ON POSITIVE AND CONTINUOUS EXTENSION OF POSITIVE FUNCTIONALS DEFINED OVER DENSE SUBSPACES

OTTE HUSTAD

Introduction. In this paper we will take up the following problem: Given a real topological vector space with a partial ordering \geqslant , find conditions which are equivalent with the property:

 P_1 : Every positive linear functional defined over some dense subspace has a continuous and positive extension to the whole space.

A necessary conditions is, of course, the property:

P₂: Every continuous and positive linear functional defined over some dense subspace has a positive and continuous extension to the whole space.

In Proposition 7 we prove in a rather general setting that the property P_1 is equivalent with the conjunction of the following two properties:

- P_3 : Every positive linear functional is continuous.
- P_4 : For every $p \ge 0$ and every dense vector subspace F, there exists a $q \in F$, such that $q \ge p$.

As a corollary we obtain the result that if the positive cone has an interior point, then the property P_1 is satisfied. This generalizes a result of Bourbaki [3, p. 46] which asserts that the space of all real continuous functions over a compact space has the property P_1 .

The paper is divided in two parts. In Section 1 we have collected some propositions on topological vector spaces, needed in the sequel. Propositions 1 to 4 give some properties of dense vector subspaces. Proposition 5 is a generalization of a theorem proved in the norm case by Yamabe [6]. Proposition 6, which gives a consistency condition for a system of linear inequalities, was proved in the norm case by K. Fan [4, p. 124]. Our proof follows the same lines as his, but because of weaker assumption, we obtain a corollary which seems to be new. Section 2

Received October 14, 1959.

treats the extension problem. In Proposition 8 we give a characterization of spaces with property P_2 . In Proposition 9 we show that if the positive cone is given by a finite system of linear inequalities, then the property P_1 is satisfied. Proposition 10 shows that for a large number of partial orderings we can find a non-trivial locally convex topology, such that P_1 is satisfied. In Proposition 11 we give some conditions equivalent to property P_4 .

NOTATION. All vector spaces considered will be real vector spaces. Subspaces will always be vector subspaces. If E is a topological vector space (top.v.sp.), then E' will denote the topological dual of E, and E^{Δ} the algebraic dual. If G is a subspace of E^{Δ} , then $\sigma(E,G)$ is the coarsest topology in E which makes every $g \in G$ continuous. If $V \subset E$ then V° denotes the polar set (with respect to G) viz. $\{g \in G : g(x) \leq 1, x \in V\}$. $\mathscr{V}_{E}(0)$ denotes the class of all neighbourhoods of 0 in E. For every $x \in E$, $\hat{x} \in (E^{\Delta})^{\Delta}$ is defined by $\hat{x}(f) = f(x)$. If $A \subset E$, then [A] denotes the vector space generated by A. If $f \in E^{\Delta}$ and $M \subset E$, then f/M denotes the restriction of f to M, and $E = M_1 \oplus M_2$ denotes direct sum. Real numbers are designated by small greek letters, and the set of all real numbers by R.

1. Miscellaneous propositions from topological vector spaces.

PROPOSITION 1. Let E be a locally convex space, and let $\{f_1, \ldots, f_n\} \subset E^{\Delta}$ be given. Then

$$F = \bigcap_{i=1}^{n} f_i^{-1}(0)$$

is a dense subspace of E, if and only if every linear combination

$$f = \sum_{i=1}^{n} \lambda_i f_i \neq 0$$

is discontinuous.

PROOF. (I): Suppose $\overline{F} = E$. Let

$$f = \sum_{i=1}^{n} \lambda_i f_i$$

be given. Then $F \subseteq f^{-1}(0)$, and thus $\overline{f^{-1}(0)} = E$. Therefore, $f \neq 0$ implies that $f^{-1}(0)$ is not closed, and f is discontinuous.

(II): Suppose $\overline{F} \neq E$. Then there exists [2, Chap. II, p. 73] an $f \in E'$ such that $f \neq 0$ and such that

$$f^{-1}(0) \supset \overline{F} \supset F = \bigcap_{i=1}^n f_i^{-1}(0)$$
.

It is known [1, p. 51] that this implies that

$$f = \sum_{i=1}^{n} \lambda_i f_i ,$$

q. e. d.

Proposition 2. Let E be a top.v.sp. with a dense subspace F which is not a hyperplane. Let f be a linear functional over E, such that the restriction of f to every dense subspace is continuous. Then f is continuous.

