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BOUNDARY VALUE PROPERTIES CONNECTED
WITH SOME IMPROPER DIRICHLET INTEGRALS

EBBE THUE POULSEN

1. Introduction.
In connection with boundary value problems for second order uni-

formly elliptic differential operators on a domain 2 several authors
(notably Morrey [1] and Sobolev [3]) have studied spaces of functions
for which the Dirichlet integral

SIVuPdaz:SZ

2

0
* dxy ... dz,

is finite. In particular, it is well known that such functions are locally
square integrable and that they have square integrable boundary values
(in the sense mentioned below) on smooth parts of the boundary o2 of Q.

In the present paper we study the boundary behavior of functions for
which a certain improper Dirichlet integral

ou ou

S > ay(x) ——dx

PN ox; 0x;

is finite. We assume that the quadratic form
F(§,¢) =3 ay(@)§;&;

is positive definite in £2, but not necessarily uniformly. We shall see that
the existence of boundary values depends on whether F(£,£) becomes
semidefinite on 982, and if it does, it is also relevant how fast it degenerates
as we approach the boundary. Most of our results have predecessors in
Visik’s paper [4], but we find our results more complete than his—for
quadratic forms of sufficiently ‘‘uniform” behavior near the boundary
our theorems furnish necessary and sufficient conditions for existence of
boundary values.

The results of the present paper have been used in an investigation of
problems connected with elliptic operators that degenerate on the
boundary. We intend to publish the results in a later paper.
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2. Existence of boundary values.

For simplicity, we shall restrict ourselves to the consideration of plane
parts of the boundary, since the general case of smooth parts of the
boundary can be derived from the plane case by transformations of the
domain (all our theorems are of a local nature). Also, for simplicity, we
assume that the coefficients a;; are continuous in £.

It follows that the quadratic form F(£,£) is uniformly positive definite
on compact subsets K of 2, that is, there exists a constant « =«(K)>0

such that _ _
F(§,¢) =z «|&)?

for all e K and all complex vectors &.
If » is a function whose derivatives (in the sense of distributions)
are again functions, we shall denote its gradient by

<3u u
v = _,...,_).
07, or,

Let M be the space of those functions for which

iz = \ P(vu,v8) do
2

is finite. If £’ is a subdomain of 2 with compact closure in 2, then

SIVuP dr < o
&
for all wueIR, and hence (see for instance Schwartz [2, p. 37])
ue Q) forall uweM.
It is easily seen that It is a Hilbert space under the norm
lletllae = (111112 + B el pacan )t

for k>0, 2'+0, and that all norms of this form (for varying k and Q’)
are equivalent.

Finally, note that it follows from the results of Morrey [1] that the
identity mapping of I into F%((2’) is compact.

Let MO denote the closure in M of the space CF° of infinitely differen-
tiable functions with compact support in 2.

As said above, we shall restrict ourselves to the consideration of plane
boundary pieces which we will assume contained in the plane {x,=0}.
We shall use the following notations:

I’ will denote a domain in £™-1, and we shall define
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I, = I'x{x,=h},

and Iy, =TIx{h<w,<k}.

For convenience, we shall often denote the point x=(x,,...,x,)eE"
by x=(y,z,), where we put y=(xy,...,2,;).

For a function u defined on I, ; we let u, denote the function on I’
defined by u(y) = w(yt), yel, h<tsk.
__Lemma 1. Let I' be a bounded domain in E"', and assume that
I'x{0<z,Za}<Q. Then every ucIN can be changed on a set of measure 0
such that

1) u,e LI for all ueM and 0<h Za.

2) the mapping h — w, is continuous from {0 <h Za} into L*(I) for all

ueM.
3) the mapping u — uy, is compact from MM into F*(I') for all he {0 <h Za}.

Proor. The statements 1) and 3) are essentially contained in Morrey’s
theorems 7.1 and 8.5 in [1]. The proof of 2) is given below as part of the
proof of theorem 2.

TaEorREM 2. Let I' be a bounded domain in E™-1, and assume that
I'x{0<xz,<a} < Q, TI,<aR.
Assume also that there exists a function @(t), continuous and positive on
the interval {0 <t <a} with a
¢ dit
o<
4 9(t)

F(&.6) 2 plz,) |62 forall zel,,.

Then it is possible to define uye LHI') in such a way that

1) the mapping h — u,, 18 continuous from {0 <h=a} into L*I") for all
ue.

