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CONTINUOUS CONVEX SETS

DAVID GALE! and VICTOR KLEE?

Introduction. The compact convex sets in a finite-dimensional Euclid-
ean space / have a number of familiar properties which are not shared
by closed convex sets in general. For example if X and Y are compact
and convex then

(1) sois X+ 7;

(2) sois conv(XuY);

(3) if X and Y are disjoint they can be separated by a hyperplane at a
positive distance from each.

Well-known examples in the plane show that none of these statements
is true for general closed convex sets.

In § 1 below we show that there is a natural maximal class of closed
convex sets satisfying (1), (2) and (3) above which includes the compact
convex sets as a proper subclass. These are what we have chosen to call
the continuous sets, that is, those closed convex sets whose support func-
tions are continuous. The support function o of the set X is defined by

og(u) = sup(z,u) for each unit vector u ,
reX
where (z,u) denotes the scalar product. Since the sets X are possibly
unbounded we permit o(u) to assume the value ‘“plus infinity”’. (Con-
tinuity at » for which o(u) is infinity is defined in the usual way. We
define o(u) only for unit vectors u, since otherwise ¢ is discontinuous at
the origin whenever X is unbounded.)

The simplest example of a non-continuous closed convex set is a ray
in the plane, or, less trivially, the area enclosed by a branch of a hyper-
bola. An example of a continuous but unbounded set is the area enclosed
by a parabola in the plane. In the next section we show that continuous
convex sets are alternatively characterized by the fact that they possess
neither a boundary ray nor an asymptote.
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In § 2 we consider not merely pairs of continuous convex sets but
families of arbitrary cardinality, and establish results which reduce for a
pair of sets to the above statements about the convex hull and about
separation. Let {X,: seS} be a family of continuous convex subsets
of E. Then the theorem on convex hulls (2.3) asserts that for each point

peclconv J X,

selS
there are points z,e X such that

peclconv{z,: seS};

and the general separation theorem (2.8) implies that if N, _¢X,=0,
then there are closed halfspaces @,> X, with N, _¢Q,=@. These results
have not previously been published even for compact convex sets, though
the generalized separation theorem for compact convex sets and a deeper
separation theorem for open convex sets (2.7 of the present paper) were
announced in the abstract [1].

NOTATION AND TERMINOLOGY. By a boundary ray of a set we mean a
ray (i.e., half-line) which is contained in the boundary of the set. An
asymptote of a set X is a ray p< K ~ X such that

0X,0) =0, where 6X,Y)=inf{lz—y||: X, yeY}.

By the cone from p over X we mean the set p+[0, co[(X —p). We denote
the origin of ¥ by 0, the empty set by ¢J. The remainder of our notation
and terminology is more or less “standard”.

1. Pairs of sets. In this section and the next, £ will always denote a
finite-dimensional Euclidean space. We begin with two simple but useful
remarks.

1.1. LEmMmA. Suppose C s a closed convex subset of E, peC, q € E ~ {0},
and there are sequences x, in C and t, in ]0, oo such that t, -0 and
t,x, > q. Then C contains the ray p+[0, o[ q.

Proor. Consider an arbitrary r>0. Then for all #,<1/r, we have
(L=rt;)p+rt;x; € C, whence p+rgeC.

1.2. LEMMA. Suppose C is a closed convex subset of E, o is a ray eman-
ating from 6, and x and y are points such that x+p<E~C and y+9<C.
Then for some u € [z, y], the ray w+p 18 a boundary ray or an asymptote
of C.
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Proor. Let t be the greatest lower bound of numbers =0 such that
the ray (1—r)x+ry+o is at zero distance from C; let u=(1—t)x+ty.
Then the ray w+p is at zero distance from C, and by 1.1 it must con-
tain a boundary ray if it intersects C.

Now for some characterizations of continuous convex sets:

1.3. THEOREM. For a closed convex subset X of E the following assertions
are equivalent:

(i) X s continuous;
(ii) X has no boundary ray or asymplote;
(iii) for each peE, the convex hull of X u{p} is closed;
(iv) for each p € B ~ X, the cone from p over X is closed;
(v) for each closed convex Y < E~X, 6(X, Y)>0;
(vi) for each closed convex Y <E~X, X and Y can be separated by a
hyperplane H with 6(X, H)>0<6(Y, H);
(vii) for each closed convex Y < E the set X + Y 1is closed.

