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THE TOEPLITZ MATRICES
OF AN ARBITRARY LAURENT POLYNOMIAL

PALLE SCHMIDT and FRANK SPITZER

1. Introduction.

1.1. The problem under consideration has a rather impressive history.
Therefore we present it in some detail with emphasis on those theorems
which are either used by us, or upon which our work (to be summarized
in Section 1.5) may have shed new light.

With a Laurent series, with arbitrary complex coefficients a,,

f@) =2%a72,
one may associate a sequence of matrices, which are called Toeplitz
matrices after their inventor [7]. (They are not the matrices by the same
name which occur in summability theory.) We define our sequence of
finite »+ 1 by n+ 1 matrices 7'(n) by

T(n) = (T(n)ij) = (ai—j), ‘i,j =0,1,...,n.

It is natural to view 7'(n) as a linear operator on the space of ordered
(n + 1)-tuples of complex numbers, as defined by ordinary matrix multi-
plication. We are concerned with the eigenvalues 4,,9,4,, . . - 4,, of T'(n)
and denote the spectrum of 7'(n) by

On = {Anos - - s2mn} = {A | det(T(n)—2I) = 0}.

We shall presently summarize known results which give a great deal of
information concerning the asymptotic behavior of the eigenvalues 4,;
as % — oo, but only under very restrictive assumptions about f(z), or
about its coefficients @,. All of these results concern, in some way, that
subset of the complex plane which, in a sense, is “filled in’’ by the points
of 0, as n - co. We now define a set B which seems to play such a role.
Let

Received May 9, 1960.
This work was supported by the Office of Naval Research, U.S. A., under Contract
NONR 710-(28).



16 PALLE SCHMIDT AND FRANK SPITZER

(1.1) B==l|l=ﬁm%”%ﬁawlmnm=m

m—»o0 m—>0o0

Clearly B will be non-empty if the union of the spectra o, is a bounded
set, and it requires only very mild assumptions concerning the sequence
{a,} to ensure that such is the case.

One assumption which has other advantages besides ensuring that B
is non-empty is that

(1.2) _g la,] < oo

Condition (1.2) makes it possible to consider the singly and doubly
infinite matrices

T+ = (T;) = (a’i—j): iaj = 0’1’2:' ey
T = (T'Lj) = (ai—j)7 i,j = O’ i l, i2: “e ey

as bounded linear operators on the Banach spaces I, and [_:

It = {w | 2 = (@, 2y,...), %, complex, sup|z,| < oo} ,

k=0
I, = {x | 2= (...,2_4,24,%,,...), 7, complex, sup |, < oo} ,
—oo<k<oo
with norms
It = sup |z, ]l = sup |%,
k=0 —oo< k<00
respectively, and
o0
(T+x), = 3 @, 4%, x€ll, nx0,
¥=0
o0
(Tx), = > @p 3%, «T€l, —oco<n<oo.
k=—00

The spectra of 7+ and 7' will be denoted by ¢+ and by o.

ReMaRrk. Obviously we could have defined 7'+ and 7' as operators on
other Banach spaces, for example the spaces I; and [/, of p-summable
sequences, p1, but it may be shown that this would not affect the
spectra ot and o, as long as (1.2) holds.

1.2. The principal theorem of O. Toeplitz concerns the spectrum ¢ of 7'.
Imposing the condition on f(z) that it be regular in an annulus containing
the unit circle |2|=1 in its interior (an assumption which of course im-
plies (1.2)) he proved [7] that

(1.3) o={A] A=Ff(, 0= 0= 2x}.
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It was twenty years before the unneccessarily strong hypothesis of
Toeplitz was weakened to yield (1.3) assuming only (1.2). This was done
by N. Wiener [9], the assertion (1.3) being equivalent to Wiener’s
Tauberian theorem for trigonometric series.

Approximately between the dates of these two theorems G. Szego
created a theory concerning the finite Toeplitz matrices 7'(n) for the
important special case when they are Hermitean, i.e., when

(14) a,=a_, »=0,1,..., or f(z) realfor |2] = 1.

His principal result concerning the eigenvalues 1,; is valid under the
assumptions (1.2) and (1.4) but the reader is referred to [3] for weaker
conditions replacing (1.2) in particular and for further information in
general. G. Szeg6’s theorem asserts that

n
(19)  lim — 3 0y(h) = @00 a 5 S S B,
n—>co i=

where @, ,() is the characteristic function of the interval [a,b] on the
real line and p is Lebesgue measure. The eigenvalues 1,; are all real
since 7T'(n) is Hermitean. The set which they “fill in”’, according to (1.5)
is the set of values assumed by f(e®) and equation (1.5) also tells us at
what rate this set is filled in. According to (1.3) which is valid by Wie-
ner’s theorem we know that this set is . Hence it is seen that a (very
weak) form of (1.5) may be expressed as

(1.6) B=g¢.

