A NOTE ON THE CONVOLUTION OF REGULAR MEASURES

KARL STROMBERG

Throughout mathematical literature there occur two popular ways of defining the convolution of Borel measures μ and ν on a locally compact Hausdorff group G. The first definition [1] [7] is made by appealing to the Riesz representation theorem and letting $\mu * \nu$ be that unique regular Borel measure on G such that

(1)
$$\int_G f(z) d\mu * \nu(z) = \int_G \int_G f(xy) d\mu(x) d\nu(y)$$

for all continuous functions f on G which vanish at infinity. The second [4] [6] defines $\mu * \nu$ explicitly by the formula

(2)
$$\mu * \nu(E) = \int_{G} \mu(Ex^{-1}) \, d\nu(x)$$

for each Borel subset E of G. These two definitions need not be equivalent unless μ and ν are regular since the latter definition may not yield a regular measure. The main purpose of this paper is to prove that these two definitions are equivalent in the case that both μ and ν are regular measures. This fact and others are derived from our main theorem on the regularity of certain measures.

1. Preliminaries. The class of Borel sets in a locally compact Hausdorff space X is the smallest σ -algebra $\mathscr{B}(X)$ of subsets of X that contains all open subsets of X. A complex-valued countably additive Borel measure μ on X is any complex-valued function μ having $\mathscr{B}(X)$ as its domain such that $\mu(0)=0$ and $\mu\left(\bigcup_{n=1}^{\infty}E_n\right)=\sum_{n=1}^{\infty}\mu(E_n)$ for each sequence E_1,E_2,\ldots of pairwise disjoint Borel subsets of X. The total variation of μ is the non-negative, real-valued, countably additive Borel measure $|\mu|$ on X defined as follows [3]:

$$|\mu|(E) = \sup \sum_{j=1}^{n} |\mu(E_j)|$$

Received June 16, 1959.

This research was supported by the Office of Naval Research, U.S.A.

where the supremum is taken over all partitions of E into a finite number of Borel sets E_1, \ldots, E_n . The measure μ is said to be *inner regular* (outer regular) if for each Borel set E and each positive number ε there exists a compact set $C \subseteq E$ (an open set $J \supset E$) such that

$$|\mu|(E \setminus C) < \varepsilon$$
 $(|\mu|(J \setminus E) < \varepsilon)$.

It is said to be regular if it is both inner regular and outer regular.

Let $\mathscr{C}_0(X)$ denote the set of all complex-valued continuous functions on X which vanish at infinity. Make $\mathscr{C}_0(X)$ into a Banach space in the usual way by defining the linear operations pointwise and using the uniform norm

$$||f|| = \max\{|f(x)|: x \in X\}.$$

Let $\mathcal{M}(X)$ denote the set of all complex-valued, countably additive, regular Borel measures on X. Make $\mathcal{M}(X)$ into a Banach space by defining linear operations setwise and defining $\|\mu\| = |\mu|(X)$. According to the Riesz representation theorem [2, pp. 247–248] [3] [5, p. 137] $\mathcal{M}(X)$ is isomorphically isometric to the first conjugate space $\mathscr{C}_0(X)^*$ of $\mathscr{C}_0(X)$ under the mapping $\mu \to M$ where

(3)
$$M(f) = \int_X f(x) d\mu(x), \quad f \in \mathscr{C}_0(X) .$$

2. The main theorem. Let X and Y be locally compact Hausdorff spaces and suppose that Φ is a continuous mapping of X into Y. It follows easily from our definition of Borel sets that the mapping: $E \to \Phi^{-1}(E)$ is a mapping of $\mathcal{B}(Y)$ into $\mathcal{B}(X)$. Thus if $\mu \in \mathcal{M}(G)$, then we may define λ on $\mathcal{B}(Y)$ by setting

$$\lambda(E) = \mu(\Phi^{-1}(E)), \qquad E \in \mathscr{B}(Y).$$

It is clear that λ is a complex-valued countably additive Borel measure on Y. It is called the *measure induced by* μ and Φ .

