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ON POSITIVE AND CONTINUOUS EXTENSION
OF POSITIVE FUNCTIONALS DEFINED
OVER DENSE SUBSPACES

OTTE HUSTAD

Introduction. In this paper we will take up the following problem:
Given a real topological vector space with a partial ordering >, find
conditions which are equivalent with the property:

P,: Every positive linear functional defined over some dense sub-
space has a continuous and positive extension to the whole space.

A necessary conditions is, of course, the property:

P,: Every continuous and positive linear functional defined over
some dense subspace has a positive and continuous extension to
the whole space.

In Proposition 7 we prove in a rather general setting that the property
P, is equivalent with the conjunction of the following two properties:

Py:  Every positive linear functional is continuous.
P,: For every p>0 and every dense vector subspace F, there
exists a geF, such that ¢ > p.

As a corollary we obtain the result that if the positive cone has an in-
terior point, then the property P, is satisfied. This generalizes a result
of Bourbaki [3, p. 46] which asserts that the space of all real continuous
functions over a compact space has the property P,.

The paper is divided in two parts. In Section 1 we have collected
some propositions on topological vector spaces, needed in the sequel.
Propositions 1 to 4 give some properties of dense vector subspaces.
Proposition 5 is a generalization of a theorem proved in the norm case by
Yamabe [6]. Proposition 6, which gives a consistency condition for a
system of linear inequalities, was proved in the norm case by K. Fan
[4, p. 124]. Our proof follows the same lines as his, but because of weaker
assumption, we obtain a corollary which seems to be new. Section 2
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treats the extension problem. In Proposition 8 we give a characterization
of spaces with property P,. In Proposition 9 we show that if the positive
cone is given by a finite system of linear inequalities, then the property
P, is satisfied. Proposition 10 shows that for a large number of partial
orderings we can find a non-trivial locally convex topology, such that
P, is satisfied. In Proposition 11 we give some conditions equivalent
to property P,.

NoraTion. All vector spaces considered will be real vector spaces.
Subspaces will always be vector subspaces. If E is a topological vector
space (top.v.sp.), then E’ will denote the topological dual of E, and E4
the algebraic dual. If @ is a subspace of E4, then o(E, G) is the coarsest
topology in Z which makes every geG continuous. If V<E then V°
denotes the polar set (with respect to @) viz. {geG: g(x)< 1, zeV}. ¥4(0)
denotes the class of all neighbourhoods of 0 in E. Forevery xeE, zc(E4)4
is defined by Z(f)=f(x). If A<E, then [A] denotes the vector space
generated by A. If feE4 and M < E, then f/M denotes the restriction
of f to M, and E=M, ® M, denotes direct sum. Real numbers are
designated by small greek letters, and the set of all real numbers by R.

1. Miscellaneous propositions from topological vector spaces.

ProrosiTION 1. Let E be a locally convex space, and let {fy, ..., f,} < E*
be given. Then

F = Q fi7X(0)

1s a dense subspace of E, if and only if every linear combination

f =§ Aifi 0
18 discontinuous.
Proor. (I): Suppose F=E. Let
f =2 Aifi
=1
be given. Then Fc<f-1(0), and thus f-1(0)=Z. Therefore, f+ 0 implies
that f-1(0) is not closed, and f is discontinuous.

(IT): Suppose F+E. Then there exists [2, Chap. II, p. 73] an feE’
such that f+0 and such that

fW)>F>F= Q £i70) .
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It is known [1, p. 51] that this implies that

f =§ Aifis
q.e.d.

PropositioN 2. Let E be a top.v.sp. with a dense subspace F which is not
a hyperplane. Let f be a linear functional over E, such that the restriction
of f to every dense subspace is continuous. Then f is continuous.

Proor. F is equal to the intersection of all hyperplanes H> F. Hence
there exist two dense hyperplanes H, = H,, such that M =H,nH,> F.
Since F is dense, so is M. Furthermore [H,UH,]=E. Let f; be the
restriction of f to H;, 1=1, 2. According to the hypothesis f; is contin-
uous in H,;, and will therefore have a continuous and linear extension
f; to the whole of E. We have f;=f,, for otherwise we can find an zeE
and a Ve¥4(0), such that (f;—f,)(y)+0 for every yex+V. As
M=H,nH, is dense, there exists an me(z+ V)nM, and we get fi(m)=
fi(m)=f(m)=F,(m), a contradiction. From E=[H,uH,], we obtain that
every x€E can be written in the form x=h, +h,, h;€H;. Hence

f(@) = fy(hy) +folhs) = filhy+hy) = fi(x) .