1.3. Two recent extensions of Szegd’s theory are important from our
point of view. The first one is due to M. Kac [4]. The method by which
Szeg6 obtained (1.5) depends in an essential way on the Hermitean
character of T'(n). M. Kac showed by methods from probability theory
that the following version of equation (1.5) is true, depending only on
the assumption (1.2), not (1.4). This is

n n

(L7) lim 5 4,2 = (2)t | (f@P 40,

n—s>co M+ 10
-7

for every p=0,1,2,... It should be noted that (1.7) implies (1.5) only
if (1.4) is assumed. In that case the 4,; as well as f(e?) are real and the
Weierstrass approximation theorem permits the approximation of cha-
racteristic functions by polynomials. This fails, however, without (1.4),
and no statement like (1.6) concerning B seems to follow from (1.7).
Szegd’s theorem (1.5) is capable of many refinements. One extension
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of it concerning the asymptotic behavior of the largest eigenvalue 1,
as 7 — oo is due to H. Widom [8]. While the exact form of his result is
not of interest here it is important that he developed a method, based on
an idea of M. Kac [5], which is also applicable in the non-Hermitean case.
Our results depend in a crucial way on this method, which will be out-
lined in Section 4.

1.4. The results concerning the spectrum ¢+ of T'+ are quite recent.
They were obtained independently by M. G. Krein [6], and by A. Calde-
ron, F. Spitzer and H. Widom [2]. The only assumption concerning
J(z) is again that condition (1.2) holds. Then the set of values assumed by
f(z) when |z|=1 is a closed curve and its winding number (index) about
the origin is defined, provided that the origin does not lie on the curve, by

2n
8) L) = @iy {dylogf(e) = (2m)farg SO
0

Then I(f—41) is the index of the function f(z)—2 or, equivalently, the
winding number of the curve which is the image of |z| =1 under f(z) about
the point 1. If f(z) =4 for some z with |2| =1, we shall say that I(f—2)+0
without further defining it. In these terms the spectrum of 7'+ as a
bounded linear operator on I, (or on I}, p=1) is described by

(1.9) ot = {4 | I(f-2) + 0}.

In the special case when 7'+ is Hermitean, i.e., when (1.4) holds in
addition to (1.2), the image of |2|=1 under f(z) is a closed bounded
subinterval of the real line and by (1.3), (1.6), and (1.9) we have

(1.10) B=o¢t=9¢.

1.5. Now it is possible to state the results of this paper. Briefly, we
have found the analogue of equation (1.10) for the general case of not
necessarily Hermitean Toeplitz matrices, but under a much more restric-
tive condition than (1.2). We have considered only Laurent polynomials,
i.e., functions f(z) of the form

(1.11) f)=Xaz2, a, =0 for v<—k<-1 and »>h21,
a_; *0,a,+0.

Otherwise the coefficents a, are arbitrary complex numbers.
Under this hypothesis we shall find several equivalent characteriza-
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tions of the set B. As for equation (1.10), a simple calculation quickly
shows that it cannot hold in general. For example in the case when

J(2) =a_2 +a,2,

the set o is the boundary of an ellipse, o+ the interior with the boundary,
whereas B is a line segment in the interior of o*.

More precisely, one soon becomes convinced that in general o has
nothing and should have nothing to do with the set B, as the matrices
T(n) approach 7'+ rather than 7. On the other hand o+ is much too
large even though (as we shall show) it always contains the set B. The
reason for that is quite simple; there is (at least) one quite obvious way
of forming equivalence classes of functions f(z) such that two functions
in the same class have the same spectra o, but different spectra o+.

We say that two functions f(z) and g(z), both of the form (1.11), are
equivalent, or f ~g, if there is a number r >0, such that g(2)=f(rz). If

00 = fra), f&) =3 a2 g&)=3 @r)e, >0,

v=—00 y=—00
we write .
T+=T+=(ai_j), 'l/,j=0,1,2,...,
T = T} = (a,_;r"7), i, =012,...,
ot = spectrum of 7'+,
a*(r) = spectrum of 7'}, o*t(1) = o*.
We further define the set
(1.12) A =)o),
>0

associated with every f(z) of the form (1.11). (It will be shown later
that 4 is not the empty set.)
It is easily seen that f(z) and g(z)=f(rz) determine finite Toeplitz

matrices with the same spectra. Indeed, let
T(n) = (a;-j), T,(n) = (a;_;r"), ,j=01,...,n.
Then T(n) = R-n) T(n) B(r)

where R(n) is the n+1 by n+1 diagonal matrix with R(n);=r-%,
1=0,1,...,n. The spectrum o, is of course left invariant by this sim-
ilarity transformation.

In view of this equivalence it is not surprising to find that the set A
plays a more important role than o+, and indeed we shall prove that

A=2B8.

2%
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However the set A4 is difficult to work with and we shall show that it is
the same set as a set C' to be defined now. Given f(z) of the form (1.11)
we define

(1.13) Q(A;2) = 2¥[f(z)—1] .

