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A NOTE ON THE CONVOLUTION
OF REGULAR MEASURES

KARL STROMBERG

Throughout mathematical literature there occur two popular ways of
defining the convolution of Borel measures 4 and » on a locally compact
Hausdorff group . The first definition [1] [7] is made by appealing to
the Riesz representation theorem and letting u *» be that unique regular
Borel measure on G such that

M V1@ ey = § (@) duw) aviy)
G G a

for all continuous functions f on G' which vanish at infinity. The second
[4][6] defines u *» explicitly by the formula

2) pxn(B) =\ u(Ba) dvia)
G

for each Borel subset £ of G. These two definitions need not be equivalent
unless u and » are regular since the latter definition may not yield a
regular measure. The main purpose of this paper is to prove that these
two definitions are equivalent in the case that both x4 and v are regular
measures. This fact and others are derived from our main theorem on
the regularity of certain measures.

1. Preliminaries. The class of Borel sets in a locally compact Hausdorff
space X is the smallest g-algebra #(X) of subsets of X that contains all
open subsets of X. A complex-valued countably additive Borel measure u
on X is any complex-valued function 4 having %(X) as its domain such
that u(0)=0 and u(U;_, B,)=27_, u(E,) for each sequence E,, £, .
of pairwise disjoint Borel subsets of X. The total variation of u is the
non-negative, real-valued, countably additive Borel measure |u| on X
defined as follows [3]: n
|ul(E) = SUPZ; |u(E)|
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where the supremum is taken over all partitions of £ into a finite number
of Borel sets E,, ..., E,. The measure y is said to be inner regular
(outer regular) if for each Borel set £ and each positive number ¢ there
exists a compact set C<E (an open set J ©E) such that

HWENO) <& (WlI\E) < ).

It is said to be regular if it is both inner regular and outer regular.
Let €4(X) denote the set of all complex-valued continuous functions

on X which vanish at infinity. Make % (X) into a Banach space in the

usual way by defining the linear operations pointwise and using the uni-

form norm
Ifll = max{|f(x)| : zeX}.

Let #(X) denote the set of all complex-valued, countably additive,
regular Borel measures on X. Make .#(X) into a Banach space by de-
fining linear operations setwise and defining ||u||= |u|(X). According to
the Riesz representation theorem [2, pp. 247-248] [3] [5, p. 137] A (X)
is isomorphically isometric to the first conjugate space €(X)* of €(X)
under the mapping 4 —~ M where

3) up) = (t@du),  feb@).

X

2. The main theorem. Let X and Y be locally compact Hausdorff
spaces and suppose that @ is a continuous mapping of X into Y. It
follows easily from our definition of Borel sets that the mapping:
E — ®-Y(E) is a mapping of #(Y) into #(X). Thus if ue#(G), then we
may define A on #(Y) by setting

ME) = u(DYE), EcaY).

It is clear that A is a complex-valued countably additive Borel measure
on Y. It is called the measure induced by p and P.

THEOREM 1. Let X, Y, @, u and A be as above. Then Ac M(Y), that is
A 18 a regular measure.

Proor. Let E€c#(Y) and ¢>0. Set E,=®-1(E). Since u is regular,
there exists a compact set 4,< E, such that |u|(E,\4,) <e. Now set

0 =a®4d,) and C,=00).

Then C is compact, C< E, C, is closed, A,<=C,<E, and |u|(E,\C,) <e.
Thus
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|A[(BE\C)

I

sup 21’ |A(E)|
J=

sup 3 |u(@(5,)
[l (P-HENO)) = |ul(Bo\Cy) < ¢

where the two suprema are taken over the family of all partitions of E\C
into a finite number of Borel sets £, ..., E,. Thus 4 is inner regular.
Since |4] is a finite measure, the proof is completed by complementation.

IIA

CoroLLARY 1. Suppose that X, Y and Z are locally compact Hausdorff
spaces and that D is a continuous mapping of X x Y into Z. Let uc.#(X)
and ve M (Y). Then the measure A induced on Z by u xv and D is in M (Z).

Proor. This follows from Theorem 1 and the fact that the product of
two regular measures is a regular measure.

RemaRrk. If, in the above corollary, X =Y =Z, then the mapping
(u, ) > 4 is a binary operation on .#(X). Of course this operation need
not be associative. In fact it is associative if and only if the binary
operation @ is associative on X.

3. The measure algebra .#(#). Let ¢ be a locally compact Hausdorff
semigroup, i.e. G is a locally compact Hausdorff space with a jointly
continuous, associative, binary operation p: GxG —G. We write
P, y)==y.

