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A TYPE OF SERIALLY
BALANCED EXPERIMENTAL DESIGNS

ELSE SANDVED

1. Introduction

When a number of different treatments are applied to one or several
experimental subjects in successive periods, models of the following type
have been considered: Each experimental result is a sum of the direct
treatment effect, residual effects of treatments applied in earlier periods,
effect of the experimental subject, effect of the period or a common
block effect for some neighbouring periods, plus a stochastic term (error)
¢ which may or may not be autocorrelated. The a priori assumption is
that all ¢’s have expectations equal to zero, E(¢)=0, and common vari-
ance equal to ¢, var(e) =02

Finney [2] has considered five models involving combinations of error
correlations, residual effects of treatments applied in earlier periods, and
autoregressive effects (i.e., response of the subject on one occasion affects
its capacity to respond on the next). We shall only consider the case
where the model contains no autoregressive effects and the errors are
uncorrelated.

The usual procedure in this case is to estimate the unknown parameters
by the least squares method, i.e., to minimize

Q@ =3 (e~ B’

with respect to the parameters; here, the z’s are the experimental re-
sponses and the E(x)’s are functions of the parameters appearing in the
model.

When the model is given, the least squares equations indicate what
balancing arrangements are required to make the statistical analysis of
the experiment relatively simple. Balanced designs also make the esti-
mates more efficient than estimates based on unbalanced designs with
the same amount of experimental material.

Williams [7] [8] considers designs where each treatment is applied
once to each experimental subject in successive periods. He discusses the
construction and analysis of designs balanced with respect to the residual
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effect of the treatment applied in the previous period, i.e. the first
residual effect, and the residual effect of the treatments applied in the
two previous periods. His designs are partly based on latin squares and
sets of latin squares.

When the first residual effects only are to be estimated, a simple
example has been described by Cochran, Autrey and Cannon [1] for 3
different treatments applied in 3 successive periods to each experimental
subject.

Designs where the number of treatments is greater than the number of
periods for each experimental subject consist of incomplete sequences
and have been investigated by Patterson [5]. He has indicated 7 balance
conditions for the case where first residual effects are estimated and has
given several rules for constructing balanced designs, especially under
the restriction that the number of experimental subjects is to be as
small as possible.

In [4] he has treated the analysis of the designs.

When v treatments are to be applied to a single experimental subject
in successive periods, each treatment has to be applied several times to
this subject. This case has been considered by Finney and Outhwaite [3].
They consider the model

T, = M+b+t+ 1+ e

b v v
b =21 =k§1”k =0,

i=1 Jj=1

where z,;, is the experimental response in block number ¢ in the latter of
two subsequent periods in which treatments k and j, respectively, were
applied. We assume y, b;, ¢; and 7, to be unknown constants, while the
€4 are random variables, all independent and normally distributed with
zero mean and common variance ¢2. The parameters are interpreted as
follows: u is the general mean, b, is the block effect, #; is the direct treat-
ment effect, and r,, is the residual effect from the treatment in the preced-
ing period. The b;’s, t;’s and r,’s are measured as deviations from the
general mean.

The least squares equations assume a convenient form if we base the
experimental design on a type 1 sequence or a type 2 sequence of the kind
introduced by Finney and Outhwaite [3]:

A type 1 sequence of index k and order v involves an arrangement of v
different symbols such that

(i) the sequence consists of (kv2®+ 1) symbols, amongst which one
occurs (kv+ 1) times and the others kv times each;

(ii) after the first symbol, the remaining kv successive sets of length v
form blocks of complete replicates;
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(iii) every one of the v® possible ordered pairs of successive symbols
occurs k times.
An example with index 2 and order 3 is

1 123 312 231 132 213 321

Balanced sequences of small index k will be of practical importance.