Thus for each complex number 4, the polynomial Q(4; z) in z is of degree
k+h. We denote the moduli of its zeros, counted several times, if neces-
sary, according to their multiplicity, by «,(4), 1=1,2,...,k+h. It is
assumed that these moduli are arranged in such a way that

0 < oy(d) £ oxo(d) = ... S o ().
The set C is now defined as
(1.14) O = (4] ad) = xpaa(®)} -
This suffices to state our main result.

THEOREM 1. Let f(z) be of the form (1.11), and let A, B, C be the sets
determined by f in accordance with equations (1.12), (1.1), and (1.14). Then

(1.15) A=B=0C.

Section 2 consists of a simple proof, based on Rouché’s Theorem,
that 4 =C. In Section 3 we obtain our (regrettably meagre) results con-
cerning the geometry of the set C. It is shown to be non-empty, and to
possess no isolated points. It is of course compact, and locally it consists
of analytic arcs, so that it is one-dimensional. However, we do not even
know whether C is connected. Section 4 is devoted to the method of
Widom, which gives an elegant way of deciding whether a complex
number A is in ¢, by examining the zeros of @(4; z). In Section 5 Widom’s
method is used to show that C =B and in Section 6 to show that B<C.
That will complete the proof of Theorem 1.

Section 7 is devoted to the interpretation of our result in the Hermi-
tean case and to the explicit description of the set 4 =B=C for still
another simple class of Laurent polynomials.

In the last section, Section 8, we use the theorem of M. Kac repre-
sented by equation (1.7) to study the largest eigenvalue of T'(n). We let

(1.16) L, = max|1,,],
0sisn
and obtain
THEOREM 2. Let f(2) be of the form (1.11). Then
n 1/n
(1.17) Tm |(@n) S [fe)]*d8| < limL, < Bim L, < min max |f(re?)] .
n—»00 ~ n—>00 n->00 r>0 056<=2n




THE TOEPLITZ MATRICES OF AN ARBITRARY LAURENT POLYNOMIAL 21

We shall exhibit several classes of Laurent polynomials f(z) for which
the inequalities in (1.17) all become equalities. This is, however, not
always the case. A counterexample has been constructed by W. Sten-
berg.

The authors wish to express their gratitude to the Referee for correc-
tions and improvements.

2. Proof of A=C.

We have f(z) given by (1.11) and the sets A and C defined by (1.12)
and (1.14). The equality of 4 and C depends on the following well-
known fact from function theory.

LemumaA 2.1. If the Laurent polynomial
h
PR)y=Xc¢c?, ¢ +0, c;=*0,
y=—k

has no zeros on the circle |z| =r (r>0), and if N(r) is the number of zeros
inside the circle |z| =r, then

2n
Pl
(2mi)- 43 ® 1 = (2mi) Sda log P(re®) = N(r)—k .
P() )
|z|=7r
This is true because the contour integral above represents the number

of zeros minus the number of poles of P(z) in the region |z|<r.
Now because of (1.9) we have 1€ 4 if and only if for every r > 0 either

f)—4 =0 forsome ¢ with |{| =7,

or
2n

I[f(re)— 2] = (2n8)- S d,log[f(re®)—2] + 0.
.0

We may apply Lemma 2.1 to
P@) = f2)-4,

denoting by N,(r) the number of zeros of f(z)—4, and hence of Q(1; z),
in |z| <r. It follows that A consists of those points A such that for every
r> 0 exactly one of the following statements holds:

1) Q(A; 2)=0 for some { with |¢|=r,
2) the statement 1) is false but N,(r) =+ k.

From this description of A we easily obtain

Lemma 2.2. A=C.
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3. Properties of C.

Let g and o, be two different simple zeros of @(4y; z). The equation
Q(4;2)=0 will then, in a sufficiently small neighbourhood w, of 4,
determine two analytic functions g(4) and ¢(4) such that ¢(4,) =g, and
a(dy) =0,

Lemma 3.1. If o(A)[o(A)=7y is constant in w,, then y is a d* root of

unity, where
=gecd.{r | a, #+ 0}.

Proor. From Q(1; 0(1))=0 and Q(4; yo(1)) =0 for Acw, it follows that

h
r7*Q(%; yo(2)) - Q(2; 0(2)) = Zkav()'”—l)v(l)"*' =0

y=—

for all Aew,. Since ¢(1) cannot be a constant this implies
> =1 forall »suchthata, &0

and, thus, the statement.
Let «,(4), t=1,2,...,k+h, be the functions defined in Section 1.5.

Lemma 3.2.
lima,(d) =0 and limag,,(A) = .
A—>00 A—>00

Proor. The zeros of Q(4; z) are for A3+0 those of

A12Ef(2) — 2F .

Let ¢>0 be given. Let o<1/l .

|2|=¢

For |A| > m we then have
[A12Ef(z)| < |2¥| for 2| = €.

Hence by Rouché’s theorem Q(4; z) has exactly k zeros inside the circle
|2| =&, which proves the first part of the lemma. The second part is
proved in an analogous way by considering the polynomial z*+¥@(4; 2-1).

CoroLLARY 3.2. C 18 not empty.