2) the mapping w-—>u, 18 compact from M into L) for all
he{0Zh=a}.

3) uy=0 for all ucINO.

such that

Proor. First note that if 2’ is a subdomain of 2 with compact closure
Q' < Q, then it follows by regularisation (see Schwartz [2, p. 21]) that all
functions in M can be approximated by infinitely differentiable functions
with respect to the norm

t
[S (F(Vu,v%)+ [ul“‘)dx} )
174
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1) and 2). Now, let ve(C®(2), and assume 0<{, <t,<a. Then we have

ta

C o
oyt —vlyt) = | - @ dt for yer,

121 n

123 173 2

dt 0
gt ~ot )l = § 5§ o) | |
171 ty n

¢dt ¢ i
< S 0 5 F(vo,v9) dt

121 21
or, integrating with respect to y:
7]

dt
1o — 01 sy < S il S F(V0,9%) dx .
P elt),
1 1,8

It follows by continuity that this inequality holds for all eI, and a
fortiori that

ty
*) I, =By < § e for wem.
t

()
If we denote the mapping u — u, of M into L%(I") by ¥, we see that

¢ dt
”gjta_gltlllz - S(‘P—(B for 0<t <t =2a.

t

Consequently ¥, converges uniformly to a limit ¥, for £ — 0, and since
all ¥, with ¢ > 0 are compact, the statements 1) and 2) follow.

As to 3), it is obvious that u,=0 for all ueCg’, and since ¥, is con-
tinuous, we have u,=0 for all % in the closure I° of C7.

When the assumptions of theorem 2 are fulfilled, we shall say that the
function € has the boundary values %, on the part I'; of the boundary.
In particular, 3) says that all functions weIR® have boundary values
0 on I'y. It is of obvious interest to know whether the converse holds:
Do functions with boundary values 0 on the whole of 952 belong to 0%

That the answer is affirmative for domains with a smooth boundary
in the case F(£,£)=|£2 is well known (Morrey [1]). His proof does not
carry over to the situation treated here, but as we shall see, the theorem
remains true under very natural assumptions on F. We shall only for-
mulate and prove a local version of the theorem.
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TurorEM 3. Let I' be a bounded domain in E*-1, and assume that
Iy, .8 and I'y<08. Assume further that there exists a function ¢(t),
continuous and positive on the interval {0 <t <a} with

a

S dt
—_— < o
6?’(")
such that _
F(&,8) 2 px,) 6,2 for =zely,
and

ann(x) —S— K'p(xn) fO?‘ T € Fo,a .

Then we have ueIN° for all functions ueIN with the properties
i) u has boundary values 0 on I,
ii) the support S, of u is a compact subset of QU I,

Proor. We shall construct a sequence of functions v,=w,u in IN°
such that v, > u in M. The functions w, will be chosen to be of the form

(@) = py(dist(z,09)) ,
where y,(t) has the properties:

a) v,(t) satisfies a Lipschitz condition on 0 <t < oo}
b) p(t)=0 for t<e¢,,
02y, (1)1 for g, Stk
ye(t)=1 for Kk-1Z¢.

Then w, satisfies a Lipschitz condition too, and since the function
ueI is locally square integrable and has locally square integrable deriv-
atives, the same is true of w,u. By the assumptions on w, and u, however,
w,u has compact support in 2, and it then follows by regularisation that
wiue MO for all k.

Now notice that since » has compact support contained in Quly,
there exists a k, such that

u(x) for zeQ ~ T},
yi(x,)u(x) for xell .,

0,(2) = {
when k£ >k, For such k we have

= |2 = S F(V(1— 0w,V (1—w)8)de = [ +12+ L3,
To, k-1
where
It = S (1— )2 F(Vu, V%) dac ,

I‘o’ k-1
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12 = S 2 F(V (1 —,),7 (1 - ;) do,
To, k1
I3 = S 2 Re (1 — o) TF(Vu,v(1—0)) da .
To, k-1
Since F(&,£) is positive definite, we have the Schwarz inequality:
|F(vu,9(1— ) £ F(Vu,v) F(V (1= 0),V (1 —wy)) .
Therefore,
2[Re (1 — wy)aF(Vu,v (1 —awy))|
< 2[(1 - 0 F(Va, V) [[02F (Y (1 - 0,), ¥ (1- )]}
= (1—wp)?F(Vu,va) + IuI2F(V(1 — ),V (1—wy)),
so that
3 = L+ 12 .