THEOREM 1. Let X, Y, Φ, μ and λ be as above. Then $\lambda \in \mathcal{M}(Y)$, that is λ is a regular measure.

PROOF. Let $E \in \mathcal{B}(Y)$ and $\varepsilon > 0$. Set $E_0 = \Phi^{-1}(E)$. Since μ is regular, there exists a compact set $A_0 \subseteq E_0$ such that $|\mu|(E_0 \setminus A_0) < \varepsilon$. Now set

$$C = \Phi(A_0)$$
 and $C_0 = \Phi^{-1}(C)$.

Then C is compact, $C \subseteq E$, C_0 is closed, $A_0 \subseteq C_0 \subseteq E_0$ and $|\mu|(E_0 \setminus C_0) < \varepsilon$. Thus

$$\begin{split} |\lambda|(E \backslash C) &= \sup \sum_{j=1}^n |\lambda(E_j)| \\ &= \sup \sum_{j=1}^n \left| \mu \left(\Phi^{-1}(E_j) \right) \right| \\ &\leq |\mu| \left(\Phi^{-1}(E \backslash C) \right) = |\mu|(E_0 \backslash C_0) < \varepsilon \end{split}$$

where the two suprema are taken over the family of all partitions of $E \setminus C$ into a finite number of Borel sets E_1, \ldots, E_n . Thus λ is inner regular. Since $|\lambda|$ is a finite measure, the proof is completed by complementation.

COROLLARY 1. Suppose that X, Y and Z are locally compact Hausdorff spaces and that Φ is a continuous mapping of $X \times Y$ into Z. Let $\mu \in \mathcal{M}(X)$ and $\nu \in \mathcal{M}(Y)$. Then the measure λ induced on Z by $\mu \times \nu$ and Φ is in $\mathcal{M}(Z)$.

Proof. This follows from Theorem 1 and the fact that the product of two regular measures is a regular measure.

REMARK. If, in the above corollary, X = Y = Z, then the mapping $(\mu, \nu) \to \lambda$ is a binary operation on $\mathcal{M}(X)$. Of course this operation need not be associative. In fact it is associative if and only if the binary operation Φ is associative on X.

3. The measure algebra $\mathcal{M}(G)$. Let G be a locally compact Hausdorff semigroup, i.e. G is a locally compact Hausdorff space with a jointly continuous, associative, binary operation $p: G \times G \to G$. We write p(x, y) = xy.

PROPOSITION 1. Let μ and ν be in $\mathcal{M}(G)$ and define the functional L on $\mathscr{C}_0(G)$ by the formula

$$L(f) = \int_G \int_G f(xy) \ d\mu(x) \ d\nu(y) \ .$$

Then

$$L \in \mathscr{C}_0(G)^*$$
 and $||L|| \leq ||\mu|| \cdot ||\nu||$.

DEFINITION 1. Let μ , ν and L be as in Proposition 1 and let $\mu*\nu$ denote the unique member of $\mathcal{M}(G)$ such that

$$L(f) = \int_G f \, d\mu * \nu, \qquad f \in \mathscr{C}_0(G) \ .$$

Then $\mu * \nu$ is called the convolution of μ with ν .

It is easily shown that $\mathcal{M}(G)$ with convolution as multiplication is a Banach algebra. It follows from Fubini's theorem that $\mathcal{M}(G)$ is commutative, if G is commutative.

DEFINITION 2. Let μ and ν be in $\mathcal{M}(G)$. Let $\mu \cdot \nu$ denote the measure in $\mathcal{M}(G)$ induced by the product measure $\mu \times \nu$ and the semigroup operation p (as in Corollary 1).

Thus for $E \in \mathcal{B}(G)$, letting ψ_E denote the characteristic function of E, we have

(4)
$$\mu \cdot \nu(E) = \mu \times \nu(p^{-1}(E)) = \int_G \int_G \psi_E(xy) \ d\mu(x) \ d\nu(y) \ .$$

THEOREM 2. Let μ and ν be in $\mathcal{M}(G)$. Then $\mu \cdot \nu = \mu * \nu$.