That is f=f,=f,. q.e.d.

The two next propositions show that in the preceding proposition we
cannot omit the condition which assures the existence of a dense sub-
space not being a hyperplane.

ProrositioN 3. Let E be a locally convex vector space such that all the
dense subspaces are hyperplanes.

Then the restriction of a linear functional to a dense subspace will be con-
tinuous.

Proor. Let f be a discontinuous linear functional, and let M be a
dense subspace of E. If M =H =f-1(0), there is nothing to prove. Sup-
pose therefore M+ H. From the hypothesis we conclude that there
exists a ge £ such that M =g~1(0). Since M nH cannot be a hyperplane,
it follows from the hypothesis that M n H is not dense. From Proposition
1 it follows that there exist numbers A, u4 such that Af+ ug is continuous
and #0. In particular A+0, since g is discontinuous. Now (Af+ ug)/M
is continuous, and as g/M =0, we have

(Af+ug)| M =} M) ,
proving the continuity of f/M. q.e.d.
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PropositioN 4. Let E be a locally convex top.v.sp., and suppose that
E’ has finite codimension n in B4, say
B DM ...0h,].
Let F be a dense subspace of E. Then codim. F <n.

Proor. There exists a family {f,},<E“, such that
F =)0,

yell

If we cannot find » linearly independent elements in {f,},, we have
codim. F' < n. Suppose therefore that {f;, ..., f,} <{f,}, are n linearly
independent elements. Our assertion will be proved if we can show that

fe[{fl’ . ’fn}] for everyfe{fy}F. As
4Mngﬁﬁm

is dense, the proposition follows from the following

LEMMA. Let E be as in Proposition 4 and let {g,, .. ., gn41} < E* be such
that
n+1l
M = () g:740)
=1
is dense in E. Then gy, .. ., §,.1 are linearly dependent.

Proor. From the hypothesis we get that every g; can be written in a
unique way as

2 7, z+f1

where f;cE’. Let g be any linear combination of g,, ..., g,4,, say

n+1l
g =2 o;9;.
j=1
Thus

n+1

g = 0‘(2/1” z+ff)

j=1

n n+1 n+1
=2(20‘J vw)hi+21“iff'
J=

Here the system
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will have a non-trivial solution «,, ..., &, ;. With this choice of the «’s

we get
n+l n+1

J= J

-1
From the hypothesis it follows that

n+1l
[] 9:71(0)

is dense. By Proposition 1 we conclude that g=0. q.e.d.
The next proposition has been proved in the norm case by Yamabe [6].

ProrositioN 5. Let E be a locally convex vector space, let {fy, ..., f,}<E’
be given, and suppose that K is a convex dense subset of E. Then for every
ackl, and every Ve ¥;(0) there exists a k€K such that kea+V, and

such that )
fila) = fi(k), 1=1,...,n.

Proor. Let acE and Ve ¥4(0) be given. We can find a set S of
seminorms in ¥, such that S determines the topology in E. We can
further find {gy 1, . - ., @o,n,} =S and &> 0 such that

VolreE: qir) <e& j=1,...,m},

and we can find [2, Chap. II, § 5, Proposition 9] for every i=1, ..., n,
aset {q,1, - - +» 9,y =S and a 4,>0 such that

Ifi@)] < A max{g  (x): j =1,...,n;}.
Define
g(x) = max{g, ;(x): 0 =i =mn, 1 £j < n}.
g will be a seminorm, and will define a topology in E, which is coarser
than the given topology. Hence K will be dense in (X, g). Define
M ={x: g(x)=0}. Then E/M is a normed vector space when equipped
with the norm g(z)=¢(x). For¢=1, ..., n and xeE we have f;(x) < ,9(z).
Thus f(x)=0 for ze M. Hence f; is defined in a unique manner over
E|M by f(&)=f(x), and since
Ifi)] < Lig(®) = 4g(),

we conclude that f,- is a continuous linear functional over E/M. As
K ={k: ke K} is a dense convex subset of E/M, it follows from Yamabe’s
theorem [6], that there exists a k€K such that ¢(k —a)<e and
fi@)=fk), i=1,...,n. Hence we can find a keK, such that
qo,j(k—a)<e, j=1, ..., n,, thatis, kea+V, and fi(a)=f,(k), =1, ..., n.
q.e.d.
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The next proposition has been proved in the norm case by Ky Fan
[4, p. 124].