For index k=1, several balanced sequences have been constructed.
For v=2 there exists a trivial sequence. For v=3, 4, and 5, enumeration
has established that no sequences exist. For v=6 Anne D. Outhwaite
has discovered a number of distinct sequences. M. R. Sampford [6] has,
by different methods, found a number of sequences for different values
of v; there is at least one sequence for each value of v up to 11. Further,
he has discovered a method for finding a sequence with v=4r+2, r=1,
2,3, ..., when a sequence with v=2r+1 is known.

In section 2, I shall present a general method for constructing a type 1
sequence of index 1 and order v=4r+2,r=1,2,3, ...

For tndex k=2, Sampford has given a method for constructing balanced
type 1 sequences of general order v.

A type 2 sequence of index k and order v involves an arrangement of v
different symbols such that

(i) the sequence consists of (kv?—kv+ 1) symbols, amongst which one
occurs (kv—k+ 1) times and the others k(v — 1) times each;

(ii) after the first symbol, the remaining k(v—1) successive sets of
length » form blocks of complete replicates;

(iii) every one of the w(v—1) possible ordered pairs of successive
different symbols occurs k times.

An example with index 2 and order 3 is

1 213 123 132 321

For index k=1, Sampford gives a method for constructing type 2
sequences of general order v.

In both types of sequences the first observation is omitted from the
analysis.

When each block in a type 2 sequence has the same symbol at the end,
and the sequence accordingly is totally reversible, every residual effect
occurs in each block. This is a great advantage in analyzing the ex-
perimental results. An example of a totally reversible balanced sequence
of type 2 with index 1 and order 5 is

1 24531 52341 35421 43251

Sampford has discovered methods for constructing totally reversible
type 2 sequences of index k=1 and order v=2r+1 and of index k=2
and general order v.
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If we write down n balanced sequences of the same type, of index k
and order v, one after the other, omitting all initial elements except the
first one, the result will be a balanced sequence of the same type as the
original one, of index nk and order v.

Sampford has also treated the analysis of serially balanced sequences.

2. A method for constructing a type 1 sequence of index k = 1

and order v = 4r+2,r=1,2,3, ...

We shall represent the v=4r+2 symbols by unstarred and starred
residues modulo 2r+1: 0,1,2, ..., 2r, 0%, 1* 2% ... (2r)*. The bal-
anced sequence is formed of residues 7, , and n; , in a (4r+2) x (47 +2)
square, where x denotes the number of the column and y denotes the

number of the row (x,y=1, 2, ..., 4r+2).
(1) We first put the unstarred residues =, , in the upper half of the
square (y=1, 2, ..., 2r+1) in the following way:
On the line Ny = y is y =
z=y-—2r r odd 2r+1
r—1 odd 2r—1)+1, 2r+1
& =y-2r-1) r+2 even 2(r—1)+2
k odd
=y— ce 2r41
z =y—2k % 41—k oven 2k+1, 2k +2, , 2r+
2 odd
z=y—4 or—1 oven 5,6,...,2r+1
1 odd
= y— 4, ...
r=y—2 o oven 3, 4, , 2r+1
z = 0 1,2, ...,2r+1
x=y+2 2r odd 1,2 ..., 2r+1
1 even
z=1y+4 2r—1 odd 1, 2, , 2r+1
2 even
x =y+2% 2r+1-k | odd 1,2, ..., 2 +1
k even
r+1 odd
r=y+2r , oven 1, 2, ,2r+1
1 odd
= 1
Tty =3 2r even 2
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On the line Ny, y = y is Y=
Tty =5 zr—l Zggn 1,234
x+y= 2k+1 ...... ];H-l—k .. ngn .. 1’2, .. .’. 2k ............
x+y= 2r+1 ...... :+1 ........ ijn 1’2’,2r ............

(2) Now, in one half of the upper half of the square we have put un-
starred residues. In the rest of the upper half of the square we put
starred residues according to the formula

n:,y = (n4r+3—w,y+ 1)* .