Proor. We first show that all the other assertions imply assertion (ii).
Suppose, then, that there is a ray g =a + [0, oo[ b which is on the boundary
of X or is an asymptote of X. By the standard properties of convex sets
there is then a hyperplane H through g such that X lies entirely on one
side of H. If w is the unit normal to H directed away from X then we
see that the support function ¢ of X is not continuous at u. Namely,
o(u) is finite since (z,u) < (a,%) for all z in X, but for any positive ¢,
o(u + ¢&b) is infinite, for we can always choose 4 so large that

(a+Ab, u+eb) = (a,u+¢eb)+ Ae|b|?

exceeds any preassigned value. If p is a boundary ray this proves the
assertion and if it is an asymptote then we can choose x in X so close to ¢
that again (z,u-+eb) is arbitrarily large and this shows that ¢ is not
continuous. Next, let o be a boundary ray or asymptote of X, = a rela-
tively interior point of X, peE such that ]p,x[ intersects g, and P the
two-dimensional flat containing puUJp,z[. It can be verified that the set

cl conv(X u {p}) ~ cone(p,X)

contains a translate of g, and the set P~ X contains a closed convex set
Y of which g is an asymptote. Then of course (v) and (vi) fail, and the
set X + (— Y) is not closed. The proof of 1.3 is completed by establishing
the following implications.

(i) = (i). Suppose the support function o of X is discontinuous at the
point u. Let o(u)=a and let u, be a sequence converging to » for which
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a(u,) does not converge to a. We first observe that lim info(u,)Za for
if b<a then by definition of o there exists xeX such that (x,u)>b.
But if w, - u then (x,u,) - (,4) and hence lim info(u,)>b, proving
the assertion. Therefore, if u is to be a point of discontinuity of ¢ we
must have
lim supo(u,) = ¢ > a.

This means we can choose a subsequence u,” of u, and vectors x,e X
such that lim (z_,u,")=c. If c< oo, let x,'=2, and d=c. If ¢ is infinity we
can find a new sequence of vectors ;" in X such that

lim(x,,u,’) =d where a <d < .

This is done by letting x be any point in X. Then for large 7, (z,%,;) <d
and (;,%,;")>d; hence an appropriate convex combination of x and x,
will produce ;" such that (z,",4;")=d. Now the sequence z," can have no
cluster point z’; for if so we would have (2',u)=d whereas

sup(x,u) =a < d.

reX
It follows that the sequence |jz,’|| approaches infinity so that 1/|lz,’|| - 0.
Letting Z be a cluster point of z,’/|lz,’||, we see from Lemma 1.1 that X
contains a ray parallel to the vector Z. Also, since (x,’,u,’) >d < oo it
follows that (z,'[|lz,'|, »,’) = 0 and hence (Z,u)=0. If we then choose
any point y such that (y,u)>a then (y+A%,u)>a for all numbers A so
the ray y+[0, oo[Z does not meet X. We now apply Lemma 1.2 which
shows that X contains a boundary ray or an asymptote parallel to Z.

(ii) = (iii). It suffices to prove (assuming i) that if 6¢X and

g €cl]0,11X ~ {6}, then [1,00[¢ intersects X. Now there must be se-
quences ¢, in ]0,1] and z, in X such that

t,x,~q and ¢ ,—>te[0,1].

The case ¢ > 0 is easily handled, so suppose ¢=0 and let pe X. We see by
1.1 that p+[0,00[¢< X, s0 if [1,00[ ¢ misses X it follows by 1.2 that some
translate of [0, o[ ¢ is a boundary ray or asymptote of X, contradicting (ii).

(iii) = (iv). It suffices to consider the case p=0, for which the cone

in question is the set
[0,00[X = [0,1]1X U [1,00[X .

The first summand is closed by (iii), and with X closed and 6¢X, the
second summand must also be closed.

(ii) = (v). If §(X,Y)=0, there must be sequences z, in X and y, in
Y such that z,—y, — 0, |z || > o, and 2z /|x,|| > g€ E~{0}. Then of
course ¥,/|lz,|| - ¢. Thus for arbitrary ueX, veY, it follows by 1.1 that
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u+[0,00[g=X and v+[0,00[¢g<Y,

then by 1.2 that some translate of [0, cc[q is a boundary ray or asymptote
of X. But this contradicts (ii).

(v) = (vi). This follows from the basic separation theorem for convex
sets.
(v) = (vii). It suffices to observe that if 6ecl(X+7Y), then

0(X, —Y)=0, whence, by (iv), X must intersect — Y and consequently
fbeX+7Y.