Proor. Consider the continuous function v(A)=o0/x;,;. Since
lim,_, (A1) =0 there is a 4, such that v(4,) 2 »(4) for all . We will prove

that 2, eC, thatis, o(4,)=1.

It is a well-known result from the theory of algebraic functions that there
exist a positive integer m and a number é > 0 such that for
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lew=1{]| |A-4] < é}
the zeros of @(1; z) are described by k-+ % analytic functions

(3.2) 7)o Teanld)

defined in w,={t| || <dé/™}, where ¢ is a uniformisation parameter,
whose connection with 2 is given by

}'_11 = tm .
Let the indices in (3.2) be chosen so that
[T(0) = ... = |%(0)] = [7(0)] = ... = |7ea(0)]

Then v(4,) = |7,(0)/7441(0)|. Suppose v(4,)<1. Then we can choose ¢ so
small that
[z < |75(0)]

for tew, and 1<54<k, k+1=<j<k+h. From Lemma 3.1 we conclude
that the analytic function 7,(f)/7).,(f) is not a constant in w,. Hence
by the maximum principle there exists a ¢,cw, so that

Ti(ts)

> v(4,) -
Tp4a(la) !
But if we let A,ew be determined by A,— 4, =t,", we get
14
o) 2 | 915 oy
Tr+1(t2)

which contradicts the definition of 1.
Corollary 3.2 is not, used in the sequel and it follows immediately from
the fact that B<C which will be obtained in Section 6.

Lemma 3.3. C has no isolated points.

Proor. Let 4,eC. Let the positive integer m and the number é > 0 be

chosen so that for
Aew={1] |A-2| < 8}

the zeros of Q(4; 2) are described by k+ % analytic functions
(3.3) T()s « o s Tan()

defined in w,={t| |t| <6/}, where the connection between i and ¢ is
given by
(3.4) A=y = tm.

For any tew,, let the numbers &x,(f),...,&;.5(f) be the numbers
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[74(t)]5 . . -5 |Tr4n(t)] arranged in non-decreasing order. Then the mapping
given by (3.4) of w, onto w maps the set

I'={t]| tew, x) = &)}

onto the set wnC. Hence we have to prove, that I' contains a point
different from 0.
Let the functions (3.3) be arranged and p, ¢ chosen such that

(0] S .. S [Tuep(O) < [Thopia(O)] = .. = [744g(O)]
< |7k+q+1(0)l é cee = ITk-l-h(O)I ’
1=sp=sk;1l

1T )] < 74,0 < |74(8)]

for tew, and 4, Sk—p, k—p<iySk+q, k+g<i,.

Let £, 0 be a fixed point in w,. Let 7,(f), 7,(t) be two functions from
(3.3) such that |7,(¢;)| =a&y(f;) and |7;(¢))| = &y41(¢;). Then zy(f) and 7,(t)
must be two of the functions 7;_,.,(f), . . ., 7,(¢). Hence

k.

IA
IIA

q
Let 6 be so small that

w0 _

11(0)
Since 7,(t)/7;(t) is an analytic function in w,, there certainly exists a
t,+ 0 in w, so that
2 ! 7i(ly) =1

Tj(tz)

Now either |7;(f,)| < &, (f2) or |7,(ts)] = &g11(ts). Suppose
[Ti(te)| = I7;(ta)] S oqlty) -
Consider the real valued function
Bt) = |7(t)] — 3(&ult) +&pa(®), tEw;.
B(t) is continuous, f(t;) =0, B(t,) <0. Consequently there exists a ¢;=0
in w, such that §(f;) =0. But from
ITjts)] = 3(5(ts) + Kpa(ts))

&k(ta) = &kﬂ(ts) ’
which means that t;eI'. If |7,(2,)| = x;.4(f,) the proof goes in an analogous
way.

follows

REMARK. A more detailed analysis of the preceding proof will reveal
that if w is sufficiently small, the set wnC actually consists of a finite
number of analytic arcs going from 4, to the boundary of w.
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4. Widom’s determinant.

Our first lemma may be obtained by obvious modifications (necessary
because Widom treats only the Hermitean case) of the steps leading to
equation (2.11) in [8]. It gives a necessary and sufficient condition for a
complex number to be in ¢,, that is, to be an eigenvalue of 7'(n), in terms
of the polynomial @(4; 2).

LemMma 4.1. A€, if and only if A is a zero of the polynomial formed by
the k by k determinant

dn+p+1 q
det ([ z ]

S — 0= <k-1.
dzn+P+1 Q(A; 2) z=0) ’ =P 9=

Let b,=b,(A) be determined by

1 [+
— =357
Q(2; 2) vgo
Then . 1 dn+p+l e
mP T rpt 1) [dz"“’*l Q(; z)]z-O’

and Lemma 4.1 can be stated as follows.

Levmma 4.2. A€o, if and only if A is a zero of the polynomial
R,(3) = dot(bpipgu(®), 1Sp ask.

By the same method which Widom uses to express this determinant in
terms of the zeros of Q(4; z) one directly obtains the following result.