PROOF. F is equal to the intersection of all hyperplanes $H\supset F$. Hence there exist two dense hyperplanes $H_1 \neq H_2$, such that $M=H_1\cap H_2\supset F$. Since F is dense, so is M. Furthermore $[H_1\cup H_2]=E$. Let f_i be the restriction of f to H_i , i=1,2. According to the hypothesis f_i is continuous in H_i , and will therefore have a continuous and linear extension \bar{f}_i to the whole of E. We have $\bar{f}_1=\bar{f}_2$, for otherwise we can find an $x\in E$ and a $V\in\mathscr{V}_E(0)$, such that $(\bar{f}_1-\bar{f}_2)(y)\neq 0$ for every $y\in x+V$. As $M=H_1\cap H_2$ is dense, there exists an $m\in (x+V)\cap M$, and we get $\bar{f}_1(m)=f_1(m)=f(m)=\bar{f}_2(m)$, a contradiction. From $E=[H_1\cup H_2]$, we obtain that every $x\in E$ can be written in the form $x=h_1+h_2$, $h_i\in H_i$. Hence

$$f(x) \, = f_1(h_1) + f_2(h_2) \, = \bar{f}_1(h_1 + h_2) \, = \bar{f}_1(x) \; .$$

That is $f = \bar{f}_1 = \bar{f}_2$. q. e. d.

The two next propositions show that in the preceding proposition we cannot omit the condition which assures the existence of a dense subspace not being a hyperplane.

Proposition 3. Let E be a locally convex vector space such that all the dense subspaces are hyperplanes.

Then the restriction of a linear functional to a dense subspace will be continuous.

PROOF. Let f be a discontinuous linear functional, and let M be a dense subspace of E. If $M=H=f^{-1}(0)$, there is nothing to prove. Suppose therefore $M \neq H$. From the hypothesis we conclude that there exists a $g \in E^{\Delta}$ such that $M = g^{-1}(0)$. Since $M \cap H$ cannot be a hyperplane, it follows from the hypothesis that $M \cap H$ is not dense. From Proposition 1 it follows that there exist numbers λ , μ such that $\lambda f + \mu g$ is continuous and $\phi = 0$. In particular $\lambda \phi = 0$, since $\phi = 0$ is discontinuous. Now $(\lambda f + \mu g)/M$ is continuous, and as g/M = 0, we have

$$(\lambda f + \mu g)/M = \lambda(f/M)$$
,

proving the continuity of f/M. q.e.d.

Proposition 4. Let E be a locally convex top.v.sp., and suppose that E' has finite codimension n in E^{Δ} , say

$$E^{\Delta} = E' \oplus [h_1] \oplus \ldots \oplus [h_n]$$
.

Let F be a dense subspace of E. Then codim. $F \leq n$.

PROOF. There exists a family $\{f_{\nu}\}_{\Gamma} \subset E^{\Delta}$, such that

$$F = \bigcap_{\gamma \in \Gamma} f_{\gamma}^{-1}(0) .$$

If we cannot find n linearly independent elements in $\{f_{\gamma}\}_{\Gamma}$, we have codim. F < n. Suppose therefore that $\{f_1, \ldots, f_n\} \subset \{f_v\}_{\Gamma}$ are n linearly independent elements. Our assertion will be proved if we can show that $f \in [\{f_1, \ldots, f_n\}]$ for every $f \in \{f_\gamma\}_{\Gamma}$. As

$$f^{-1}(0) \cap \bigcap_{i=1}^{n} f_i^{-1}(0)$$

is dense, the proposition follows from the following

LEMMA. Let E be as in Proposition 4 and let $\{g_1, \ldots, g_{n+1}\} \subset E^{\Delta}$ be such that

$$M = \bigcap_{i=1}^{n+1} g_i^{-1}(0)$$

is dense in E. Then g_1, \ldots, g_{n+1} are linearly dependent.