ProrositioN 6. Let E be a locally convex Hausdorff top.v.sp., with S as
a topology-defining set of seminorms. Let the two families {x,} < E and
{&,}r< R be given. Then the linear inequality system

(A) fl@,) = o, yel
will be consistent (i.e. there exists an feE' which satisfies (A)), if and only
if there exists a f>0 and a finite set {p,, ..., P} <8 such that
n n
(1) f- max {p](z li%,-)} >3 A,
Jj=1,...,m i=1 =1
whenever yy, ..., y, s a finite selection from I', and 2,0, i=1, ..., n.

Proor. (I): Suppose that fe B’ satisfies the system (A). Then

f(.zl'lixri) =zl‘lif(ww) ZZ;liocw .

1= = o

Since fe E’, we can find a >0 and {p,, ..., p,} =8, such that
f(x) <p * max {p](x)}

J=1,...,m
for every xeE. Therefore

n n
B+ max {pj (2 lixyi)} > b,
i=1,...,m =1 =1
(IT): Suppose that the condition (1) is satisfied. First we will then
prove that every finite subsystem of (A), say

(A") J@) =z, t=1,...,m,
is consistent.

Define the map # from B’ to R* by 5(f)=(f(,), ..., f(x,))eR" Then
n will be a continuous linear map, when E’ is equipped with the weak
topology o(Z’, E). Consistency of the system (A’) means that there
exists an feE' such that #(f)ex+P, where «=(x,, ...,x,) and
P={(my, ..., m,): 7;20,¢=1, ...,n}. Define

V={xeck: px)<ptj=1,...,n}.

Then Ve ¥4(0) and V is symmetric, convex and closed. Therefore
V=7V9% in the duality between E and E’. Further V° will be an equi-
continuous, weakly closed subset af E’ [2, Chap. IV, § 2, Proposition 1].
Hence V° is weakly compact, and 7(V?) is a compact and convex subset
of R». We assert that
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n(V)n(x+P) £ .

For, if not, we can find a hyperplane in R” separating strictly #(V?)
and «+P [2, Chap.II, § 3, Proposition 4]. That is, we can find

Aos Ay - - -5 A, such that for every geV° and every (m,, ..., 7w, )P we
have
@) 0 (2 0m) = 3 hiolw) <y < 3 ity

i=1 i= i=1
From the second inequality in (2) we get 4,>0 when ¢=1, ..., n, and
furthermore

2’0 <%’lio‘i‘

From the first inequality in (2) we get, since V? is symmetric,

19(; }'ixi)

for all ge V°. Hence 4,> 0, and since V= V%, we have

e (Zlixi) ev.
i=1

< A

Thus " n
po (3 2um) < o < Xt
i=1 i=1
for all j=1, ..., m, contrary to our hypothesis. We have therefore

proved that (V%) n(x+P)+0 and consequently we can find an feV°
such that f satisfies (A’).

Define for every finite non empty subset J={y,, ..., y,} of I', 4,* as
the set of all those fe V° which satisfy the finite system

f(xw)>ocw, t=1,...,m.

A;*=Vn n i‘w—l([ai, 00>) ,

vied

We thus have

and consequently 4 ;* is a weakly closed subset of the weakly compact
set V0.

Consider the family &/*= {4 ,*: J any finite non empty subset of I'}.
We have proved above that &/* has the finite intersection property.
Since &7 * consists of closed subsets of a compact space, we conclude that

N {(4,*: A;*es/*) + 0
but this means that (A) is consistent. q.e.d.
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CoroLLARY. Let G be a vector space, and let the two families {f,}<G*
and {0} < R be given. Then the system
(B) f(®) = «, yel

s consistent (i.e. there exists an xe@G such that (B) is satisfied) if and only
if there exists a >0, and a finite subset {x,, ..., x,,} <G, such that

n n
B+ _max { 2 )‘ifyi(xj) } > Y Ao,
Jj=1...,m | |i=1 i=1
whenever vy, ...,y, 18 a finite selection from I’ and 2,20, i=1, ..., n.

Proor. G4 is a locally convex Hausdorff top.v.sp. when equipped
with the topology ¢(G4, G). This topology is defined by the family
{|#|},cq of seminorms. In virtue of Proposition 6, consistency of (B)
means that there exists a $>0 and {x,, ..., 2,} <@, such that

@(2/1,; w) } z X Ay
-1 i-1

for every finite subset {y,, ..., y,} of I' and every 1;>0, ¢=1, ..., n.
This proves our assertion. q.e.d.

B+ max {

j=1,...,m

2. Extension of positive linear functionals. In the sequel £ will denote
a topological vector space and P will denote a convex cone in ¥, that is
P+PcP and AP<P for every A>0. If x—yeP, we shall often write
x>y, and say that > is the partial order determined by P. We will say
that feE“ is positive if f(p)>0 for every peP. The set of all positive
linear functionals will be denoted by P4. If F is a subspace of E, we will
use the corresponding notations with respect to the cone PnF.