Lemma 4.3. If Q(4; 2) has only simple zeros o;=044), 1=1,2,...,k+h,
then

n+k+1
E@W=k3 (o) (Me-e)) .
SeM \ieS 1e8
jeS
where k,, only depends on n (k, + 0), where the summation extends over the
collection M of all subsets S of cardinality h of the set {1,2,...,k+h}, and

where 8={1,2, ...,k+h}—8.
This result is the basis for the proof that B=C.

5. Proof of C<B.

Let w={1] |A—4y| <8} be an arbitrary circular disc in the A-plane.
First we prove
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Lemma 5.1. If ged.{v| a,+0}=1, there exists a l,ew such that no
pair of zeros of Q(A,; z) have the same absolute value.

Proor. Without loss of generality we may assume & so small that we
can use the setup from the proof of Lemma 3.3.

Let 7,(t), 7;(t), i +j, be an arbitrary pair of functions from (3.3). Lemma
3.1 implies that the analytic function 7,(¢)/7;(t) is not a constant in w,.
Hence (at least if é is small) the set

Dy = {t I t€wy, |T,(t)] = |"j(t)|}

is either empty or consists of a finite number of analytic arcs. The same
statement is then true for the set
k+h

D =_U D,
%,J=1
[Ed)

and it is consequently possible to find a ¢,€ w, —D. The point 1, =244+¢™
is a point in w having the property stated in the lemma.

Levma 5.1A. If g.ed.{v| a,+0}=d> 1 there exists a A € w such that
at this point we have

K = ... =(xd<“d+1= “ee =a2d< P <(xk_d+1= e = Kp

<0£k+1= “ee =“k+d< oo <0¢k+h__d+1= cee = Kpyp

Proor. Apply Lemma 5.1 to the polynomial ,(4; x) determined by
Q(; 2)=01(; 2%).

Let 4,€C and let Q(4,; 2) be without multiple zeros. We can then find
a 6>0 such that the zeros of Q(4;2) in w={1| |A—1,| <} form k+hA
analytic functions

(5.1) 01(4); - - - s Qp+a(4)

As in Lemma 4.3, let M be the collection of all subsets of cardinality A
from the set {1,2, ...,k +h}. Consider for every Se M the analytic function

ne Js®) = TL e

LumMa 5.2. There exists a Ay € onC and two sets Sge M, S,€ M, Sy+8,,

such that
k+h

1) feta)l = fs,(o)l = TT a5(A),
J=k+1
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Fsa(o) " fis(Ao)

2
) oo T Fold)

Jor all Se M satisfying S+ S, and

k+h

Ifs(3o)l = TT oj(o) -
j=k+1

f5,(30) + Fs(A)

3 Fe0) T Fstio)

Jor all Se M satisfying S+ S, and

k+h

sl =TT %4(o) -
J=k+1

Proor. Let N(1) be the number of indices ¢ such that |g,(4)| = ax.(4).
Let

¢ = min N(1).
AeanNC
Evidently ¢=2. Let 4,€ wnC be such that N(4,)=¢. Without loss of
generality we can assume the indices in (5.1) to be such that
(5.2) louA)l = ... = lop(P2)l < lepra(@a)l = - .. = lop+g(Aa)]
< [Qp+q+1(}'2)l S .0 S oAl
where p+1<k=<p+q—1. Now let §,>0 be so small that

wy={A] [A=2y| < éy} C @

le:, (M) < lesy(D)] < logy(A)]
Aew,y,, 4 =P, P<izg=p+tq, p+q<is.
Then N(1)=gq for all A € w,nC and if

k+h
Ifs) =TI «;(4)  forsome Aew,nC,

J=k+1

and

for

then
{p+q+1,... . k+h} <=8 < {p+1,...,k+h}.

Let us first prove the lemma in the case, where
ged{r| a +0}=1.

From Lemma 5.1 it then follows that there is a 13w, such that no pair
of zeros of @(4,; z) have the same absolute value. Without loss of gen-
erality we can assume the indices in (5.1) to be such that besides (5.2) also

)| < ... < A
holds. Now put lep+2(2s)l lop-+q(4s)]

Sy = {k+1,...,k+h},
8 = {p+1,....p+(p+g—k),p+q+1, p+q+2,....k+h}.
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Then
kt+h

(5.3) s = 175, =.1;[1a,(/1) forall Aew,nC.
J=k+

If SeM satisfies S+8, and {p+q+1,...,k+h}=S<{p+1,...,k+h},
then

Ta®)  fsth)

Fsold)  fsA)’

because otherwise we would have

(50) 2o,

(5.4)

13

or
T _ Vsol0)| _
1@ |~ s |

which contradicts |fg(43)| < |fg,(45)]. In an analogous way we prove that
if SeM satisfies S48, and {p+q+1,...,k+h}cS<{p+1,...,k+h},
then

5, (4 s(A
5.5) Is®  Tsh)
Fs,(2)  fs(A)
From (5.3), (5.4), (5.5) and Lemma 3.3 follows the existence of a point
2o € wgnC with the properties listed in Lemma 5.2.—In the case where

ged.{r | a 0} >1

the proof of Lemma 5.2 goes in an analogous way by application of Lemma
5.1A.