PROOF. From the hypothesis we get that every g_i can be written in a unique way as

$$g_j = \sum_{i=1}^n \lambda_{j,i} h_i + f_j$$

where $f_j \in E'$. Let g be any linear combination of g_1, \ldots, g_{n+1} , say

$$g = \sum_{j=1}^{n+1} \alpha_j g_j.$$

Thus

$$\begin{split} g &= \sum_{j=1}^{n+1} \alpha_j \left(\sum_{i=1}^n \lambda_{j,i} \, h_i \, + f_j \right) \\ &= \sum_{i=1}^n \left(\sum_{j=1}^{n+1} \alpha_j \, \lambda_{j,i} \right) h_i \, + \, \sum_{j=1}^{n+1} \alpha_j f_j \; . \end{split}$$

Here the system

$$\sum_{j=1}^{n+1} \alpha_j \, \lambda_{j,i} = 0, \qquad i = 1, \ldots, n,$$

will have a non-trivial solution $\alpha_1, \ldots, \alpha_{n+1}$. With this choice of the α 's we get

$$g = \sum_{j=1}^{n+1} \alpha_j g_j = \sum_{j=1}^{n+1} \alpha_j f_j \in E'$$
 .

From the hypothesis it follows that

$$\bigcap_{i=1}^{n+1} g_i^{-1}(0)$$

is dense. By Proposition 1 we conclude that g = 0. q.e.d.

The next proposition has been proved in the norm case by Yamabe [6].

PROPOSITION 5. Let E be a locally convex vector space, let $\{f_1, \ldots, f_n\} \subset E'$ be given, and suppose that K is a convex dense subset of E. Then for every $a \in E$, and every $V \in \mathscr{V}_E(0)$ there exists a $k \in K$ such that $k \in a + V$, and such that

$$f_i(a) = f_i(k), \quad i = 1, ..., n.$$

PROOF. Let $a \in E$ and $V \in \mathscr{V}_{E}(0)$ be given. We can find a set S of seminorms in E, such that S determines the topology in E. We can further find $\{q_{0,1}, \ldots, q_{0,n_0}\} \subset S$ and $\varepsilon > 0$ such that

$$V \supset \{x \in E: q_{0,j}(x) \leq \varepsilon, j = 1, ..., n_0\},$$

and we can find [2, Chap. II, § 5, Proposition 9] for every $i = 1, \ldots, n$, a set $\{q_{i,1}, \ldots, q_{i,n_i}\} \subset S$ and a $\lambda_i > 0$ such that

$$|f_i(x)| \leq \lambda_i \cdot \max\{q_{i,j}(x): j = 1, \ldots, n_i\}.$$

Define

$$q(x) = \max\{q_{i,j}(x): 0 \le i \le n, 1 \le j \le n_i\}.$$

q will be a seminorm, and will define a topology in E, which is coarser than the given topology. Hence K will be dense in (E,q). Define $M = \{x : q(x) = 0\}$. Then E/M is a normed vector space when equipped with the norm $q(\dot{x}) = q(x)$. For $i = 1, \ldots, n$ and $x \in E$ we have $f_i(x) \leq \lambda_i q(x)$. Thus $f_i(x) = 0$ for $x \in M$. Hence $\dot{f_i}$ is defined in a unique manner over E/M by $\dot{f_i}(\dot{x}) = f_i(x)$, and since

$$|f_i(\dot{x})| \leq \lambda_i q(x) = \lambda_i \dot{q}(\dot{x}),$$

we conclude that \dot{f}_i is a continuous linear functional over E/M. As $\dot{K} = \{\dot{k} : k \in K\}$ is a dense convex subset of E/M, it follows from Yamabe's theorem [6], that there exists a $\dot{k} \in \dot{K}$ such that $\dot{q}(\dot{k} - \dot{a}) \leq \varepsilon$ and $\dot{f}_i(\dot{a}) = \dot{f}_i(\dot{k})$, $i = 1, \ldots, n$. Hence we can find a $k \in K$, such that $q_{0,j}(k-a) \leq \varepsilon, j = 1, \ldots, n_0$, that is, $k \in a + V$, and $f_i(a) = f_i(k)$, $i = 1, \ldots, n$. q.e.d.

The next proposition has been proved in the norm case by Ky Fan [4, p. 124].

Proposition 6. Let E be a locally convex Hausdorff top. v. sp., with S as a topology-defining set of seminorms. Let the two families $\{x_n\}_{\Gamma} \subset E$ and $\{\alpha_{\nu}\}_{\Gamma} \subseteq R$ be given. Then the linear inequality system

$$f(x_{\nu}) \geqslant \alpha_{\nu}, \qquad \gamma \in \Gamma$$

will be consistent (i.e. there exists an $f \in E'$ which satisfies (A)), if and only if there exists a $\beta > 0$ and a finite set $\{p_1, \ldots, p_m\} \subset S$ such that

(1)
$$\beta \cdot \max_{j=1,\ldots,m} \left\{ p_j \left(\sum_{i=1}^n \lambda_i x_{\gamma_i} \right) \right\} \geqslant \sum_{i=1}^n \lambda_i \alpha_{\gamma_i}$$

whenever $\gamma_1, \ldots, \gamma_n$ is a finite selection from Γ , and $\lambda_i \geqslant 0$, $i = 1, \ldots, n$.