(3) In the lower half of the square the symbols are placed symmetric-
ally with respect to the horizontal midline of the square, except that the
unstarred and starred residues are interchanged.

Example with r=4.

;>\f 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18
110 1 8 2 7 3 6 4 5 6% 5% T* 4*% 8% 3% 0* 2% ]1*
2 8 0 71 6 2 5 3 b5*4 4% 6% 3 7% 2% 8% 1* 0%
3|1 2 0 3 8 4 7 6% 6 T*5 8% 5* 0% 4% 1* 3% 2%
4 |7 8 6 0 5 1 5% 2 4* 3 3* 4 2% 6* 1* 7* (O* 8*
6|12 3 1 4 0 68 77 8*6 O0* 5 1% 5% 2% 4% 3*
6 |6 7 5 8 50 41 3* 2 2* 3 1* 4 O0* 6* 8* 7*
713 4 2 61 70 88 0*7 1*¥ 6 2* 5 3* bo* 4*
8 |5 6 5% 7 4*8 3*0 21 1* 2 0* 3 8* 4 T7* 6*
9 14 6¥*3 7*2 81 00 1*8 2*7 36 4* 5 b*

10 | 4* 6 3* 7 2*8 1*0 0*1 8* 2 7*3 6*4 5*5
11 | 6* 6* 5 74 83 0¥ 2 1*1 2*0 3*8 4* 7 6
12 | 3% 4* 2* 6 1*7 0*8 80 7*1 6*2 5*3 5 4
13 | 6% 7* 5% 8* 5 0* 4 1* 3 2*2 3*1 40 6 8 7
14 | 2% 3% 1* 4% 0* 6 8* 7 78 6*0 51 5 2 4 3
15 | 7* 8% 6% O* 5* 1* 5 2* 4 3*3 42 6 1 7 0 8
16 | 1* 2% 0% 3* 8% 4% 7* 6 6* 7 5*8 5 0 4 1 3 2
17 | 8% 0% 7* 1* 6* 2% 6% 3* 5 4* 4 6 3 7 2 8 1 0
18 | O* 1% 8% 2* 7* 3* 6* 4* 5* 6 6 7 4 8 3 0 2 1
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The required sequence is then formed by linking together all 4r+ 2
rows in such a way that, if the residue a is the first residue of a row in
the sequence, then the next row in the sequence starts with the residue
of (a+ 1)*, and if a* is the first residue in a row in the sequence, then the
next row in the sequence starts with the residue of (a +1). We may form
for instance the sequence

000 ...1%) (1*...2) (2...3% ...
S(@r .. 0%) (0% ... 1) (1...2%) ... ((2)*...0).

Theorems 1-3, to be stated and proved below, show that this is a type
1 sequence of index 1 and order 4r+2. To prove the theorems, we first
make, by means of (1) and (2), a survey of the coordinates of an un-
starred residue ¢ and of a starred residue b* in the upper half of the
square:

0Lacsr
a occurs in
(xy) = (1+29, 2a+1+29), ¢g=0,1,...,7—a,
(4 (x, y) = (2a+2j, 2%), j=12...,r,
(%, y) = (2a—2k, 1+ 2k), = 0,1, ,a—1
r+1=a = 2r.
a occurs in
(z,y) = (2n, 4r—2a+ 2+ 2n), n=12 ...,a—r-1,
5) (v,y)=4r—2a+3+2p, 14+2p), p=0,1,...,r,
(%, y) = 4r—2a+1-2¢q, 2+29), ¢q=20,1,...,2r—a.