ProposiTION 1. Let u and v be in M(G) and define the functional L
on €o(G) by the formula

L(f) = \ { s duw) any) .
G q

Th
o Le%y®* and ||L| < [l IP] -

DErFINITION 1. Let p, v and L be as in Proposition 1 and let uxv denote
the unique member of M (G) such that

L) =\ fdprr, @),

@
Then ux*v is called the convolution of u with v.

It is easily shown that (@) with convolution as multiplication is a
Banach algebra. It follows from Fubini’s theorem that .#(G) is commu-
tative, if G is commutative.
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DEriNiTION 2. Let u and v be in M (G). Let p-v denote the measure in
M (@) induced by the product measure u x v and the semigroup operation p
(as in Corollary 1).

Thus for EeZ%(G), letting yy denote the characteristic function of Z,
we have

(4) uenB) = wxr(pE) = | {wiley) dute) doiy)
[eel

THEOREM 2. Let u and v be in M (G). Then p-v=p=*v.

Proor. First suppose that x4 and v are non-negative and real-valued.
Let C be an arbitrary compact subset of G and let ¢ >0 be given. Since
u*v and u-v are regular, non-negative, real-valued measures there exists
an open set J such that C<J, u*xv(J)<u*»(C)+¢e and p-v(J)<
u-v(C)+e. Let f be a continuous function from G into [0, 1] such that
f(x)=1for all xeC and f(x)=0 for all zteG\J. Then

Il

wo(0) = | vole) dun(e)

IIA

Il
Qe Qe Qe D

f(zy) du(z) dv(y)
<

Q
S pr(ry) du(z) dv(y)
G

= puv(J) < pv(C) + ¢.

Since ¢ is arbitrary we conclude that u*»(C) =< pu-»(C). On the other hand
uw(0) = { { wolay) dutz) driy)
G a
\#(@y) dutz) dvty)
@

G

< { ve) duwia)
G
u

w(J) < ux(C) + ¢.
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Therefore u-v(C)=u*»(C). This proves that u-» and ux» agree on all
compact sets. Thus, for arbitrary Ee%(G), we have

pv(B)

Il

sup{u-»(C): C is compact, C < E}

sup {u*v(C): Cis compact, C < E}
= uxv(E).

This completes the proof in the case that u and » are non-negative and
real-valued. The second case, in which x4 and v are arbitrary, follows
immediately from the first case and the Jordan decomposition theorem
[2, p. 123].

In view of this theorem we shall now abandon the notation u-» in
favor of the more standard notation y *v.

CoROLLARY 2. Let G be a locally compact Hausdorff group and suppose
that u and v are in M(Q). Then

wolB) = \ wBy) doty) = { vz ) dp(a)
G

for each E€%B(GF).
Proor. This follows from Theorem 2 and the formulas

Yvstay) du) = wBy.  (vsta) dy) = v@m)
G G

4. The center of .#(@). Let G be as in Section 3. For ze@ let ¢, be
the measure defined as follows:

sz(E) =

{0 if z¢kl, Eeca@).

1 if zekl,

The measure ¢, is called the unit point mass at x. It is the measure cor-
responding to the linear functional f — f(x) on €(G).

An easy computation shows that ¢, xe,=¢,, for all  and y in G.
Thus the mapping z — ¢, is an algebraic isomorphism of ¢ into .#(@).
It is a homeomorphism if #(G) (=%,(G)*) is supplied with the weal*
topology. Hence .#(G) is commutative if and only if G’ is commutative.

We also observe that ¢, is a two-sided identity for .#(@) if and only if
e is a two-sided identity for G.

The center of #(G) is the set of all ue.#(Q) such that u*v=v*u for
each ve #(@).
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THEOREM 3. Let uc #(G). Then u is in the center of M (G) if and only
if uxe,=¢e,*pu for each xeG.

Proor. The necessity of the condition is obvious. To prove its suf-
ficiency let ve # (@) and E€%(G). Then

wolB) = | { vi(ey) dute) doiy)
G

Yu(®) duxe,(z) dv(y)

vg(@) de,xu(x) dv(y)

I
Qe Q% Qs Q
RE&er? Q%™ Q%o

yr(yz) du(x) dv(y) = v*u(E) .

Thus y*v=v*yu and the theorem is proved.

CoROLLARY 3. Let G be a locally compact Hausdorff group and let u be
in M(G). Then the following four propositions are equivalent:

(a) u s in the center of M (G);

(b) pxey,=c,*pu for each xe@;

(¢) pxBxt)=u(l) forxe@, EcHB(G);
(d) u(Bz)y=pu(xE) for xe@, EcH(G) .

Proor. The equivalence of (a) and (b) follows from Theorem 3.
Propositions (¢) and (d) are obviously equivalent. The formulas
uxey(B)=u(Bx1) and e, *u(E)=pu(x—1E), which follow from Corollary 2,
imply the equivalence of (b) and (d). This completes the proof.
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