \sum_{i=0}^{b-1} \sum_{j \leq i} (i-j+1) + \sum_{i=b}^{m-a-1} \sum_{j < b} (i-j+1) \\ &= \sum_{i=0}^{b-1} \frac{1}{2} (i+1)(i+2) + \sum_{i=b}^{m-a-1} \left\{ (i+1)b - \frac{1}{2}b(b-1) \right\} \\ &= \frac{1}{6}b(b+1)(b+2) + \frac{1}{2}b(m-a)(m-a+1) \\ &- \frac{1}{2}b^2(b+1) - \frac{1}{2}b(b-1)(m-a-b) \\ &= \frac{1}{6}b(b-1)(b-2) + \frac{1}{2}b(m-a)(m-a-b+2) \;. \end{split}$$

Since by (26)

$$K = \frac{1}{2}(m+1)(m-a)bc - S_1 - mS_2,$$

a little manipulation now yields

(27)
$$K = (m+1)(m-a)bc - \frac{1}{2}(m-a)(a+b+c)bc - \frac{1}{2}m(m-a) \cdot (m-a-b+2)b - \frac{1}{6}mb(b-1)(b-2).$$

We may rewrite (27) as

$$2K = (m-a)b(m-c)(a+b+c-m-2) - \frac{1}{2}mb(b-1)(b-2).$$

Finally, using (18), (23), we get

64 L. CARLITZ

$$\begin{array}{ll} (28) & \frac{1}{3}m^3J_3(a,b,c) \\ & = & -b(m-a)(m-c)(a+b+c-m-1) \, + \, \frac{1}{6}mb(b-1)(2b-1) \; . \end{array}$$

Since, from (22),

$$m^3J_3(-a,-b,-c) = m^3J_3(a,b,c) + 3m^2J_2(a,b,c) + 3mJ_1(a,b,c)$$

it follows that

(29)
$$\frac{1}{3}m^3J_3(-a,-b,-c)$$

= $-b(m-a)(m-c)(a+b+c-m+1) + \frac{1}{4}mb(b+1)(2b+1)$.

It is evident that (28) and (29) imply the inequalities

(30)
$$-b(m-a)(m-c)(a+b+c-m-1) \le \frac{1}{3}m^3J_3(a,b,c) \le \frac{1}{6}mb(b-1)(2b-1),$$

(31)
$$-b(m-a)(m-c)(a+b+c-m+1)$$

$$\leq \frac{1}{3}m^3J_3(-a,-b,-c) \leq \frac{1}{6}mb(b+1)(2b+1) .$$

These inequalities may be compared with (20) and (21).

It is clear from (28) and (29) that $\frac{1}{3}m^3J_3$ is integral; indeed we have

$$\begin{array}{l} \frac{1}{3}m^3J_3(a,b,c) \, \equiv \, -abc(a+b+c-1) \pmod m \; , \\ \\ \frac{1}{3}m^3J_3(-a,-b,-c) \, \equiv \, -abc(a+b+c+1) \pmod m \; . \end{array}$$

The evaluation of J_p by the above method for p>3 becomes very cumbersome.

REFERENCES

- L. Carlitz, An arithmetic sum connected with the greatest integer function, Norske Vid. Selsk. Forh. Trondheim 32 (1959), 24-30.
- L. Carlitz, Some theorems on generalized Dedekind sums, Pacific J. Math., 3 (1953), 513-522.
- E. Jacobsthal, Über eine zahlentheoretische Summe, Norske Vid. Selsk. Forh. Trondheim 30 (1957), 35-41.

DUKE UNIVERSITY, DURHAM, NORTH CAROLINA, U.S.A.