Consider an entire function of the type
P(z) = 3 A%,
i=1

where v22; A;+0fori=1,2,...,v; B;+B; fori+j, 1,j=1,2,...,».
LeMMA 5.3. D(z) has at least one zero.

Proor. @(z) is clearly an entire function of order one. If @(xr) has no
zeros, then by Hadamards factorization theorem there exists a first
degree polynomial ax + § such that

D(x) = P,

But this implies B;=« for ¢=1,2,...v in contradiction to the assump-
tions of the lemma.
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Lremma 5.4. Let 4yeC, >0 be given. Let Q(Ay; z) be without multiple
zeros. Then o, has points in common with

0= (] =14l < 9)
Jor infinitely many values of n.

Proor. Without loss of generality we may assume & so small that the
zeros of Q(; 2z) in w form k+ % analytic functions

01(2); - - -, 0r+(4) 5

where g,(1) % ¢;(4) for ¢+j and Aew. From Lemma 5.2 it is furthermore
seen that we can assume without loss of generality that 1, has the prop-
erties 1), 2), 3) listed in Lemma 5.2. According to Lemma 4.2 and Lemma
4.3 we have to prove that the analytic functions

J=k+1

k+h -n n+k+1 -
D) = ( T 0) " 3 (TLetd) (g(e,-w—e,-(z))>

j SeM \ieS
jes

have a zero in w for infinitely many values of n.

We introduce o ]_1

Bs = fslho) [jg (4

and 1

gs(A) = fs(A)k+1 Hs(ez-(l)—ej(l))

jeS
]ﬂ
Since |Bg| <1 for all Se M, we can determine a subsequence {n'} of the
positive integers such that

Then

A
D) = 3 gs(h) fs® US( )
SeM S(AO)

lim ﬁs ' = bs
n'—>00

exists for all Se M. We will use Rouché’s theorem and will compare

D, (A
n(4) to F,(3) = &((A—Ap)n),

Fis (o)
Fs(o) ”] '

where

D(@) = 3. gslo)bs exp[
SeM

Since
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k+h
0 i Ifs(o)l < II (%)

j=k+1
lbs| = k+h

L if |fs(Ro)l = TT o;(4)
J=k+1

and since 4, has the properties 1), 2), 3) listed in Lemma 5.2, @(z) is an
entire function of the type considered in Lemma 5.3. Hence there exists
a number z, so that @(z,)=0. Evidently @(x) cannot be a constant, and
it is consequently possible to find two numbers o >0 and m >0 such

that
D) >m  for |wx—xy =p.

Let 4, be determined by 1, —A,=x,/n. Let

K, = {A | 1A=4, =2
n

Then

(5.6) |F, () >m for A€ekK,,

(6.7) F,(2,) =0,

(5.8) [A=2g] £ (%ol +0)/n =@Qn  for AeK,.

Let N, be determined so that K,<w for n>N,. For n>N, we can
consider

8, = max|D,(4)—F,(2)|

AeKp
folt Fa()
= max SEM{"’S(” Ps" [fs(zo)] ~ 9slko) bs exp [7 7 ) “‘“"H .

Since fg(4) is analytic and +0 for Aew, we may write
1) fs®) [J;:q(lo) i i
(o] = o2 [ rosgg] = exo [ 4= + moi-s0].
where o(A—4,)/(A—2) > 0 as A > 4,. From (5.8) we get

fs (%) p [ s (Ao)

P [fs(zo) Fs(a)

where O, is a constant independent of § and n. Hence

d, £ Cymax z lgs(A) Bs™ expo(1) — gg(2e) bsl

AeKy SeM

max
ieKy,

(}.—}.o)n] < ex

Q]éCo,

where o(1)=no(A—1,) > 0 uniformly in AeK, as n - oco. It is evident
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that each term in the sum tends to 0 uniformly in ieK
We have therefore

n 88 1 — oo,

limé, =0,
n'—>o0
which together with (5.6) tells us that there exists a number N,> N,
such that
(5.9) [DplA) = Fr(A)| < |Fp(R)]
for 2e K. and n' > N,. Now from (5.9) and (5.7) we conclude by Rouché’s

theorem that D,.(1) has a zero inside K,, for n' > N,. Since K,.<w for
n’' > N,, the proof is complete.

LeEMMmaA 5.5. C<B.

Proor. Lemma 5.4 states that every point of C lies in B with the
possible exception of a finite number of points. This set of exceptional
points consists of those 4 such that @(4,z) has multiple zeros. If such a
point A were in C but not in B, then, in view of the fact that both B and
C are closed, it would be an isolated point of C. By Lemma 3.3 this is
impossible, so that C < B.

6. Proof of B<C.
We now complete the proof of Theorem 1, equation (1.15), by estab-

lishing
Lemma 6.1. B<C.
Proor. We will show this by proving that
A¢C = ¢ B.