PROOF. (I): Suppose that $f \in E'$ satisfies the system (A). Then

$$f\left(\sum_{i=1}^n \lambda_i\,x_{\gamma_i}\right) = \sum_{i=1}^n \lambda_i f(x_{\gamma_i}) \, \geqslant \sum_{i=1}^n \lambda_i\,\alpha_{\gamma_i} \, .$$

Since $f \in E'$, we can find a $\beta > 0$ and $\{p_1, \ldots, p_m\} \subset S$, such that

$$f(x) \leq \beta \cdot \max_{j=1,\ldots,m} \{p_j(x)\}$$

for every $x \in E$. Therefore

$$\beta \cdot \max_{i=1,\ldots,m} \left\{ p_j \left(\sum_{i=1}^n \lambda_i x_{\gamma_i} \right) \right\} \ge \sum_{i=1}^n \lambda_i \alpha_{\gamma_i}.$$

(II): Suppose that the condition (1) is satisfied. First we will then prove that every finite subsystem of (A), say

$$(A') f(x_i) \geqslant \alpha_i, i = 1, \ldots, n,$$

is consistent.

Define the map η from E' to R^n by $\eta(f) = (f(x_1), \ldots, f(x_n)) \in R^n$. Then η will be a continuous linear map, when E' is equipped with the weak topology $\sigma(E', E)$. Consistency of the system (A') means that there exists an $f \in E'$ such that $\eta(f) \in \alpha + P$, where $\alpha = (\alpha_1, \ldots, \alpha_n)$ and $P = \{(\pi_1, \ldots, \pi_n) : \pi_i \geqslant 0, i = 1, \ldots, n\}.$ Define

$$V = \{x \in E: p_j(x) \leq \beta^{-1}, j = 1, \ldots, n\}.$$

Then $V \in \mathscr{V}_E(0)$ and V is symmetric, convex and closed. $V = V^{00}$ in the duality between E and E'. Further V^{0} will be an equicontinuous, weakly closed subset af E' [2, Chap. IV, § 2, Proposition 1]. Hence V^0 is weakly compact, and $\eta(V^0)$ is a compact and convex subset of \mathbb{R}^n . We assert that

$$\eta(V^0) \cap (\alpha + P) \neq \emptyset$$
.

For, if not, we can find a hyperplane in R^n separating strictly $\eta(V^0)$ and $\alpha + P$ [2, Chap. II, § 3, Proposition 4]. That is, we can find $\lambda_0, \lambda_1, \ldots, \lambda_n$ such that for every $g \in V^0$ and every $(\pi_1, \ldots, \pi_n) \in P$ we have

(2)
$$g\left(\sum_{i=1}^{n} \lambda_i x_i\right) = \sum_{i=1}^{n} \lambda_i g(x_i) < \lambda_0 < \sum_{i=1}^{n} \lambda_i (\alpha_i + \pi_i).$$

From the second inequality in (2) we get $\lambda_i \ge 0$ when $i = 1, \ldots, n$, and furthermore

$$\lambda_0 < \sum_{i=1}^n \lambda_i \alpha_i$$
.

From the first inequality in (2) we get, since V^0 is symmetric,

$$\left| g\left(\sum_{i=1}^n \lambda_i \, x_i\right) \right| < \lambda_0$$

for all $g \in V^0$. Hence $\lambda_0 > 0$, and since $V = V^{00}$, we have

$$\lambda_0^{-1}\left(\sum_{i=1}^n \lambda_i x_i\right) \in V$$
.

Thus

$$\beta p_j \left(\sum_{i=1}^n \lambda_i x_i \right) \leqslant \lambda_0 < \sum_{i=1}^n \lambda_i \alpha_i$$

for all $j=1,\ldots,m$, contrary to our hypothesis. We have therefore proved that $\eta(V^0) \cap (\alpha+P) \neq \emptyset$ and consequently we can find an $f \in V^0$ such that f satisfies (A').

