MATH. SCAND. 7 (1959), 372-376

PARACONVEX SETS

ERNEST MICHAEL

1. Introduction. The principal purpose of this paper is to show that
some of the desirable topological properties of convex subsets of a Banach
space remain valid for a larger class of sets, which we call paraconvex.
Specifically, we shall generalize the following two standard results, the
first of which follows from the second.

TaEOREM A. [1, Theorem 4.1] If X is paracompact, A a closed subset
of X, and C a closed, convex subset of a Banach space Y, then every con-
tinuous g: A — C can be extended to a continuous f: X — C.

TreorREM B. [3, Theorem 3.2], [4, Theorem 1]. If X s paracompact,
Y a Banach space, and €(Y) the family of closed, convex, non-empty sub-
sets of Y, then every lower semi-continuous @: X — €(Y) admits a selection.

@ is lower semi-continuous if {x e X|@(x)nU +0} is open in X for
every open U< Y. A selection for @ is a continuous f: X — Y such that
f(x)eD(x) for every xeX. (No previous knowledge of continuous selec-
tions is required to read this paper, but some elementary results on
lower semi-continuity from section 2 of [3] are used in the proofs.)

To see how Theorem A follows from Theorem B, let X, A<X, Y,
CcY,and g:4 - C be as in Theorem A. Define p: X — %(Y) by

p@) = fgl2)} i wecd
p(x) = C if rzeX-4;

this y is lower semi-continuous [3, Example 1.3*], and a selection for y
is the required extension of g.

To define paraconvex sets, let £ be a normed linear space with metric
o0, and let « be a number such that 0<x < 1. Then a subset P of £ is
o-paraconvex if, whenever peF and r >0 are such that o(p, P)<r, then

Received June 13, 1958.

This paper was written in part on a National Science Foundation contract at the
Institute for Advanced Study, and in part on a National Science Foundation contract
at the University of Washington.



PARACONVEX SETS 373

o(¢; P) = ar  forall geconv(S,(p)nP),

where §,(x) denotes the open r-sphere about «, and conv(4) denotes the
convex hull of 4. The set P is called paraconvex if it is x-paraconvex for
some x < 1. It is clear that a closed set is 0-paraconvex if and only if it
is convex; in the opposite direction, V. L. Klee has shown [2] that
every subset of F is l-paraconvex if and only if ¥ is either an inner-
product space or two-dimensional. Since paraconvexity is not a very
intuitive concept, the following examples of subsets of the euclidean plane
—all of them compact, one-dimensional absolute retracts—may be help-
ful.

ExampLE 1.1. The letters V, X, Y, and Z, and a circular arc sub-
tending an angle <=, are paraconvex. The sharper the angle of the V,
and the closer to = the angle subtended by the arc, the closer to 1 one
must take « for these sets to be «x-paraconvex.

ExamprLE 1.2. The letter U, and a circular arc subtending an angle
=m, are not paraconvex. In the case of the U, the midpoint p of the
line segment joining the end points of the U violates the definition of
a-paraconvexity for any « < 1; in the case of the circular arc, the same
difficulty occurs when one takes p the center of the circle.

In section 2, we apply Theorem B inductively to show (Theorem 2.1)
that Theorem B remains true if “convex’ is replaced by “x-paraconvex’
for a fixed « < 1; just as above, it follows (Corollary 2.2) that Theorem A
remains true with ‘“‘convex’” replaced by ‘‘paraconvex’ (and hence
every closed, paraconvex subset of a Banach space is an absolute retract).
It is curious to note that, while Theorem A can be proved directly, with-
out using Theorem B and the theory of selections, the only approach
to Corollary 2.2 seems to be via Theorem 2.1.

An examination of the proof of Theorem 2.1 reveals that it actually
provides a method of strengthening selection theorems, in a particular
way, under very general circumstances. A sort of metatheorem (Theorem
3.1) which makes this precise is given in section 3. This theorem is
applicable not only to normed linear spaces but, more generally, to
spaces with a “convex structure’’ as defined in [5]; this is done in Theo-
rem 3.2, which generalizes Theorem 2.1.

2. The principal theorem.

THEOREM 2.1. Let X be paracompact, ¥ a Banach space with metric
0, a <1, P (Y) the family of closed, «-paraconvex, non-empty subsets of Y,
and @:X - P (Y) lower semi-continuous. Then
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(a) There exists a selection for @.

(b) If, for some r>0, there exists a continuous g:X — Y such that
o(9(x), D(x)) <r for all xeX, then there exists a selection f for @ such that
e(9(@), f(x)) <&r, where =1 + X7 o',

The proof of Theorem 2.1 depends on the following result, which is
equivalent to Theorem B. We denote the family of non-empty subsets
of Y by 2¥,

TareoreEM B'. [3, Footnote 7]. Let X be paracompact, Y a Banach
space, and @ : X — 2Y lower semi-continuous. Then there exists a continuous

J: X — Y such that
f(x) € (conv (D(z))~
for every xe X.

