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SOME ARITHMETIC SUMS CONNECTED
WITH THE GREATEST INTEGER FUNCTION

L. CARLITZ
1.
Jacobsthal [3] has introduced the sum
r—1
(1) S(a,b,m;r) =3 D(k),
k=0
where
b+k k b+k k
(@) D) = Dabmi k) = |“ - [‘“‘ - [ * ] ; H ;
m m m m
here a, b are arbitrary integers while m>1, r> 1. Jacobsthal proved the
inequality
(3) S(a,bm;r) = 0.

The writer [1] has given another proof of (3) making use of the repre-

sentation

1 m-1 (é-—sa__ 1)(C—sb_ 1)(&-—31'__ 1)
4 bm;r) = — — R
(4) Sabmin = = 3

where {=e20i/m, If we put

] m—1 C""a—-l) C‘sb-—l) C"s"—l)
® Tabo) = = 3 e

for arbitrary a, b, ¢, then clearly J(a,b,c) is symmetric in a,b,c; also it is
evident that S(a,b,m; 7) = J(a,b,r) .

It follows easily from (5) that

(6) J(a,b,c) = J(—a,—b,—c).

Since J(a,b,c) has period m in each variable and

J(a,b,c) =0 (abc = 0),
we may assume that

(7) l<sas<m-1, 1=bs=m-1, 1=scsm-1.
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Moreover in view of the symmetry and (6) we may also assume that

(8) bm—-a=sc
and
(9) b+c=m.

It is proved in [1] that when (7), (8), (9) hold, then
(10) J(a,b,c) =b.
We recall that the Bernoulli function B, (z) is defined for 0<z <1 by
By(x) = By@), B,(e+1) = By(a),
where B,(x), the Bernoulli polynomial of degree p, is defined by

Now put
(11) D,(k) = D,(a,b,m; k)

_ latb+k\ — fatk\ - /biky — [k
- -B,,( m—)+B,, (——m )+Bp (——m )—B,,(T—n).

(12) Sy(a; bm;r) = EDp(k) .
k=0

Making use of the formula [2, p. 521]

B,(2) =2+ 275 T m, e,

m mP  mP —o(8—1

which holds for all integral » and p> 1, we get the representation

(o =1)(gPe=1)(¢ - 1)
(Ee—1)(¢~*—-1)

m—1
(13) Syabmin) = —2'5 HyyC~)

b

where H,(4) is defined by

1-2 ® A
=S HMH— @G+1.

e’ - l n=0

If we put

m—1 -as _ ] -bs __ 1 —es_ ]
(14) Jp(a’ b,c) - _% zl Hp"]-(g_s) (C )(c )(C )

E=1E-1)

then J,(a,b,c) has period m in each variable and is symmetric in a,b,c;
also
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Sy(a,b,m;r) = J,(a,b,r).
Comparing (14) with (5) it is clear that
J(a,b,c) = J,(a,b,c) .

2.
It is by no means evident how to extend (10) to the case of arbitrary
p=1, or, in particular, to frame a theorem that will reduce to (3) when

p=1. In the present note we limit ourselves to the special cases p=2
and 3. It is easily verified that

Hy3) = (1—1)1
thus (14) becomes

9 m—1 (C—aa_ 1)(C—bs_ 1)(&'—03_ 1)
oy hlaba = = 2 T -

It follows easily from (15) and (5) that

2
(16) J2(a"b,c)+J2(—a’ —b’ —C) = - ﬁJl(a:b,c) .

As above there is no loss in generality in assuming that (7), (8), (9)
hold. We rewrite (15) as

— im2Jy(a,b,c)+ (m—a)be
m—1
=3 (14+5+... +lm-a-Ds) (1 L-84 .. 4 L-O-D8)(1 {8+ ... +(~C-Ds)

8=0
and apply the familiar formula

m—1
Sl

8=0
Making use of (7), (8) and (9) we get

m—a~1 b—1 c-1

——~J2(abc)+('m abe=m 3 > 31
1=0 j=0k=0
Jtk=1
b-1 m—a—1
mYy ¥ 1+m>y > 1
1=0 j+k=1 i=b j<b, k<c
J+k=1

mz(z—l) + m 2 b

1=0 i=b

3mb(b+1) + mb(m—a—0b)
mb(m—a) — mb(b—-1).
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It therefore follows without much trouble that

(18) Im?J,(a,b,c) = — (m—a)m—c)b + Imb(b—1).
Combining (18) with (16) and using (10) we get also
(19) Im2Jy(—a, —b,—c) = (m—a)(m—c)b — mb(b+1).