Thus let 1,¢C. Let the positive integer m and the number ¢ > 0 be chosen
so that for lew={A| |A—Ay| <6} the zeros of @(4;2) are described by
k+h analytic functions

(6.1) T1(t)s + - +5 Than(t)

defined in w,={t| |¢| <d¥/™}, where the connection between A and ¢ is

given by Ady =t

Since 1,¢C we can choose 6 and the indices in (6.1) in such a way that
ITa®)[ 7] < o < 1

for i<k, k+1<j and all tew,. Consider the analytic functions
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1
F.(¢) = ’,;“Rn(l(t)) [Th41(t) - « - Tpyn(t)]-HE+D l_g (Ti(t) - Tj(t)) s
" jeB
where Sy={k+1,...,k+h} and R, () is the polynomial defined in Lemma
4.2, Let r> 0 be chosen so that the circle

K= {]1A-2| =r}
is contained in w and such that Q(4; z) has no multiple zeros for Ae K. Let
Ky ={t] [t] = r/m}.

For te K, we then have (cf. Lemma 4.3.)

k1 -1
t€
Fot)y=1+ 3 — Il (=) | II(zi—7p)
SeM | Tgt1-+ - Tkh 1eS ieSp
S+8o jeS jeSo

from which we get
-1

|Fat)—1] < g"**+*maxy 3 || T (v;—7)| Tl (zi—17)
teKy |SeM ieS teSo
S+So | Lje8 jeSo

for teK,. Hence

limF, () =1  uniformly for (e K,.

n—>00

By Rouché’s theorem we conclude that there exists an N such that F,(t)
has no zeros inside K, for n>N. Since

1
i [Tesat) - - - rk+,,(t)]-<"+'=+”'_go(w)— () + 0
7eSo

for all tew,, we can furthermore conclude that R,(A(f)) has no zeros
inside K, for n>N. Hence R, (1) has no zeros inside K for n >N, which
by Lemma 4.2 means that ¢, has no points inside K for n>2N. This
implies 4o¢ B, and the proof is complete.

7. Special cases.
The main theorem of Section 1.5, which has now been proved, asserts
in the Hermitean case (cf. (1.6)) that

(7.1) A=B=C=o.
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Analytically this statement about the zeros of Q(1; z) may be expressed
as follows: If
k
fR)=3a7, a=a, »=01,..,k a,%0,
v=—k
then Q(1,z)=2*f(z)—A] has the property «,(1)=o04 (1) if and only if
f(e®%) =2 for some 0= 0<2n. (For the definition of (1) and «,.,(1) see

Section 1.5).
A direct proof of this fact follows from Lemma 2.2. We have

A=Ne=cC.

r>0

However, in the Hermitean case,
of =a={A]| f(e®) =4, 0 <0 < 2a},

so that C <o. On the other hand, suppose that Acg. Then f(z)—1 is a
Hermitean Laurent polynomial. Therefore, whenever g is a zero, (g)-! is
a zero of the same multiplicity, so that the zeros which are not of modulus
one occur in pairs, one inside |2|=1 and one outside. But A€o implies
that f(oy) =2 for some g, with |go| = 1. Hence either g, is a multiple zero
or there must be another zero on |2|=1. In any case x(1)= ;. ,() so

that 1eC.
Unfortunately it does not seem easy to give a simple geometric descrip-
tion of C in the general non-Hermitean case. We have only found this

possible, when f(z) is of the form
fR) =a_jz*+ag+ayzh, k21, h21 a,+0a,+0.

By translation of the 4 plane the problem of characterizing C in this case
can be reduced to the case when a,=0, and by further rotation and
change of scale to the case when

(7.2) fR)=2F%+2", k21, k21, (kh)=1.

The assumption that k and % are relatively prime in (7.2) will enable us
to state the result in a simple form. But it involves no loss of generality
since C is easily seen to remain unchanged if k¥ and 4 are both multiplied

by the same positive integer.
If f(2) is given by (7.2) the set C

C={] ald) = asa(A)}

turns out to be the star-shaped curve

Math. Scand. 8. — 3
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C={]| 1=e},
where ¢ is any (h + k)th root of unity and
0 £ 7 < (h+k)h-NMOth fp—kitik) = R

The proof of this result, which we shall not give here, depends on the
careful analysis of the zeros of trinomials of the form 14 az* 4 2k+%,
carried out by M. Biernacki [1].

In the case when f(z) is of the form (7.2), it is also possible to study C
by finding the characteristic polynomials whose zeros form o, explicity.
It may be shown that in this case, but probably not in general, we have
¢, <C for each n.

Finally it was observed that a spectral radius formula gives R in the
present case just as in the Hermitean case. When f(z) is Hermitean,
it is obvious that

@) { () o

i 1

1/n

M = max|i] = im
reC n—>00

When f(z) is of the form (7.2), let
1/n

(@)1 { f7(e®) do

-—r

(7.3) M, = lim

n—>oo

This approach is suggested by the theorem of M. Kac expressed by
equation (1.7). Since all terms of the sequence in (7.3) are zero except
when 7 is a multiple of k+ &, and since for n=p(k+ %) we have

)t { oy ao = (PR,

—7

it follows that

M, =lim(

p—>0

= R = max|4|.

pk + ph) 1/(pk+ph)
AeC

pk
Again in the case when f(z) is of the form (7.2), let

M, = min max |f(re®)| .
r>0 0<0s2x

It is easy to evaluate M, and one obtains

M, = R = max]|]|.
ieC
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8. The largest eigenvalue.