Define for every finite non empty subset $J = \{\gamma_1, \ldots, \gamma_n\}$ of Γ , A_J^* as the set of all those $f \in V^0$ which satisfy the finite system

$$f(x_{\gamma_i}) \geqslant \alpha_{\gamma_i}, \quad i = 1, \ldots, n.$$

We thus have

$$A_J{}^{\displaystyle *} \; = \; V^0 \cap \bigcap_{\gamma_i \in J} \hat{x}_{\gamma_i}{}^{-1} \big([\alpha_i, \, \infty \rangle \big) \; , \label{eq:AJ}$$

and consequently A_J^* is a weakly closed subset of the weakly compact set V^0 .

Consider the family $\mathscr{A}^* = \{A_J^*: J \text{ any finite non empty subset of } \Gamma\}$. We have proved above that \mathscr{A}^* has the finite intersection property. Since \mathscr{A}^* consists of closed subsets of a compact space, we conclude that

$$\bigcap \{A_J^* \colon A_J^* \in \mathscr{A}^*\} \neq \emptyset ;$$

but this means that (A) is consistent. q.e.d.

COROLLARY. Let G be a vector space, and let the two families $\{f_{\gamma}\}_{\Gamma} \subset G^{\Delta}$ and $\{\alpha_{\gamma}\}_{\Gamma} \subset R$ be given. Then the system

(B)
$$f_{\gamma}(x) \geqslant \alpha_{\gamma}, \quad \gamma \in \Gamma$$

is consistent (i.e. there exists an $x \in G$ such that (B) is satisfied) if and only if there exists a $\beta > 0$, and a finite subset $\{x_1, \ldots, x_m\} \subseteq G$, such that

$$\beta \cdot \max_{j=1,\ldots,m} \left\{ \left| \sum_{i=1}^{n} \lambda_{i} f_{\gamma_{i}}(x_{j}) \right| \right\} \geq \sum_{i=1}^{n} \lambda_{i} \alpha_{\gamma_{i}}$$

whenever $\gamma_1, \ldots, \gamma_n$ is a finite selection from Γ and $\lambda_i \geqslant 0, i = 1, \ldots, n$.

PROOF. G^{Δ} is a locally convex Hausdorff top.v.sp. when equipped with the topology $\sigma(G^{\Delta}, G)$. This topology is defined by the family $\{|\hat{x}|\}_{x\in G}$ of seminorms. In virtue of Proposition 6, consistency of (B) means that there exists a $\beta>0$ and $\{x_1,\ldots,x_m\}\subset G$, such that

$$\beta \cdot \max_{j=1,\ldots,m} \left\{ \left| \hat{x}_j \left(\sum_{i=1}^n \lambda_i f_{\gamma_i} \right) \right| \right\} \geqslant \sum_{i=1}^n \lambda_i \alpha_{\gamma_i},$$

for every finite subset $\{\gamma_1, \ldots, \gamma_n\}$ of Γ and every $\lambda_i \ge 0$, $i = 1, \ldots, n$. This proves our assertion. q.e.d.

2. Extension of positive linear functionals. In the sequel E will denote a topological vector space and P will denote a convex cone in E, that is $P+P \subset P$ and $\lambda P \subset P$ for every $\lambda \geqslant 0$. If $x-y \in P$, we shall often write $x \geqslant y$, and say that \geqslant is the partial order determined by P. We will say that $f \in E^A$ is positive if $f(p) \geqslant 0$ for every $p \in P$. The set of all positive linear functionals will be denoted by P^A . If F is a subspace of E, we will use the corresponding notations with respect to the cone $P \cap F$.

DEFINITION 1. The couple (E, P) will be called an extension couple (ext.c.) if every positive linear functional defined over some dense subspace of E, has a positive and continuous extension to the whole of E.

The couple (E, P) will be called a *continuous extension couple* (c.ext.c.) if every positive and continuous linear functional defined over some dense subspace of E, has a continuous and positive extension to the whole of E.

DEFINITION 2. The cone P will be called rich if $(p+P) \cap F \neq \emptyset$ for every $p \in P$ and every dense subspace F of E.

Remark. The property P_4 mentioned in the introduction means that the positive cone is rich.

PROPOSITION 7. (I): If P is rich and $P^{\Delta} \subseteq E'$, then (E, P) is an ext.c. (II): If (E, P) is an ext.c., then P is rich. If (E, P) is an ext.c. and there exists in E a dense subspace which is not a hyperplane, then $P^{\Delta} \subseteq E'$.

PROOF. (I): Let F be a dense subspace and let f be a positive linear functional over F. Since $(p+P) \cap F \neq \emptyset$ for every $p \in P$, it follows from Corollary 2,3 in [5] that f can be extended to a functional $\bar{f} \in P^{\Delta} \subset E'$.