Theorem B’ obviously implies Theorem B, and the converse follows
from the fact [3, Propositions 2.3 and 2.6] that the lower semi-continuity
of @ implies that of y defined by y(z) = D(x)-.

Proor or THEOREM 2.1. We first prove (b), and then (a).

b) Pick >« such that X' »*<&. By induction, we shall define a
sequence of continuous functions f,:X - ¥, n=0,1, ..., with f,=g,
such that, for all » and all ze X,

(1) o(fal2), P(2)) < ymr,

(2) Q(fn(x)7 fn+1(x)) = ,yn,r .

This will be sufficient, for by (2) this sequence of functions is uniformly
Cauchy, and hence has a continuous limit f. This f is a selection for @
by (1), and o(g(=), f(2)) <r by (2).

Let fo=g. Suppose fi, ..., f, have been constructed, and let us con-

struct f,.,. Define @, .,:X — 2¥ by

¢n+1(x) = Sy"r(fn(x)) n ¢(x)’

then @, ,;(x) is never empty (by the inductive assumption on f,) and
D, ., is lower semi-continuous by [3, Proposition 2.5]. Hence, by Theo-
rem B’, there exists a continuous f, ;:X — Y such that

Sfan(®) € (conv(¢n+1(x)))~

for every e X. This f,,, clearly satisfies (2), and it satisfies (1) because
each @(x) is x-paraconvex, whence

Q(fnﬂ(x)’ @(x)) < aytr < prily
for all z € X.
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(a) Pick 422 such that ®(x)nS,0)+d for some xzeX, and let
f=max(x, A). For each positive integer n, let

U, = {weX | D) nS8pu0) + 0} .

Then each U, is open, since @ is lower semi-continuous. Hence {U,}._;
is an open covering of the paracompact space X, and thus has a locally
finite closed refinement {4}, _,, with 4,<U, and 4,<A4,,,, for all n.
By induction, we shall define for each n a selection f, for @#| 4, such that
always f, 1114, =f,. This will be sufficient, for then the function f: X - ¥,

defined by
fx) = Jn(@), xed,,
is a selection for @.
We shall now define functions f, satisfying the above requirements
and, to keep the induction going, we shall also require that, for all =,

3) o(ful@), 0) < g1,  zed,.

The existence of a suitable f; follows from part (b), with X replaced by
A,, r by B, and with g(x)=0 for all zeX. Suppose now that f,, ..., f,
have been properly defined, and let us construct f, ;.

Define @,.,:4,, ., > Z,(Y) by

¢n+1(x) = {fn(x)} if =ze An
D 1a(2) = () if ze An+1'—An ’

and note that @,,, is lower semi-continuous by [3, Example 1.3*].
We can therefore apply part (b) of our theorem, with X replaced by
A, 1, Dby D4, r by o1, and with g(x)=0 for all z, to obtain a selec-
tion f, ,, for @, ,, such that

Q(fn+1(x), 0) < aprtt £ ﬂn+2

for all z € 4, ,,. This f,, satisfies all our requirements.

CorOLLARY 2.2. If X is paracompact, A a closed subset of X, and P a
closed, paraconvex subset of a Banach space, then every continuous g: A — P
can be extended to a continuous f: X — P.

Proor. This goes just like the proof that Theorem B implies Theorem
A in footnote 3 of [3].

3. A generalization. Let Y be a complete metric space, and # a
hereditary family of subsets of ¥. (This means that if Be# and B'<B,
then B'eZ#.) Let x:%# — 2Y be a function such that
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(a) »(B)> B for all Be4,

(b) If Be# and B<8,(p) for some peY and r> 0, then »(B)<S,(p).
In this situation, a set Be# is called convex if »(B)=B; similarly, we
can define w-paraconvexr and paraconvex for members of & just as in
section 1, by simply replacing conv(B) by »(B). The fact that Theorem
B’ implies Theorem 2.1 now immediately generalizes to our present
situation as follows.

THEOREM 3.1. Let Y, #<2Y, and »:%# — 2¥ be as above, let X be
paracompact, and suppose that, for every closed X'<X and every lower
semi-continuous @: X' — A, there exists a continuous f: X' — Y such that
f@) e (x(f(x)))” for every weX. Then every lower semi-continuous
DX > P(Y) admits a selection, where P, denotes the family of closed,
o-paraconvex, non-empty subsets of ¥ (x <1).

Proor. The proof goes exactly like the proof of Theorem 2.1, and
can therefore be omitted.

Theorem 3.1 clearly shows that Theorem B’ implies Theorem 2.1.
Another application is to strengthen [5, Theorem 1.3] as follows. Using
the terminology of [5], let ¥ be a complete metric space with a convex
structure, let # be the family of admissible subsets of Y, and let
»(B)=conv (B) for all BeZ. Let us also specifically assume that condi-
tion (b) at the beginning of this section is satisfied. Then [5, Theorem
1.3] and Theorem 3.1 together yield the following result, which generalizes
Theorem 2.1.

THEOREM 3.2. Let Y be as above, and let X be paracompact. Then every
lower semi-continuous @: X — P _(Y) admits a selection.
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