1.4. CorOLLARY. Suppose X and Y are closed convex subsets of E and

at least one of them is continuous. Then there are points x€X and ye¥
such that ||z —y||=06(X,Y).

PRroOF. Observe that 6(X,Y)=06(X—7, {0}), and the set X -7 is
closed by 1.3 (vii).

1.5. TuroREM. If the subsets X and Y of E are continuous, then so are
the sets XnY, conv(XuY), and X+ 7.

Proor. Itis evident that an asymptote of X n ¥ must be an asymptote
of X or of Y; similarly for boundary rays, and the set X nY is disposed
of. Now in 2.4 below it is stated that if X, ..., X, are continuous sub-
sets of K, then the set conv U*X; is closed. Under present hypotheses,
this implies that conv (X uY) is closed. If ¢ and 7 are the support func-
tions of X and Y respectively then since o and r are continuous so also
is p=max[o,7]. On the other hand, by standard properties of support
functions g is the support function of the set

Z =cleconv(Xu YY) =conv(XuY),

80 Z is continuous.

Finally, if X and Y are continuous we note that X + Y is closed by
1.3 (vii). Since the support functions o and 7 of X and Y are continuous
50 also is their sum ¢+ 7 (co +a = oo for all a). But by standard properties,
o+ 7 is the support function of the set

Z=c(X+Y)=X+7,
80 Z is continuous.

We end this section with one more result involving the convex hull of
the union of two sets.

1.6 ProposITioN. Let G denote the class of all closed convex subsets of
E, R the class of all members of € which are continuous, and O the class
of all members of € which contain a hyperplane. For each XeG, let hX
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denote the class of all Y €€ such that conv(XuY') is closed for each non-
singular affine tmage Y' of Y. Then hX =R for XeR, hX =9 for X9,
and kX is empty for X €@~ (RUH).

Proor. We require the following fact F: if Ue E~R and Ve~ 9D,
there is a nonsingular affine image U’ of U such that the set conv (U’ u V)
is not closed. To prove F, let p be a boundary ray or an asymptote of U
and K, a halfspace with bounding hyperplane H, such that K;> U and
H,>p. Let K, be a halfspace with bounding hyperplane H, such that
K,oV and H, intersects V. Since H,nV is a convex proper subset of
H,, there must be in H, a ray g, of which no translate lies in H,nV.
Now let v be an isometry of £ onto E such that tK, is interior to K,
(whence of course 7H, is a translate of H,) and 1g, is parallel to g,.

Then the set
Hynecleconv(zUn V)

contains a translate of g,, while
Hynconv(zUNV)=H,nV.

This completes the proof of F.

Now it follows from 1.5 that AX >R if XeR, and it is easily verified
that A X > 9 if Xe9. In conjunction with F, these facts yield the desired
conclusions.

2. Families of arbitrary cardinality. Theorem 2.1 below is our prin-
cipal result on convex hulls, while 2.2 will lead by duality to the main
separation theorem.

2.1. THEOREM. Suppose {X,: s€8} is a family of closed convex subsets
of E and p is a point of cl conv U, g X, such that for each s€8 the set
conv(X,u{p}) is closed. Then there are points wx,cX, such that
p € cl conv {z,: seS}.

2.2. THEOREM. Suppose {X,: s€ S} is a family of closed convex subsets
of E with 0eN, gX,, and p is a point of clconv U, g X,. Then at
least one of the following is true:

(i) there are points x,€ X, and sye S such that
0 + —x, €cleonv{z,: seS~{s}};
(ii) for each r € 10,1[ there are points x,€ X, such that

rpeclconv{z,: se€S}.
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Proors. It is convenient to begin the proofs of 2.1 and 2.2 together,
and we may assume that p ¢ U, ¢ X,. Let n denote the dimension of E.
Caratheodory’s theorem on convex hulls implies the existence (for all
selS and vel, the set of positive integers) of points z,ie X and numbers
At 2 0 which satisfy the following conditions:

for each 4, A, differs from zero for at most n + 1 choices of se§;

2}'37:=1;

seS
lim 3 Afzi=1p.

i—>00 88
We assume without loss of generality that each sequence x//|lz,|| is
convergent to a point of K, and the sequences |z,%|| and 1,%|x*| are con-
vergent to points of [0, co].