The calculations in the last section for the special example f(z)=
a_z %+ ay+a,2" led us to conjecture Theorem 2, as stated at the end of
Section 1. Thus we let f(z) be of the form (1.11), and let

Ln = max {Mnols M’nll’ e Mnnl} ’

where the An; are the points of the spectrum o, of 7'(n). By the triangle
inequality we have, for every p=1,2, ...,

1/p
< L

n o

1 n
(8.1) Mop) = |—= 2 i

n+15

Equation (1.7) may be written in the form

n 1/p
(5:2) lim M,(p) = | @) { [/e)P a0
Combined, (8.1) and (8.2) give
® 1/p
@o 2\ [ferds] slmL, p=123,...,

which is stronger than and therefore proves the first inequality of
Theorem 2, equation (1.17).
It only remains to prove the last inequality of Theorem 2. Let

TmL, =R.

n—>o00

It follows from the definition of B that there exists a point 4 in B such
that |A]=R. Since B=C=A4 we have 1in C and in 4. The fact that 1
is in 4 means that the winding number of the image of |z|=1 under
f(rz) about 2 is different from zero for every r> 0, or

I[f(re®)—A] + 0 forevery r > 0.

This implies that
M(r) = max |f(re®)]| = R.

0=6=<2n

It is further known, from Hadamard’s three circle theorem, that M(r)
has a unique minimum at some r > 0, so that we can write

min M(r) = im L, .
r>0 n—>»00

The proof of Theorem 2 is now complete.

8*
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As already mentioned, it is not true for every Laurent polynomial

3
fe) =3 kaﬂ"
that

Ed 1/n

(2m)1 S [f(e®)]™ db = mil(;l m?x |f (re®®)| .

(8.3) Tim

n—>o00

When equation (8.3) is satisfied, we have only equality signs in Theorem 2.
One case when this is obviously true, is when f(z) is analytic, i.e., when
k=0. We have excluded this case so far, being trivial for our theory
(T'(n) is then a triangular matrix). But (8.3) obviously holds if the
minimization on r is taken over r > 0, both sides of (8.3) being then equal
to £(0).

We conclude by showing that (8.3) holds, and thus Theorem 2 with
equality signs, for three special classes of Laurent polynomials.

a) f(@ =a_z%+a2®, k21, h21, a; +0,a,+0.

In this case both sides of (8.3) may be calculated explicitly, one by
Stirling’s formula, the other by solving the extremum problems, just as
was indicated in Section 7.

k
b) fR)=>a2, a,=d, »=01,...,k a +0.
vk
Here we know that f(e®) is a continuous real valued function for
—n< 0 =<z and therefore

n i/n

(84) Tm (27«'.)"1S [f ()] d0

n—>o0

n 1/(2n)

= lim
n—>oo

(22) { f(eP a0

= max|f(e”)],
0

which combined with (1.17) gives
max |f(e®)| £ min max|f(re¥®)]
/] r>0 0
and hence

(8.5) max |f(e?)| = min max|f(re®)| .
0 r>0 [

Equations (8.4) and (8.5) imply that (8.3) holds.
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c) f(z) = zaz with k=21, 21

a_,+0,a,+0,a,20for ~k<v=<h.
It is clear that in this case

M(r) = maxlf(re“’)[ = 2 a,r

y=—I

It is also clear that M(r) has a unique minimum, for r=ry> 0, where

M'(ry) = z va,ry "t = 0.

v=—k

Now let A

9() = [f(ro)]7 f(re2) = chyz”-

y=—

The function ¢(z) has the properties

I3 I3
(8.6) gl) =3¢, =1, ¢ 20, Z =
y=—k y=—Fk
(8.7) min max |g(re®)| = ming(r) = g(1).
r>0 8 r>0

A great deal is known about functions g(z) satisfying (8.6) from proba-
bility theory, since g(z) may be thought of as the generating function of a
random variable, taking the values —k, —k+1,...,h with probabilities
¢,, —k=v<h. Since this random variable has mean zero and finite

variance all the estimates connected with the central limit theorem
apply, and it can easily be shown that

n

(2m)1 S [g(e)]" 0

-n

1n
(8.8) lim =1.

n—»>o0

Much more is true, viz.

LN
<2n)-12 S[g(ew]"dewn-*(zvz ) nt as m— oo,

In any event, (8.7) combined with (8.8) show that g(z) satisfies equa-
tion (8.3). The original function f(z) also satisfies (8.3) since

S lg(e®)]" 46 = Lf(ro)]‘"S (e do,
and min max |g(re®)| = [f(ro)]™ min max|f(re®)] .
r>0 [} r>0 0
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