(II): If P is not rich, we can find a $p \in P$ and a dense subspace F, such that $(p+P) \cap F = \emptyset$. Hence $p \notin F$. Define H as the vector subspace generated by F and p, and define the linear functional h over H by

$$h(y+\lambda p) = \lambda$$
, where $y \in F$.

 \mathbf{If}

$$q = y + \lambda p \in P \cap H,$$

then we assert that $\lambda \ge 0$. For if $-\lambda = \mu > 0$, then

$$p + \mu^{-1}q = \mu^{-1}y \in (p+P) \cap F ,$$

contrary to the assumption. Hence h is positive over H, and since H is dense, h will have a continuous and positive extension \overline{h} to E. From $\overline{h}(p)=1$ and $\overline{h}(F)=0$, we obtain a contradiction since F is dense. Hence P is rich. The last assertion in the proposition follows from Proposition 2, since every positive linear functional has a continuous restriction to every dense subspace when (E,P) is an ext.c. q.e.d.

Corollary 1. If the cone P has an interior point p_0 , then (E, P) is an ext.c.

PROOF. In this case we have $P^A \subseteq E'$ [2, Chap. II, § 1, Proposition 16], so we only have to prove that P is rich. Let $p \in P$ and let F be dense. We can find a $V \in \mathscr{V}_E(0)$, such that $p_0 + V \subseteq P$. Hence

$$\mathcal{O} \, \neq \, (p+p_0+V) \cap F \, \subseteq \, (p+P) \cap F \; .$$

q.e.d.

COROLLARY 2. If all the dense subspaces of E are hyperplanes and $P^{\Delta} \subset E'$, then (E, P) is an ext.c.

PROOF. It is sufficient to prove that P is rich. Let $p \in P$ and let H be a dense subspace. By hypothesis there exists a discontinuous $f \in E^{\Delta}$, such that $H = f^{-1}(0)$. If f(p) = 0, we have $p \in (p+P) \cap H$. If $f(p) \neq 0$, we can assume without loss of generality that $f(p) = \alpha > 0$. We can find a $q \in P$, such that $\beta = f(q) < 0$, for otherwise we should get $f \in P^{\Delta} \subset E'$, which is impossible. Then $r = -(\alpha/\beta)q \in P$, and $f(r) = -\alpha = -f(p)$. Hence $p + r \in (p+P) \cap H$. Thus in both cases we have

q.e.d. $(p+P) \cap H \neq \emptyset$.

REMARK. (I): Neither of the conditions "P is rich", nor " $P^{\Delta} \subset E$ " implies the other. The cone $P = \{0\}$ will for instance always be rich, but in this case $P^{\Delta} = E^{\Delta}$. On the other side, if E is a Frechet space, such that P is closed and E = P - P, then it is known [5, Corollary 5.5] that $P^{\Delta} \subset E'$. If P was rich, then (E, P) should be an ext.c., but we can easily find examples for which this is not the case.

(II): Our assumption in the last statement of Proposition 7 is not superfluous: Suppose that all the dense subspaces of E are hyperplanes. Choose $P = \{0\}$. Then $P^{\Delta} = E^{\Delta}$, and if f is a linear functional over a dense subspace F, we can extend f to a linear functional \bar{f} defined over E. From Proposition 3 it follows that $\bar{f}/F = f$ is continuous. Hence we can extend f to a continuous linear functional, and (E, P) is thus an ext.c. But according to Proposition 4, we need not have $P^{\Delta} \subset E'$.

PROPOSITION 8. Let E be a locally convex top.v.sp. Then (E, P) is a c.ext.c., if and only if for every $p \in P$, $V \in \mathscr{V}_{E}(0)$ and every dense subspace F we have

(C)
$$(p+V) \cap F \cap P \neq \emptyset.$$

Proof. (I): Assume the condition (C) satisfied. Let f be a continuous and positive linear functional defined over the dense subspace F. Then f can be extended to an $\bar{f} \in E'$. We have to prove that \bar{f} is positive. Let $p \in P$. For every $V \in \mathscr{V}_E(0)$ we can find a

$$q_{V} \in (p+V) \cap F \cap P .$$

$$\lim_{V \in \mathscr{V}_{E}(0)} q_{V} = p$$

and $\bar{f}(q_V) \ge 0$ for all $V \in \mathscr{V}_E(0)$, we conclude from the continuity of \bar{f} , that $\bar{f}(p) \ge 0$.