Thus by means of (18) and (19), J, is evaluated for all a, b, ¢, the notation

being such that (7), (8), (9) are satisfied. In particular note that (18)

and (19) imply

(20) —(m—a)m—c)b £ Im?J,(a,b,c)

(21) —3imb(b—1) £ Im2Jy(—a, —b, —c)

these inequalities may be compared with (3).
It is also clear from (18) and (19) that }m?2J, is integral; indeed we have

$m?Jy(a,b,c) = —abc (modm), im2J,(—a, —b, —c) = abc (modm) .

gmb(b—-1) ,

<
= (m—a)(m—c)b;

3.

For p=3, since o il

2(4) = G-
we find that

3 m—1 -as _ ] ~bs _ 1 —cs __ ]

(22)  Jy(a,b,c) = - 21 = 1)@ )¢ (4 )'

@ -1 -1y

Then
(23) %m3J3(a,b,c) = %mz']z((%b’c) - 2K ’
where
(24) K =m—1 ({-—as___ ]_)(C—bs_ ]_)(C—cs_ 1) .

o=1 (e —-1)(¢-*—1)p°
Now it follows from the identity

m—1 C—rs mxr—l 1

aglc_s—x=]__.xm_1_x (1 grém)
that

m-1 [-rs
(25) E = ‘;‘(m'f‘l)—r 1grs m)

8=1 C_s"' 1
Rewrite (24) as
m—1 1
K =
agl Cs__

S(L4E . LODE) (1 oL 4 LeDs)

I(1+C8+ . +c(m—a—1)s).
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Then by (25) we get

m—a—1 b—1 c—1

(26) K= 3% 3 >{m+1)-R(j+k-i)},

=0 Jj=0 k=0

where R(k) is defined by
R(k) = k (modm), 12 Rk)sm.

Next, assuming that (7), (8) and (9) are satisfied, we have

m—a—1 b—-1 c—1
> z SR(j+k—i)= 3 (J+k—i)+ > (m+j+k—1)
=0 j=0 k=0 4k 1,75,k
1< jt+k 2 j+k

= (J+k—i)+m > 1=8+m8,,
7,k %4,k
= j+k

say. Clearly

8; = —3¥m—a)m—a—-1)bc + ¥m—a)bc(b—1) + ¥(m—a)bc(c—1)
= }m—a)c(a+b+c—m—1),
while bt —
Sy =2 Z 21+ 3 2 21
1=0 j=1 k<1 i=b j<b k=1
b-1 m—a—1
=2 2@-j+1)+ X 2 (@-j+1)
=051 i=b j<b
=I§1§(z+1)(z+2 +m—§1{z+1)b 1b(b-1)}

-
H

= 3b(b+1)(b+2) + 3b(m—a)(m—a+1)
—3b%b+1)—3b(b—1)(m—a—b)

= $b(b—-1)(b—-2) + }b(m—a)m—a—b+2).

Since by (26)
K = }(m+1)(m—a)c — 8; — mS,,
a little manipulation now yields
(27) K = (m+1)(m—a)bc — }m—a)a+b+clbe — Im(m—a)-
‘(m—a—b+2)b — ymb(b—-1)(b—2).

We may rewrite (27) as

2K = (m—a)b(m—c)a+b+c—m—2) — imb(b—1)(b—2).

Finally, using (18), (23), we get
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(28) 3m3J5(a,b,c)
= —bm—a)m—c)a+b+c—m—1) + Imb(b—1)(26—1).
Since, from (22),
m3Jg(—a, —b, —c) = mdJ4(a,b,c) + 3m2J,(a,b,c) + 3mJ,(a,b,c),
it follows that

(29) §m3J3(_a, _b: —C)
= —bm—a)m—c)a+b+c—m+1) + }mbb+1)(2b+1).

It is evident that (28) and (29) imply the inequalities

(30) —b(m—a)m—c)a+b+c—m—1)
< im3J4(a,b,c) < Imb(b—1)(2b-1),
(31) —bm—a)m—c)a+b+c—m+1)
< mdJy(—a, —b, —c) < Imb(b+1)(20+1).
These inequalities may be compared with (20) and (21).

It is clear from (28) and (29) that im3J, is integral; indeed we have

iméJ4(a,b,c) = —abc(@a+b+c—1) (modm),
m3Jg(—a, —b, —c) = —abc(a+b+c+1) (modm).

The evaluation of J, by the above method for p>3 becomes very

cumbersome.
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