Thus, the theorem will be proved when we establish the existence of a
sequence of functions y, such that

ILr~0 for k—oo

and
L,2->0 for k—>oo.

Now, clearly

I} s S F(Vu,9%) dz -0 for k- oo,

To, k1
while
e (it P )| do
To, k-1

(n)

s | wego|

I'O,k"
k-1
. dw,. |2
< K\ olt) | 2k Smxﬂdy dt
k,—
d‘/’k
< K|l ()‘
(1l ) @ <p(r)

by the inequality (*) above (since u,=0). Introducing the notation
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¢ dv
() =§¢(—T),

our object is to make the integral
k-1

d'Pk 2
§ qo(t)qb(t)’—d—,5 dt

small with the boundary conditions
viler) = 0, P(k~1) = 1.
The minimizing function vy, satisfies the equation
d dwk
—(p)®@t) =) = 0,
dt ("’( 20 4 )

and hence we try y, of the form
vi(t) = Clog®(t) + D,

D(t
yi(t) = Clogﬁli_)l—) +1

or

For C'>0 the equation y,(¢) =0 has exactly one root ¢, and using the
above expression for y, on the interval {¢, <t <k-'} we get

k-1 k-1
d dyy, |2 _ Cc2dt _ D(k1) _
§ v 3] = § e = % o -
since oe,)
8’6 _

Choosing C'=C(k)=Fk-! the theorem follows.

The theorems 2 and 3 together show that if the quadratic form F(&,£)
does not degenerate too fast near the boundary piece in question, then
the functions in I have boundary values, and the functions that have
boundary values 0 are essentially those in R°.

3. Non-existence of boundary values.

We shall see next that if F(&,£) degenerates too fast near 92, then the
functions in 9N do not have boundary values in any reasonable sense,
and, furthermore, the spaces M and M® coincide if this degeneracy takes
place along the whole of 9£2.
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THEOREM 4. Let I'< En-1 be a bounded domain, and assume that

I'x{0<z,<a} =< Q2; TI,<o.

Assume further that there exists a function ¢(t), continuous and positive in
the interval {0 <t <a} with

a

dt
oo = =

0
such that _
F(&,8) z p(x,) |62 for xely,

and
a’nn(x) s K(P(xn) fO’I‘ TE Fo,a M

Then we have weIR0 for every function ue which has compact support
m Qul.

Proor. We construct a sequence v, =w,u of functions in JN° exactly
as in the proof of theorem 3. For sufficiently large & we have

le=velllr = § F71 -y (1 -p0) do
Ty, k-1

2+ 12,

where
I, = S (1= )2 F(Vu,va) dr - 0 for k- oo

To, k1
and

L2 = | WeF(v-y),90-yp)ds.

Po,.k~1
Now, if we define .
o(t) = S dt
@(t)’

t

it follows from (*) in the proof of theorem 1 that

Ity — ey < D) 1ul]?,

and since
llugll < Cllullgz for some C
we have
3y < CDE)|uf3,  for some C,
when

0<t=£ia.

Thus, for sufficiently large k= 2a~! we have
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k-1 k=1

d 2 d 2
12 = | i @| 7 @) | dy de, < KOl § o)00)| 22| a2
or 0 g

Choosing :

(k1)

‘y)k(t) =14 k—l IOgT(tT, € é t é k-1 N
where ¢, is determined by the relation
g 2160 _
I

we get R
I2 2 KClullp-k >0 for k—>oo,

and the proof is completed.
If we consider again the mappings ¥, of M into F*(I), it is clear that
Yu—->0 for t—-0

when
ueCy < MO,

On the other hand, if the coefficients a;; with ¢, j<n—1 do not behave
too badly, for instance if they are bounded, then it follows from theorem 4
that under the assumptions of that theorem there exist functions in R°
for which lim Y + 0

t—>0
(choose, for instance, ve CP(I"), and define wu(x)=wu(y,?)=v(y) for
O<t<e and extend this  to an infinitely differentiable function with
compact support in QuUI). In this case, therefore, we have

limPu =0

t—>0

for all u in the dense subset Cy° of IR, but
limPu + 0

t—>0
for some elements of M?. Consequently, by the principle of uniform
boundedness, there are functions »eIR® for which ¥Yu does not have a
limit for ¢ - 0. Thus, in this case it is impossible to ascribe boundary
values to the functions in I%.
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