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NAGELL’S TOTIENT FUNCTION
ECKFORD COHEN

1. Introduction.

Let r and n represent integers, > 0. In [5] Nagell evaluated the func-
tion O(n, r), defined to be the number of integers a (modr) such that
(@, r)=(n—a, r)=1. More recently, [3, (7.6)] the author of the present
paper obtained the following simple representation for this function:

(L) b 1) = o) 3 L0,
d,n)=1

where ¢(r) is the Euler function, u(r) the Mébius function, and the sum-
mation is over divisors d of r which are prime to n. For an interesting
discussion of the function 6(n, r) along other lines, we mention Alder [1].

It is the purpose of this note to give a new proof of (1.1) as an illustra-
tion of an arithmetical inversion principle proved elsewhere [4, Theo-
rem 2.3]. Before stating this principle we introduce some definitions
and notation. Let y(r) denote the core of r, that is, the greatest square-
free divisor of ». Further, let (n, r) denote the greatest common divisor
of n and r, and place y(n,r)=y((n,7)). A complex-valued function
f(n,7) will be termed primitive (modr) if f(n, r)=f(y(n,r), r) for all
integers n.

We now state the inversion relation referred to above. Let r=r;r,
where r, is square-free, and assume f(n,r) to be primitive (modr); then

(AP _ __Wl
(1.2) f(n,r) = d%(,,F(d’d) = F(ryry) = sz( ) (ry d)
d,n)=1 »(r)

where c(n, r) denotes Ramanugjan’s trigonometric sum.

REMARK. Actually we prove somewhat more than (1.1) in this paper;
a complete statement of the result proved is contained in the theorem
in § 3.
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2. Preliminary formulas.

We list for convenient reference a number of known properties of
¢(r), u(r), and o(n, 7).

_fl(r=1)
(2.1) Zuad = {0 r> 1) d,z,d”( )
re(y(r)) r
2.2 =
(2.2) @(r) yr) o(r) ?
B r\ _ glr)p(e) _ T
(2.3) c(n, r) —dl(zn:’r)d:” (d) = (e) ¢= (m, r)) ’

It is also recalled that c(n, 7), u(r), ¢(r) are multiplicative in the argu-
ment 7.
In addition, we shall require the following lemma.

Lemma 2.1, If r, ry, and k are positive integers, r square-free, and ry
a divisor of r, then I
ne(s) i nlk,
(2.4) S ud)e (2,%) = :

dlr .
It 0 otherwise.

Proor. Denote the left of (2.4) by S(k, ;). Then by (2.3),

Sthr) =S ud 3 ou(3)=3ou(3) 3 wd

d|ry dl(g’k) ok dl('l-g)

By (2.1a), the inner sum of the last expression is 0 for all § for which
(ry, r/0)*+1. By the square-free property of r and the hypothesis that
ry|r, the conditions (r,, 7/6)=1 and r,|6 are equivalent. But the condi-
tions r,|6 and d|k are incompatible unless r,|k; hence S(k, r,) =0 if r +k.
This proves the second case of the lemma.

Assuming then that |k, it follows by (2.1a) that

Sthry = 3 6u() zau()
R

placing =r,E and applying (2.16), one obtains
kfr k
St =1 3 B (1) = rig (5), .

1
Bl

This completes the proof.
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3. Evaluation of O(n, r).

We first note the following special case of the inversion relation (1.2).

Levma 3.1, If r=ryry, r square-free, and if f(n, r) s primitive (modr),
then
@V feur) = 3 F(dg) = Fowr) = w35 (%) .

@, n) 1

Proor. This formula results from (1.2), because (r,,r,)=1 and, by
(2.3), ¢(m, r)=u(r) in case (m, r)=1.

We now prove our main result.

TaEOREM. The function O(n, r) is primitive (modr), and has the follow-

ing unique representation of the form (1.2),

w(d)
3.2 6 =
(3.2) (n,r) = ¢ )(gy%r) o)’

Proor. The function 6(n, r) has the Fourier expansion [2, Theorem 7,

(s=2)],

(3.3) b(n, 7) = = %,02 (Zz r) o(n, d) .
By (2.3) one obtains therefore,

) o [ #(d))\*
(3.4) o) =03 (W) o(n, d) .

In view of the presence of the factor u%(d) in (3.4), the divisors d of r
may be replaced by the divisors of y(r). Since c(n, r)=c((n,r), ), it
therefore follows that 6(n, r) is primitive (modr), and moreover, by
(2.2a), that

(r

(3.5) O(n, r) = ﬁ—

y(r) o(n, 7 )=<p(r)9(n, y(r))
%) '

#(y(r))

We consider two cases.
Case 1 (r square-free). In this case, it follows by Lemma 3.1, that

r
(3.6) o) = 3 F (d, E) ,
d,n)=1

where

(3.7) Fry, r) = ulry) z 9 ( : r) ud), r=rry.
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Hence by (3.4), Lemma 2.1, and the multiplicative property of ¢(r), one
obtains

2 2(D
F(ry,ry) = M—)d% ,u(d)DEI; ZZED;C (g, D)

plr) %(r) o u¥D) r w(r)(r) o« w¥D)
= d)e|( -, = .
r Dir ¢P2(D) d%llu( )C (d ) 7y <p(r1) rD‘Ilr) (p(D)

Placing D=7, E in the latter summation and using the multiplicativity
of u(r) and ¢(r), in connection with (2.2b), it follows that

pr)9(r) < #3E) _ p(r)p(ry)
739%(r1) E|7, P(B) @(ry)

This proves (3.2) for square-free r, on the basis of (3.6).

Case 2 (r arbitrary). The general case of (3.2) results from the case r
square-free, in connection with (3.5).

The uniqueness of the representation (3.2) is a direct consequence of
the inversion theorem (1.2). This completes the proof.

F(ry,rp) =
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