DeriniTioN 1. The couple (E, P) will be called an extension couple
(ext.c.) if every positive linear functional defined over some dense sub-
space of E, has a positive and continuous extension to the whole of X.

The couple (£, P) will be called a continuous extension couple (c.ext.c.)
if every positive and continuous linear functional defined over some

dense subspace of E, has a continuous and positive extension to the
whole of E.

DEeriniTION 2. The cone P will be called rich if (p+P)nF=+0 for
every pe P and every dense subspace I of E.

REMARK. The property P, mentioned in the introduction means that
the positive cone is rich.
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ProrositionN 7. (I): If P is rich and PA<E’, then (E, P) is an ext.c.
(II): If (E, P) is an ext.c., then P is rich. If (E, P) is an ext.c. and
there exists in B a dense subspace which is not a hyperplane, then PAc E’.

Proor. (I): Let F be a dense subspace and let f be a positive linear
functional over F. Since (p+P)nF £ for every peP, it follows from
Corollary 2,3 in [5] that f can be extended to a functional fe PAc E’.

(IT): If P is not rich, we can find a peP and a dense subspace F,
such that (p+ P)nF=0. Hence p¢F. Define H as the vector subspace
generated by F and p, and define the linear functional # over H by

hy+2ip) = A,  where yelF.
I g=y+ipe PnH,
then we assert that A>0. For if —A=u >0, then

p+ulg =ply e (p+P)nF,

contrary to the assumption. Hence A is positive over H, and since H is
dense, & will have a continuous and positive extension % to K. From
h(p)=1 and k(F)=0, we obtain a contradiction since ¥ is dense. Hence
P igrich. The last assertion in the proposition follows from Proposition 2,
since every positive linear functional has a continuous restriction to
every dense subspace when (£, P) is an ext.c. q.e.d.

CoroLLARY 1. If the cone P has an interior point p,, then (E, P) is an
ext.c.

Proor. In this case we have P/ E’ [2, Chap. I1, § 1, Proposition 16],
so we only have to prove that P is rich. Let peP and let F be dense.
We can find a Ve 74(0), such that p,+ V<P. Hence

9+ (p+p,+V)nF < (p+P)nF.
q.e.d.

CoROLLARY 2. If all the dense subspaces of E are hyperplanes and
PAcE', then (E, P) is an ext.c.

Proovr. It is sufficient to prove that P is rich. Let peP and let H
be a dense subspace. By hypothesis there exists a discontinuous fe B4,
such that H=f-1(0). If f(p)=0, we have pe(p+P)nH. If f(p)+0, we
can assume without loss of generality that f(p)=a>0. We can find a
geP, such that f=f(q) <0, for otherwise we should get fe P4 < E’, which
is impossible. Then r= —(x/f)geP, and f(r)= —ax= —f(p). Hence
p+re(p+P)nH. Thus in both cases we have
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qe.d. (p+P)nH £+ 9.

ReMARK. (I): Neither of the conditions “P is rich”’, nor “P4<E'”
implies the other. The cone P = {0} will for instance always be rich, but
in this case P?/=E“. On the other side, if E is a Frechet space, such that
P is closed and E=P—P, then it is known [5, Corollary 5.5] that
PAc E'. If P was rich, then (£, P) should be an ext.c., but we can easily
find examples for which this is not the case.

(IT): Our assumption in the last statement of Proposition 7 is not
superfluous: Suppose that all the dense subspaces of £ are hyperplanes.
Choose P={0}. Then P“=E*, and if f is a linear functional over a dense
subspace F, we can extend f to a linear functional f defined over E.
From Proposition 3 it follows that f/F =f is continuous. Hence we can
extend f to a continuous linear functional, and (Z, P) is thus an ext.c.
But according to Proposition 4, we need not have P4c £,

PropositioN 8. Let E be a locally convex top.v.sp. Then (E, P) is a
c.ext.c., if and only if for every peP, Ve¥5(0) and every dense subspace F
we have

©) p+")NnFnP +0.

Proor. (I): Assume the condition (C) satisfied. Let f be a continuous
and positive linear functional defined over the dense subspace F. Then f
can be extended to an fe E’. We have to prove that f is positive. Let
peP. For every Ve?5(0) we can find a

gre(+V)nFnP.
Since )
lim ¢y =p
Ve¥ E )

and f(g,)>0 for all Ve¥4(0), we conclude from the continuity of f,
that f(p) > 0.