Now for se§ and iel, we say that s appears at 7 provided A,;+0. If
there are elements of § which appear at ¢ for infinitely many values of ¢,
pick one such element, call it s;, and let n,(«x) be the sequence of all ¢’s
at which s, appears. Then if there are elements of S~ {s,} which appear
at n,(¢) for infinitely many values of 4, pick one such, call it s,, and let
ny(x) be the sequence of all numbers »,(7) at which s, appears. Proceeding
in this way, we arrive at m elements s,, ..., s, of § (with 0Sm=<n+1)
and an increasing sequence n,,(«) in I such that s; appears at n,,(:) for all
tel, 1<j=<m, while each element of S~{s,, ...,s,} appears at n,,(i)
for at most finitely many values of ¢.

An appropriately chosen subsequence k(x) of n,(x) will be such that
each element of S~ {s;, ..., s,} appears at n,,(i) for at most one value of 4,
and for none at all if the set of all se.§ which appear for at least one 1
is finite. By enumerating as s,,,1, $,,49, - - -, the additional members of
S which do appear, letting X;= X, for s=1, 2, ..., and selecting other
notation in an obvious way, we obtain double sequences ¢ of numbers
and z;* of points such that the following conditions are all satisfied:

¢ ranges over I, j over I or over {1, 2, ..., m};

always £,120;

for each i, there are at most n+1 values of j for which #7+0, and
2itfi=1;

for 1 <5 <m, t differs from 0 for all ¢;

for j>m, t;t differs from 0 for exactly one value of ¢ (call it 7(j));

always rie X;;

hmi-——)oo Zj t;ii xji =p;

for each j, there exist lim,_, ., z;i/||z%|| € E, lim,_, , ||z;¥|| € [0, 0], and
lim, ., t;% ]| € [0, 00].

1—>00 tj
Math. Scand. 7. 25
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Now the proofs diverge. We first consider 2.1, for which we may and
shall assume p=0. For j>m, let x;=z;%. For 1=j=m, let ;=
limi_,oox] € X; if this limit exists in E 0therw1se lim,_, o, |l l=o00 and
we let x; be the smallest positive multlple of lim, , ]’/ [l; | which lies
in X (Slnce [0, 00[(X;—p) is closed and 6=p¢ X, such a multlple must
exist.) We claim that

6 €.cl conv {z;} .

Suppose the contrary, whence Z admits a linear functional f with
inf, fo;=&>0. Since lim, , , 21, 'x]'— 0, for arbitrarily large values of ¢
there must exist j’s for whlch t#+0 and f(x;?) <¢/2. This cannot occur
with j>m, for then z/=x;W=x; Thus for some j between 1 and m
it is true that f(z ‘) < (:‘/2 for arbitrarily large values of i. When
lim; , , «;* exists, this is impossible, for it implies that f(x;) = . And
when lim;_, ., ||z i =0, we see that lim, , _ f(x @/||x in=o, Whence Jx; <
Since this also is impossible, the proof of 2.1 is complete.

We turn now to the proof of 2.2, and set xz,,,=0€X,,,;, and
x;=2;9 e X; for all j=zm+2. Observe that ¢,,,°=0 for all sufficiently
large ¢, and hence
(*) Zt oft Nt > p.

J=m+2
Now one of the following two situations must arise:

(a) there are an increasing sequence u(x) and a j, between 1 and m
such that [|t; ¥, ¥ =7, - oo, and |it;*Dx || <7, for all s€l, 1 <j<m;

(b) there is an increasing sequence v(x) such that for each j, t;"®x"
converges to a point of E.

In considering case (a), we assume without loss of generality that
Jo=1. For 1<j<m, the sequence 7,~¢;**x,4*) must converge to a point
x;€X;, and of course ||lz,]|=1. Now observe that, by (*),

Zx + (l—— 2 t-“(“)) Tppiq+ 2 Nt >~ —wy,
J=m+2 J=m+2

whence —m~12, € cl conv {z;: j=2}. But m-lz, € X; ~ {0}, so condition

(i) of 2.2 is satisfied.

Under case (b), let J be the set of all j between 1 and m for which
lim;_, ,%;*@ exists in X;, and for each such j let that limit be denoted
by z;. Let K denote the set {1, ..., m}~J, and observe that for jeK,
||xj”(“)[| — oo but % - 0 and ¢;"®x;"® converges to a point y,€X;. By
1.1, [0,00[ ;< X for each je K. Now consider an arbitrary r€]0,1[ and
for each jeK let rk

x; eX;,
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where & is the cardinality of K. Then from (*) it follows that

1—r hod
D rtfwi4+ 3 —— i+ (th{") Tyt ) rt*x; — rp,
jer jek Kk jek Fome
and since always the sum of the coefficients is 1, it follows that
rp € conv {x;}, completing the proof of 2.2.