1* < b* < (r+1)*.
b* occurs in
(x,y) = (4r+2—29*%, 2b—-1+29*), g*=10,1
(8) (x,y) = (4r—2b+5—2j*, 2j*), j*=12...,r
(%, y) = (4r—2b+5+2k*, 1+2k*), k*=0,1

(r+2)* < b* < (2r+1)*.
b* occurs in
(,y) = 4r+3—2n*, 4r—2b+4+2n*), 2*=12,...,b—r—2
() (x,y) = (2b—2—2p*, 1+ 2p*), p*=0,1,...,r
(x, y) = (2b+2g*, 2+29*), ¢*=0,1,...,2r—b+1

In (7) and throughout the proof we shall use (2r + 1)* in the calculation
instead of 0*, and we shall write b=2r+ 1 when b* = (2r 4 1)*.

TrEOREM 1. When a square is constructed according to (1), (2) and (3),
every row contains each of the 4r+ 2 different symbols.
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Proor. It follows from (4) and (5) that the 2r 4+ 1 different unstarred
residues occur in each of the rows y=1, 2, ..., 2r+ 1. The theorem then
follows from (2) and (3).

THEOREM 2. When a square is constructed according to (1), (2) and (3),
the 4r+ 2 symbols with the coordinate x=1 are all different.

Proor. It follows from (4) and (5) that each of the 2r+1 different
unstarred residues occurs in the column #=1 in the upper half of the
square. The theorem then follows from (3).

THEOREM 3. When a square is constructed according to (1), (2) and (3),
every ordered pair of two different symbols occurs exactly once in the rows
of the square.

Proor. The proof is very tedious. During the proof we apply the
following calculation rules for residues modulo 2r+1:

If a+b:

res(b—a) odd «— res(a—>b) even
Ifa<b:

res(b—a) odd «— a+b odd < { res(a+b) odd if a+b < 2r,

)

res(a+0b) even if a+b > 2r.
)
)

res(a+0b) even if a+b < 2r,

res(b—a) even <~ a+b even <~ { res(a+b) odd if a+b > 2r.

We are first going to prove that every ordered pair of unstarred residues
(a, b), where a+b and res(b—a) is odd, occurs in the rows of the upper half
of the square.

‘When this is proved it follows from the construction that every ordered
pair of starred residues c* d*, where c*+d* and res(d* —c*) is even,
occurs in the rows of the upper half of the square. Further, the rows of
the lower half of the square will contain every ordered pair ab, where
a+b and res(b—a) is even, and every ordered pair c* d*, where c*4d*
and res(d* —c*) is odd.

Next we are going to prove that every ordered pair ab* where
res(a+b)=1,2,4,86, ..., 2r, and every ordered pair b* a where res(a+b)=
0,3,5,7,...,2r—1, occurs in the rows of the upper half of the square.

When this is proved, it follows from the construction that every ordered
pair a* b, where res(a+b)=1,2,4,6,...,2r and every ordered pair
b a*, where res(a+b)=0,3,5,7,...,2r—1 occurs in the rows of the
lower half of the square.

We shall distinguish various types of ordered pairs a b; a b*; b* a.

Math. Scand. 8 — 4
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I° 0sasr, 02bsr.

a) ab; a<b and res(b—a) is odd. It then follows from the first and
third formula (4) that a b occurs where

20+ 1429 = 142k, g ceay T
14+29+1 = 2b- 2k, k=0,1,...,b—

Hence we get in fact

0sg9=1%b-0a-1) 2 §(r—a)-}<r-a,
0<k=4}at+tb-1)sb-1,

that is, g and & are integers within their admissible ranges.
b) ab; a>b and res(b—a) s odd. We get from the first and third
formula (4)
14+2k = 2b+1+2g, k=
2a—2k+1 = 1+2g, g
Hence
0<k=4%a+bd) £a-1
0<g=14%a-b)=r->b

= b

the values of k and g are admissible.