(IT): Assume the condition (C) not satisfied. We can find a peP, a
dense subspace F, and a convex Ve¥;(0), such that

(p+V)nFnP =0.

Hence we can separate p+ V and FnP by a closed hyperplane [2, Chap.
II § 3, Th. 1], that is, we can find fe £’ and xe R, such that f(p) <« and
f(@) =« for every qeFnP. Since q=0cFnNP we have «=<0; hence
f(p)<0. If ge FnP and 1>0 we have Age FnP and hence

flg) = 21f(4g) 2 A«

Math. Scand. 7. 26
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letting 4 — + oo we get f(¢) 2 0. Thus f/F is continuous and positive, but
we cannot extend f/F to a positive and continuous linear functional.
q.e.d.

ProposiTioNn 9. Let E be a locally convex top.v.sp. Suppose that
{fv .. . fu}<E', and define the cone

n

P = [ fi72([0, ) -

=1

Then (E, P) is an ext.c.

Proor. According to Proposition 7 it is sufficient to prove that P is
rich and that P4<E’. From Proposition 5 it follows that for every peP
and every dense subspace F, we can find a geF, such that f,(p)=Ff(q),
t=1,...,n, and thus ge(p+P)nF. Hence P is rich. Let feP4. Since

n

P> ) f740)

=1

we conclude that f=0 over
n
N fi70)
i=1

and consequently we can find 4,, ..., 4., such that

f=§hﬁ-

Thus feE’, and PA<E’. q.e.d.

If we provide £ with the finest locally convex topology, then trivially
(E, P) is an ext.c. for every cone P. The following proposition displays
that we usually can assert more:

ProposITioN 10. Let P be a cone in B, such that P4 — P4+ E4. Then we
can find a locally convex topology T in E, such that (K, P) is an ext.c. when
E is provided with I, and such that the topological dual of E provided with
T is a hyperplane in E4.

Proor. Having P4— P4+ E4, we can find a hyperplane H in E4 such
that H> P4— P4, Define J as the coarsest topology in £ which makes
every he H continuous. Then 7 will be locally convex, and E provided
with J will have H as topological dual. From Proposition 4 it follows
that the dense subspaces of E will be hyperplanes. As P4 < H, the proposi-
tion follows from Proposition 7, Corollary 2. q.e.d.
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We now suppose that E is locally convex, and that P is a closed cone
in E. Then we can find a family {f,},< £’, such that

P = (4,70 ).

Define Q < E’ as the cone generated by {f,},. Thus

Q= Zlif'yi: {yl,...,yn}CF, }.7/20, 7:=].,...,77/
i=1

We now consider the duality between E and E4. Then every subspace
M of E satisfies M = M.

ProrosiTioN 11. Let K be a locally convex top.v.sp., and let P be a closed
cone in E. Then the following three statements are equivalent.:

(a): P s rich.
(b): For every peP and every dense subspace F of E there exists a finite
subset {x,, ..., x,} < B, such that for every feQ and geF° we have

f(p) < max{|(f+g)e)l: ¢ = 1,...,n}.

(c): For every peP and every dense subspace F of E there exists a finite
subset {x,, . . ., x,} < E such that the convex envelope K(x,, ..., x,) generated
by {xy, ..., x,} intersects F, and for every fe @ we have

f(p) < sup{lf(k)| keK(xla . ',xn)nF} *
Proor. (¢) = (b): Let fe@, geF°, and

n
k =2}»ixi € K(xl, "”xn)‘
=1

Then we have

.....

2

. A s
(f+g)(£ m)
= [(f+9)k)| .

Hence
max (4w} > s (o) ke K2}
sup{|(f+9)(k)|: ke K(xy, ..., 2,)n F}
sup{|f(k)|: ke K(zy, ..., x,)nF},

\%

since ge FO .

26*
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(b) <>(a): P rich means that for every peP and every dense subspace
F the system

Hy) = fp), yel,
oz ger

is consistent. From the corollary to Proposition 6 it follows that this
system is consistent if and only if we can find a >0 and {y,, ..., y,}<E
such that

3 max{):z Iy 00+ 3 5, )

t=1,

J=1

whenever {yy, ..., v}<I, {fi, ..., fi}<F°% 2;,>0,j=1,...,m, and
mER, r=1, ... k. Thatis,

B- max {(f+9) )} = f(p)

=1,...,m

for every fe@, and every ge F9. By putting z,= fy, we obtain (b) <> (a).
(a) = (c): If ge(p+ P)nF, then we have for every fe@, 0 < f(p) <f(q)-
Thus we can choose {z,, ..., z,}={¢}. q.e.d.
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