From 2.1 and 1.3 (iii), we obtain the result stated in the Introduction:

2.3. CoroLLARY. Suppose {X: s € 8} is a family of continuous subsets
of E. Then for each
/ J peclcoanXs,

seS

there are points x € X , such that
pecleconviz,: seS}.
Specializing to the case of a finite S, we have

2.4. Cororrary. If X,, X,, ..., X, are continuous subsets of E, then
the set conv U* X, is closed.

From 2.2 we deduce

2.5. COROLLARY. Suppose {X,: s €S} is a family of closed convex sets
in B, 0N, gX,, and there is an open halfspace Q < E ~ {0} such that for
each s, X ,~{0}<=Q. Then if

tp e cl conv |J X,
seS

for some t > 1, there are points x,€ X, such that
peclconviz,: seS}.

2.6. COROLLARY. Suppose {X,: s € 8} is a family of closed convex cones
in B such that U, gX,~ {0} is not contained in any open halfspace in
E~ {6} and no X, contains a line. Then there are points x,e X, and

8o S such that
° 0 + —z, ecleonv{z,: seS~{s})}.

Proor. Suppose the desired conclusion fails, and let C'=conv U, ¢ X,.
Since C is a convex cone not contained in any open halfspace in E ~ {0},
it follows by a known support theorem that the set (clC)n —C includes

a point z+ . Now of course there are elements s, ..., s,, of S and points
yr€X,, ~{0} such that —z=2Ty,. And by 2.2 there are elements
Sm+1> Smags - - > Of 8 (a finite or infinite sequence) and points u;eX,,

(j=0,1,...,m,m+1,m+2, ...) such that z € cl conv{u;}. Thus there

25*
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is a double sequence #;° of non-negative numbers such that for j<m,
t;* is independent of ¢ (say t;=t;), and for each i it is true that Xjt/i=1,
and lim, , , 2;tfw; =2

Now let

Ty = Yo+lguo € Xy ~ {0},

2m
x; = (y;+1; u)eX for 1=

J =m
l+o
x; = 2u; for j>m,
where ¢=27't;<1. Then evidently
o] ].+ [oo] .
2"—90 +lim 37 ()2 = —a,
J=1 1—>00 J=m+1

and since §(1+0)+272,,,; ¢ =1 for all 4, it follows that
—xy€clconviz;: j = 1},

completing the proof of 2.6.
Next comes the basic separation theorem for families of arbitrary car-
dinality.

2.7. THEOREM. Suppose {Y,: s € S} is a family of open convex proper
subsets of £ with empty intersection. Then there are open halfspaces @, Y,
such that N, _sQ, is empty.

Proor. By the usual device of considering ¥ as a hyperplane in a
space of one more dimension (with 0¢X), and replacing each set Y, by
the corresponding cone ]0,[Y ., we reduce the problem to one concern-
ing convex cones. Thus in proving 2.7, it suffices to consider the case in
which each set Y, is a nonempty open convex cone with 0¢Y, For
each se§, let X, denote the closed convex cone {x € : (x,y4)=0 for
all ye Y}, which clearly contains no line. If U, g¢X,~ {6} lies in an open
halfspace in E ~ {6}, then there exists yeE such that (z,y)>0 for all
zeU, g X,~{0}). This is impossible, for it implies that ye N, ¢¥,,
and thus from 2.6 we deduce the existence of points x,X, and s,e8
such that

@) 0 + —z, ecleonv{z,: scS~{s}} .

Let T be the set of all se S for which x40, and for each teT let @, be
the open halfspace {y: (2,,y)>0}. Then of course @, Y, and from (})
it follows that N, @, is empty, so the proof of 2.7 is complete.

2.8. THEOREM. Suppose U is the unit cell of E and {X,:s€8} is a
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family of continuous proper subsets of E, with N, gX,=0. Then there
are numbers &,> 0 and closed subspaces Q@,> X ;+ &, U such that N, 4Q,=0.