2° 0Lasr, r+1 b= 2r.

a) ab; a+b=x2r—1 and res(b—a) is odd. It follows from the second
formula (4) and the third formula (5) that a b occurs where

2) = 2+2q, ji=L2...,r,
2a0+2j+1 =4r—20+1-29, q=0,1,...,2r=b.
Hence
0<qg=3}2r—1-(a+b)) £ §2r-b)—% < 2r-b,
1Sj=1+q S H2r—1-(r+1)+1<r;

the values of ¢ and j are admissible.
b) ab; a+b=2r+1 and res(b—a) is odd. We get from the third

formula (4) and the second formula (5)

1+2k = 1+ 2p, k=0,1....,a-1,
20—2k+1 = 4r—2b+ 3+ 2p, p=0,1,...,r.

Hence
0sp=k=%Ha+b-2r—1) < §(@a+2r—2r—-1) <a-1,

as a>1 because a+b=2r+1. The values of k and p are admissible.
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3 r+1 a2, 0Zb<=r

a) ab; a+b=2r and res(b—a) is odd. We get from the third formula
(5) and the second formula (4)

2+2¢ = 2j, =0,1,...,2r—a
4r—2a+1-2¢9+1 =20+25, j=1,2 ...,7r.

Hence
0 <q=13}2r—(a+d) = %(27' a) < 2—a,

1) =q+1l =r—§a+b)+1 = }(r+1) < r;
the values of ¢ and j are admissible.

b) ab; a+b=2r+2 and res(b—a) vs odd. We get from the second
formula (5) and the third formula (4)

’1, ?r’

142p = 1+ 2k, P
k=0,1,...,b-1.

4r—2a+3+2p+1 = 2b-2k,

Hence
0Osp=k=1%a+b-2r—2) £ }2r+06—-2r—2) = }b—-12b-1 < 7;

the values of p and k are admissible.

4° r+1=a =22, r+1 b < 2r.
a) ab; a<b and res(b—a) is odd. We get from the third and first
formula (5)
2+2q = 4r—2b+ 2+ 2n, q=0,
4r—2a0+1—-29+1 = 2n, 1

S
I

Hence

< 2r—YHa+a+1)+4% = 2r—a,

0<g=2r—$(a+b)+}
=}b—-a-1)+1 £b—a—-141 2 b-r-1;

1=n=4b-a+1)

the values of ¢ and » are admissible.
b) ab; a>b and res(b—a) is odd. We get from the first and third
formula (5)

dr—2+2+2n =2+2, n=12...,a—r—1,
2n+1 = 4r—2b+1-—2g, g=0,1,...,2r=b.
Hence
0<q=2r—3}a+b) < 2r-b,
1sn=%}a-b) 2£Ya—r-1)Sa-r-1;

the values of ¢ and n are admissible.
So far we have proved that every ordered pair a b, where res(b—a) is odd,
occurs in the rows of the upper half of the square.

4%
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We next consider the ordered pairs a b* and b* a occurring in the rows of
the upper half of the square.

5° 0Saxr 1*<b* < (r+1)*,

a) a b*; res(a+b)=2,4, ..., 2r. We get from the second formula (4)
and the second formula (6)

2j = 2j%, j=
*

1,2, ...,r,
20+2j+1 = 4r—2b4+5-25*, j*=1,2

' 2, .,

Hence
15j=4*=r—3a+b)+1 = r;

the values of j and j* are admissible.
If res(a+b)=1, then a=0 and b=1, and we get a solution from the
first formula (4) and the first formula (6) for g=g*=r.

b) b*a; res(a+b6)=3,5, ...,2r—1. We get from the second formula
(6) and the second formula (4)
2% = 2, *=1,2,...,r,
4r—26+5-2*+1 = 2a+2j, j=12...,r.
Hence

1<j=j*=r+i-Ha+b) s r;

the values of j and j* are admissible.
If res(a+b)=0, then a=r and b=(r+ 1), and we get a solution from
the second formula (6) and the second formula (4) for j=j*=1.