PROOF. First suppose that μ and ν are non-negative and real-valued. Let C be an arbitrary compact subset of G and let $\varepsilon > 0$ be given. Since $\mu * \nu$ and $\mu \cdot \nu$ are regular, non-negative, real-valued measures there exists an open set J such that $C \subset J$, $\mu * \nu(J) < \mu * \nu(C) + \varepsilon$ and $\mu \cdot \nu(J) < \mu \cdot \nu(C) + \varepsilon$. Let f be a continuous function from G into [0, 1] such that f(x) = 1 for all $x \in C$ and f(x) = 0 for all $x \in G \setminus J$. Then

$$\mu *\nu(C) = \int_{G} \psi_{C}(z) d\mu *\nu(z)$$

$$\leq \int_{G} f(z) d\mu *\nu(z)$$

$$= \int_{G} \int_{G} f(xy) d\mu(x) d\nu(y)$$

$$\leq \int_{G} \int_{G} \psi_{J}(xy) d\mu(x) d\nu(y)$$

$$= \mu \cdot \nu(J) < \mu \cdot \nu(C) + \varepsilon.$$

Since ε is arbitrary we conclude that $\mu * \nu(C) \leq \mu \cdot \nu(C)$. On the other hand

$$\mu \cdot \nu(C) = \int_{G} \int_{G} \psi_{C}(xy) d\mu(x) d\nu(y)$$

$$\leq \int_{G} \int_{G} f(xy) d\mu(x) d\nu(y)$$

$$= \int_{G} f(z) d\mu * \nu(z)$$

$$\leq \int_{G} \psi_{J}(z) d\mu * \nu(z)$$

$$= \mu * \nu(J) < \mu * \nu(C) + \varepsilon.$$

Therefore $\mu \cdot \nu(C) = \mu * \nu(C)$. This proves that $\mu \cdot \nu$ and $\mu * \nu$ agree on all compact sets. Thus, for arbitrary $E \in \mathcal{B}(G)$, we have

$$\mu \cdot \nu(E) = \sup \{ \mu \cdot \nu(C) \colon C \text{ is compact, } C \subseteq E \}$$
$$= \sup \{ \mu * \nu(C) \colon C \text{ is compact, } C \subseteq E \}$$
$$= \mu * \nu(E) .$$

This completes the proof in the case that μ and ν are non-negative and real-valued. The second case, in which μ and ν are arbitrary, follows immediately from the first case and the Jordan decomposition theorem [2, p. 123].

In view of this theorem we shall now abandon the notation $\mu \cdot \nu$ in favor of the more standard notation $\mu * \nu$.

COROLLARY 2. Let G be a locally compact Hausdorff group and suppose that μ and ν are in $\mathcal{M}(G)$. Then

$$\mu * \nu(E) = \int_G \mu(Ey^{-1}) \ d\nu(y) = \int_G \nu(x^{-1}E) \ d\mu(x)$$

for each $E \in \mathcal{B}(G)$.

PROOF. This follows from Theorem 2 and the formulas

$$\int\limits_G \psi_E(xy) \; d\mu(x) \; = \; \mu(Ey^{-1}), \qquad \int\limits_G \psi_E(xy) \; d\nu(y) \; = \; \nu(x^{-1}E) \; .$$

4. The center of $\mathcal{M}(G)$. Let G be as in Section 3. For $x \in G$ let ε_x be the measure defined as follows:

$$\varepsilon_x(E) \,=\, \left\{ \begin{array}{ll} 0 & \text{if} & x \notin E \ , \\ 1 & \text{if} & x \in E \ , \end{array} \right. \quad E \in \mathcal{B}(G) \ .$$

The measure ε_x is called the *unit point mass at x*. It is the measure corresponding to the linear functional $f \to f(x)$ on $\mathscr{C}_0(G)$.