Proor. Since the sets X sre closed and have empty intersection, there
is a finite subset 7'; of S such that

Un(ﬂX,) —0.
teT1

By use of 1.3 (v) we see that if the positive number 4, is sufficiently
small, and we define X '=X, for se S~T,, X} =X_+6,U for seT,,

then
Un(nX,l) —0- NX}.

teTy seS

Now there must be a finite subset 7', of S~ 7', such that

2Un< N X,l):@,
teT1uTy

and then by 1.3 (v) there must be a number d, > 0 such that with X 2=X_
forse S~T, and X 2=X_+6,U for seT,, we have

2Un( N X,z) —0=NX:.

teT1u Ty seS

Proceeding in this manner, we obtain a sequence 7', of pairwise disjoint
subsets of S and a sequence §, of positive numbers such that with
6,=9; for teT;, the intersection of nU with the set M, 7, (X,+6,U)
is empty for each n. Then of course N, g(X,+9,U)=®D, where &, is
chosen arbitrarily (>0) for se S~UT7T,;. It now follows from the
separation theorem 2.7 that there are open halfspaces J,> X+ 6, (int U),
such that N, gJ, =0, and with ¢,=}, there exists for each s a closed

halfspace @ such that
Xy+eU <@, = J,.

But then of course N, _gQ,=¢ and the proof of 2.8 is complete.

It is proved in [3] that if a closed convex subset X of £ admits no
boundary ray, then each closed convex set Y < F ~ X can be separated
from X by a hyperplane which misses X. By using this fact in an argu-
ment similar to that of 2.8, we can establish the following result.

2.9. THEOREM. Suppose {X :s € 8} is a family of closed convex proper
subsets of E, each admitting no boundary ray, and N, gX,=0. Then there
are open halfspaces Q,> X, such that N, 3Q,=0.
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3. Extensions to infinite-dimensional spaces. In order not to obscure
the basic ideas, we have thus far confined our discussion to finite-dimen-
sional spaces. However, most of the results can be extended in some
form to rather general Hausdorff linear spaces, the principal change
being the explicit assumption of local compactness of the sets involved.
The following fact, proved in [3], is the main tool in carrying out the
extension:

() Suppose X is a locally compact closed convex subset of a Haus-
dorff linear space, peX, U is a neighborhood of p, and S is a net in
X ~U. Then there are a subnet z; of S and a corresponding net #, in
10,1] (B ranging over some directed set) such that

tg>te[0,1] and (1—tp)p+ix;>2eX~{p}.

To illustrate the manner in which (1) is employed, let us show that for
a locally compact closed convex subset X of a Hausdorff linear space X,
absence of asymptotes or boundary rays implies that 6 ¢ cl(X—Y)
whenever Y is a closed convex subset of £~ X. (In other words, condi-
tion 1.3 (ii) implies condition 1.3 (v) in this more general setting.) If
6 ecl(X—Y), there must be nets », in X and y, in Y such that
x,—y,—> 0. Since X and Y are closed and have no common point,
neither z, nor y, admits a convergent subnet. Choosing u€eX and veY,
we see by (f) that there are a subnet z; of z, and a corresponding net
tsin ]0,1] with

tg>t€[0,1] and (1—tp)u+itga,—>xeX~{u}.

Since x; cannot be convergent, it follows that t=0 and {2, > g=2—wu.
Also, of course, #;y, - ¢q, and the proof is completed by applying 1.1
and 1.2 as in the finite-dimensional case.

Most of the other results of §§ 1-2 can be extended in a similar way,
insofar as they involve finite families of locally compact sets. Necessity
of some sort of compactness condition is indicated by the results of [2].
And the results of § 2 depend so heavily on Caratheodory’s theorem that,
insofar as they involve infinite families of sets, they do not extend to
infinite-dimensional spaces even if severe restrictions be placed on the
individual sets of the family. For example (relative to 2.1 and 2.3), let
E be the space (I?) for p € [1,00[, and let §; € (I?) be such that =1 and
0/=0for i+j. For each i€l, let X; be the segment

[01+ 0441, — (21— 1)0;] < B .

Then A ,c

2270,y = 3 248, + 6;,,) —27%(2¥— 1), € conv U X;,

t=1 i=1 i=1
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whence

P -]
32716, =y € cleonv |J X, .
1 i=1

But if yeclconviz;:iel} with always x,€X;, then sup,x,*l1=2-%,
whence x; =9, + d,,, for each ¢ and y'=1, an impossibility.

Because of the restrictions which must be added, the infinite-dimen-
sional analogues of our results appear to be of only marginal interest.
Thus we shall omit further details.
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