(II): Assume the condition (C) not satisfied. We can find a $p \in P$, a dense subspace F, and a convex $V \in \mathscr{V}_E(0)$, such that

$$(p+V)\cap F\cap P=\emptyset\;.$$

Hence we can separate p+V and $F\cap P$ by a closed hyperplane [2, Chap. II § 3, Th. 1], that is, we can find $f\in E'$ and $\alpha\in R$, such that $f(p)<\alpha$ and $f(q)\geqslant \alpha$ for every $q\in F\cap P$. Since $q=0\in F\cap P$ we have $\alpha\leq 0$; hence f(p)<0. If $q\in F\cap P$ and $\lambda>0$ we have $\lambda q\in F\cap P$ and hence

$$f(q) = \lambda^{-1} f(\lambda q) \ge \lambda^{-1} \alpha;$$

Math. Scand. 7.

Since

letting $\lambda \to +\infty$ we get $f(q) \ge 0$. Thus f/F is continuous and positive, but we cannot extend f/F to a positive and continuous linear functional. q.e.d.

PROPOSITION 9. Let E be a locally convex top.v.sp. Suppose that $\{f_1, \ldots, f_n\} \subset E'$, and define the cone

$$P = \bigcap_{i=1}^{n} f_i^{-1}([0, \infty)).$$

Then (E, P) is an ext.c.

PROOF. According to Proposition 7 it is sufficient to prove that P is rich and that $P^{A} \subset E'$. From Proposition 5 it follows that for every $p \in P$ and every dense subspace F, we can find a $q \in F$, such that $f_i(p) = f_i(q)$, $i = 1, \ldots, n$, and thus $q \in (p+P) \cap F$. Hence P is rich. Let $f \in P^{A}$. Since

$$P \supset \bigcap_{i=1}^{n} f_i^{-1}(0)$$

we conclude that f = 0 over

$$\bigcap_{i=1}^n f_i^{-1}(0)$$

and consequently we can find $\lambda_1, \ldots, \lambda_n$, such that

$$f = \sum_{i=1}^{n} \lambda_i f_i.$$

Thus $f \in E'$, and $P^{\Delta} \subseteq E'$. q.e.d.

If we provide E with the finest locally convex topology, then trivially (E, P) is an ext.c. for every cone P. The following proposition displays that we usually can assert more:

PROPOSITION 10. Let P be a cone in E, such that $P^{\Delta} - P^{\Delta} \neq E^{\Delta}$. Then we can find a locally convex topology \mathcal{T} in E, such that (E, P) is an ext.c. when E is provided with \mathcal{T} , and such that the topological dual of E provided with \mathcal{T} is a hyperplane in E^{Δ} .

PROOF. Having $P^{\Delta} - P^{\Delta} \neq E^{\Delta}$, we can find a hyperplane H in E^{Δ} such that $H \supset P^{\Delta} - P^{\Delta}$. Define \mathscr{T} as the coarsest topology in E which makes every $h \in H$ continuous. Then \mathscr{T} will be locally convex, and E provided with \mathscr{T} will have H as topological dual. From Proposition 4 it follows that the dense subspaces of E will be hyperplanes. As $P^{\Delta} \subset H$, the proposition follows from Proposition 7, Corollary 2. q.e.d.

We now suppose that E is locally convex, and that P is a closed cone in E. Then we can find a family $\{f_v\}_{\Gamma} \subset E'$, such that

$$P = \bigcap_{\gamma \in \Gamma} f_{\gamma}^{-1} ([0, \infty)).$$

Define $Q \subseteq E'$ as the cone generated by $\{f_v\}_{\Gamma}$. Thus

$$Q = \left\{ \sum_{i=1}^{n} \lambda_i f_{\gamma_i} \colon \{ \gamma_1, \ldots, \gamma_n \} \subset \Gamma, \quad \lambda_i \geq 0, \quad i = 1, \ldots, n \right\}.$$

We now consider the duality between E and E^{Δ} . Then every subspace M of E satisfies $M = M^{00}$.