6° 0Zasr, (r+2)*2b* 2 (2r+1)*.

a) a b*; a+b is an even number less than or equal to 2r + 2. We get from
the first formula (4) and the second formula (7)

2a+ 1429 = 14 2p*, g=0,1,...,r—a,
1+29+1 = 2b—2—2p*, p*=0,1,...,r.
Hence
0=g=4%0b-a)-1=%a+b)—a—-1=r—a,
0< ir=sp*=14a+d)—1=7;
the values of g and p* are admissible.
b) a b*; a+b is an odd number greater than or equal to 2r+3. We get
from the second formula (4) and the first formula (7)
2j = 4r—2b+4+ 2n*, j=L1L2,...,r,
2a+2j+1 = 4r+3—2n*, n*=12...,b—r—-2.
Hence
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1
1

P+12j=2r+3—Ha+b) S,
n* = }b—a—1) = b—a+b+1) € b—r—2;

IN A

the values of j and n* are admissible. But a+b even and <2r+2, and
a+b odd and =2r+3, correspond to res(a+b)=1,2,4,6,...,2r.

c) b*a; a+b is an odd number less than or equal to 2r+1. We get from
the second formula (7) and the first formula (4)

14+ 2p* = 2a+1+2g, p*=0,1,...,7r,
2b—2-2p*+1 = 1+2g, g=0,1,...,r—a.

0 < }r+1) < p* = Ha+b-1) <,
0<g=14%b-a-1) =}b+a—1)—a £ r—a;

Hence

the values of p* and ¢ are admissible.
d) b*a; a+b is an even number greater than or equal to 2r +4. We get
from the first formula (7) and the second formula (4)

4r—2b+4+2n* = 24, n*=12 ...,b—r-2,
4r+3—m*+1 = 2+2, j=12 .. .r.

1< n*=30b—a) = b—}a+b) < b
1< }(r+8)2j=2r+2-%(a+b) g

Hence

the values of n* and j are admissible. But a+b odd and =2r+1, and
a+b even and = 2r+ 4, correspond to res(a+5)=0,3,5, ..., 2r—1.

7 r+l<as 2, 1*Zb* 2 (r+1)*.

a) res(a+b)=1,2,4,6, ...,2r. As a consequence of the construction,
the ordered pair a b* occurs in the rows of the upper half of the square
if and only if the ordered pair ((b—1), (a+ 1)*), where 0<b—1=r and
(r+2)* < (a+1)*<(2r+1)*, occurs in the rows of the upper half of the
square, and we have just proved that the latter ordered pair occurs in
the rows of the upper half of the square.

b) res(a+b)=0,3,5,7,...,2r—1. As a consequence of the construc-
tion, the ordered pair b* a occurs in the rows of the upper half of the
square if and only if the ordered pair ((a+ 1)*, (b—1)), where (r+2)* =
(@+1)*<(2r+1)* and 0<b—1=r, occurs in the rows of the upper half
of the square, and we have just proved that the latter ordered pair
occurs in the rows of the upper half of the square.

8° r+l1<a =2, (r+2)*2b* =< (2r+1)*.
As 2r+3<a+b<4r+1, res(a+b) cannot be equal to 0 or 1.
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a) a b*; a+b is an odd number. This corresponds to res(a+b)=

2,4, ...,2r. We get from the second formula (5) and the second formula
(7)
1+2p = 1+2p*, p=0,1,...,7,
4r—20+3+2p+1 = 26—2-2p*, p*=0,1,...,r

Hence
0= p=7p*=3a+b—-2r-3) <

<

the values of p and p* are admissible.

b) b*a; a+b is an even number. This corresponds to res(a-+b)=
3,5,...,2r—1.

We get from the second formula (7) and the second formula (5)

14 2p* = 1+2p, p*
26—2-2p*+1 = 4r—2a+3+2p, p=

0,1, ...,r,
0,1,...,r
Hence

O<l=s=p=p*=14a+d)—r-1=r-1<r;

the values of p and p* are admissible.
This concludes the proof of Theorem 3.
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