An easy computation shows that $\varepsilon_x * \varepsilon_y = \varepsilon_{xy}$ for all x and y in G. Thus the mapping $x \to \varepsilon_x$ is an algebraic isomorphism of G into $\mathscr{M}(G)$. It is a homeomorphism if $\mathscr{M}(G)$ ($=\mathscr{C}_0(G)^*$) is supplied with the weak* topology. Hence $\mathscr{M}(G)$ is commutative if and only if G is commutative.

We also observe that ε_e is a two-sided identity for $\mathcal{M}(G)$ if and only if e is a two-sided identity for G.

The center of $\mathcal{M}(G)$ is the set of all $\mu \in \mathcal{M}(G)$ such that $\mu * \nu = \nu * \mu$ for each $\nu \in \mathcal{M}(G)$.

THEOREM 3. Let $\mu \in \mathcal{M}(G)$. Then μ is in the center of $\mathcal{M}(G)$ if and only if $\mu * \varepsilon_x = \varepsilon_x * \mu$ for each $x \in G$.

PROOF. The necessity of the condition is obvious. To prove its sufficiency let $v \in \mathcal{M}(G)$ and $E \in \mathcal{B}(G)$. Then

$$\begin{split} \mu * \nu(E) &= \int\limits_G \int\limits_G \psi_E(xy) \; d\mu(x) \; d\nu(y) \\ &= \int\limits_G \int\limits_G \psi_E(x) \; d\mu * \varepsilon_y(x) \; d\nu(y) \\ &= \int\limits_G \int\limits_G \psi_E(x) \; d\varepsilon_y * \mu(x) \; d\nu(y) \\ &= \int\limits_G \int\limits_G \psi_E(yx) \; d\mu(x) \; d\nu(y) = \nu * \mu(E) \; . \end{split}$$

Thus $\mu * \nu = \nu * \mu$ and the theorem is proved.

COROLLARY 3. Let G be a locally compact Hausdorff group and let μ be in $\mathcal{M}(G)$. Then the following four propositions are equivalent:

- (a) μ is in the center of $\mathcal{M}(G)$;
- (b) $\mu * \varepsilon_x = \varepsilon_x * \mu$ for each $x \in G$;
- (c) $\mu(xEx^{-1}) = \mu(E)$ for $x \in G$, $E \in \mathcal{B}(G)$;
- (d) $\mu(Ex) = \mu(xE)$ for $x \in G$, $E \in \mathscr{B}(G)$.

PROOF. The equivalence of (a) and (b) follows from Theorem 3. Propositions (c) and (d) are obviously equivalent. The formulas $\mu * \varepsilon_x(E) = \mu(Ex^{-1})$ and $\varepsilon_x * \mu(E) = \mu(x^{-1}E)$, which follow from Corollary 2, imply the equivalence of (b) and (d). This completes the proof.

REFERENCES

- 1. I. Glicksberg, Convolution semigroups of measures, Pacific J. Math. 9 (1959), 51-67.
- 2. Paul Halmos, Measure theory, New York, 1950.
- 3. Edwin Hewitt, Remarks on the inversion of Fourier-Stieltjes transforms, Ann. of Math. (2) 57 (1953), 458-474.
- Y. Kawada and K. Itô, On the probability distributions on a compact group I, Proc. Phys.-Math. Soc. Japan (3) 22 (1940), 977-998.
- 5, M. A. Naimark, Normed rings, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1956.
- Yu. A. Šreider, The structure of maximal ideals in rings of measures with convolution, Mat. Sbornik N. S. 27 (69), 297-318 (1950). Also Amer. Math. Soc. Translation No. 81 (1953).
- J. G. Wendel, Haar measure and the semigroup of measures on a compact group, Proc. Amer. Math. Soc. 5 (1954), 923-929.

YALE UNIVERSITY, NEW HAVEN, CONNECTICUT, U.S.A.