Proposition 11. Let E be a locally convex top. v.sp., and let P be a closed cone in E. Then the following three statements are equivalent::

- (a): P is rich.
- (b): For every $p \in P$ and every dense subspace F of E there exists a finite subset $\{x_1, \ldots, x_n\} \subseteq E$, such that for every $f \in Q$ and $g \in F^0$ we have

$$f(p) \leq \max\{|(f+g)(x_i)|: i = 1, ..., n\}.$$

(c): For every $p \in P$ and every dense subspace F of E there exists a finite subset $\{x_1, \ldots, x_n\} \subset E$ such that the convex envelope $K(x_1, \ldots, x_n)$ generated by $\{x_1, \ldots, x_n\}$ intersects F, and for every $f \in Q$ we have

$$f(p) \leqslant \sup \{ |f(k)| \colon k \in K(x_1, \ldots, x_n) \cap F \}.$$

PROOF. (c) \Rightarrow (b): Let $f \in Q$, $g \in F^0$, and

$$k = \sum_{i=1}^{n} \lambda_i x_i \in K(x_1, \ldots, x_n).$$

Then we have

$$\begin{split} \max_{i=1,\,\ldots,\,n} \big\{ |(f+g)(x_i)| \big\} &\geqslant \sum_{i=1}^n \lambda_i \, |(f+g)(x_i)| \\ &\geqslant \left| \, (f+g) \left(\sum_{i=1}^n \lambda_i \, x_i \right) \right| \\ &= \, |(f+g)(k)| \; . \end{split}$$

Hence

$$\max_{i=1,...,n} \{ |(f+g)(x_i)| \} \ge \sup \{ |(f+g)(k)| \colon k \in K(x_1, ..., x_n) \}$$

$$\ge \sup \{ |(f+g)(k)| \colon k \in K(x_1, ..., x_n) \cap F \}$$

$$= \sup \{ |f(k)| \colon k \in K(x_1, ..., x_n) \cap F \},$$

since $q \in F^0$.

(b) \Leftrightarrow (a): P rich means that for every $p \in P$ and every dense subspace F the system

$$egin{aligned} f_{\gamma}(y) &\geqslant f_{\gamma}(p), & \gamma \in arGamma\,, \ f(y) &\geqslant 0 \ -f(y) &\geqslant 0 \ \end{pmatrix}, & f \in F^{m{0}}\,, \end{aligned}$$

is consistent. From the corollary to Proposition 6 it follows that this system is consistent if and only if we can find a $\beta > 0$ and $\{y_1, \ldots, y_n\} \subset E$ such that

$$\beta \cdot \max_{i=1,\ldots,n} \left\{ \left| \sum_{j=1}^{m} \lambda_{j} f_{\gamma_{j}} \left(y_{i} \right) + \sum_{r=1}^{k} \mu_{r} f_{r} \left(y_{i} \right) \right| \right\} \ge \sum_{j=1}^{m} \lambda_{j} f_{\gamma_{j}} \left(p \right)$$

whenever $\{\gamma_1, \ldots, \gamma_m\} \subset \Gamma$, $\{f_1, \ldots, f_k\} \subset F^0$, $\lambda_j \geq 0$, $j = 1, \ldots, m$, and $\mu_r \in \mathbb{R}$, $r = 1, \ldots, k$. That is,

$$\beta \cdot \max_{i=1,\ldots,n} \{ |(f+g)(y_i)| \} \geqslant f(p)$$

for every $f \in Q$, and every $g \in F^0$. By putting $x_i = \beta y_i$ we obtain (b) \Leftrightarrow (a). (a) \Rightarrow (c): If $q \in (p+P) \cap F$, then we have for every $f \in Q$, $0 \le f(p) \le f(q)$. Thus we can choose $\{x_1, \ldots, x_n\} = \{q\}$. q.e.d.

REFERENCES

- 1. N. Bourbaki, Algèbre, Chap. 2, 2. édition (Act. Sci. Ind. 1032-1236), Paris, 1955.
- N. Bourbaki, Espaces vectoriels topologiques, Chap. 1-2 and 3-4 (Act. Sci. Ind. 1189 et 1229), Paris, 1953 et 1955.
- 3. N. Bourbaki, Intégration, Chap. 1-4 (Act. Sci. Ind. 1175), Paris, 1952.
- K. Fan, On systems of linear inequalities, Linear inequalities and related systems (Edited by H. W. Kuhn and A. W. Tucker; Ann. of Math. Studies 38), Princeton, 1956, 99-156.
- 5. I. Namioka, Partially ordered linear topological spaces, Mem. Amer. Math. Soc. 24.
- 6. H. Yamabe, On an extension of the Helly's Theorem, Osaka Math. J. 2 (1950), 15-17.

UNIVERSITY OF OSLO, NORWAY