A CONDITION FOR C-SUMMABILITY OF NEGATIVE ORDER

A. F. ANDERSEN

1. The purpose of this note is to show that the general criterion for convergence of series, stated by Cauchy [6, p. 125], can be extended to a criterion for summability $(C, -\delta)$, where $0 \le \delta < 1$.

We use the notations

$$A_q^{\alpha} = \begin{pmatrix} q + \alpha \\ q \end{pmatrix}$$
 and $S_n^{\alpha}(u_{\mu}) = \sum_{\mu=0}^n u_{\mu} A_{n-\mu}^{\alpha}$.

The Cesàro means of the order $-\delta$ belonging to the series $\sum u_{\mu}$ may then be denoted by $S_n^{-\delta}(u_{\mu})/A_n^{-\delta}$ or simply by $S_n^{-\delta}/A_n^{-\delta}$, $n=0, 1, 2, \ldots$

2. The result of the investigation is stated in the following

Theorem 1. A necessary and sufficient condition that the series $\sum u_{\mu}$ should be summable $(C, -\delta)$, $0 \le \delta < 1$, is that

(1)
$$\sum_{\mu=\nu}^{n} u_{\mu} A_{n-\mu}^{-\delta} = o_{\nu}(1) n^{-\delta}.$$

The meaning of this condition is that, corresponding to a given number $\varepsilon > 0$, there exists a number $N = N(\varepsilon)$ such that the inequality

(1*)
$$\left|\sum_{\mu=n}^{n} u_{\mu} A_{n-\mu}^{-\delta}\right| < \varepsilon n^{-\delta}$$

is satisfied whenever $\nu > N$ and $n \ge \nu$.

As in formula (1), the variable to which the symbol o refers will be indicated by a subscript whenever any doubt may arise.

For $\delta = 0$ Theorem 1 coincides with the convergence criterion of Cauchy. Thus, in the proof of the theorem we may assume $0 < \delta < 1$.

Necessity. The substance of this part of the theorem is included in the following

Received May 20, 1959.

Math. Scand. 7.

LEMMA 1. If $0 < \delta < 1$ and

$$S_n^{-\delta}(u_\mu) = o(n^{-\delta}) ,$$

then corresponding to a given number $\varepsilon > 0$ there exists a number $M = M(\varepsilon)$ such that the inequality

$$\left|\sum_{\mu=0}^{r} u_{\mu} A_{n-\mu}^{-\delta}\right| < \frac{1}{2} \varepsilon A_{n}^{-\delta}$$

is satisfied whenever v > M and $n \ge v$.

To prove this lemma we apply an Abel transformation (cf. [5, (17) p. 7]) and obtain

Since $A_p^{\delta-2} < 0$ for $p \ge 1$, $A_q^{-\delta} > 0$ for all values of q, we have for $n \ge v$

$$\sum_{p=0}^{r-\mu} A_p^{\delta-2} A_{n-\mu-p}^{-\delta} \ge \sum_{p=0}^{n-\mu} A_p^{\delta-2} A_{n-\mu-p}^{-\delta} = A_{n-\mu}^{-1} \ge 0$$

and consequently

(3)
$$\left| \sum_{\mu=0}^{\mathbf{r}} u_{\mu} A_{n-\mu}^{-\delta} \right| \leq \sum_{\mu=0}^{\mathbf{r}} |S_{\mu}^{-\delta}| \sum_{p=0}^{\mathbf{r}-\mu} A_{p}^{\delta-2} A_{n-\mu-p}^{-\delta}.$$

Let a number $\varepsilon > 0$ be given. According to the assumption (2) there exists a number P such that

$$|S_{\mu}^{-\delta}| < \frac{1}{4} \varepsilon A_{\mu}^{-\delta} \quad \text{ for } \quad \mu > P .$$

Restricting ν to values greater than P, we can divide the sum occurring on the right side of (3) into two sums,

$$\sum_{\mu=0}^{P} \quad \text{and} \quad \sum_{\mu=P+1}^{\nu}.$$

For all values of n and ν under consideration, i.e. for $n \ge \nu > P$, we find for the second sum

$$(4) \qquad \sum_{\mu=P+1}^{\nu} |S_{\mu}^{-\delta}| \sum_{p=0}^{\nu-\mu} A_{p}^{\delta-2} A_{n-\mu-p}^{-\delta} \leq \frac{1}{4} \varepsilon \sum_{\mu=0}^{\nu} A_{\mu}^{-\delta} \sum_{p=0}^{\nu-\mu} A_{p}^{\delta-2} A_{n-\mu-p}^{-\delta}$$

$$= \frac{1}{4} \varepsilon \sum_{\mu=0}^{\nu} A_{\mu}^{-1} A_{n-\mu}^{-\delta} = \frac{1}{4} \varepsilon A_{n}^{-\delta},$$

where the evaluation of the repeated sum may be verified by the Abel transformation used above.

In order to estimate the sum $\sum_{\mu=0}^{P}$ we first notice that the binomial

coefficients $A_q^{-\delta}$, $q = 0, 1, 2, \ldots$, are decreasing, and that the coefficients $A_p^{\delta-2}$ are negative for p > 0. Thus for 0 it holds that

$$\begin{split} A_{n-\mu-p}^{-\delta} \, > \, A_{n-\mu}^{-\delta} \, , \\ A_p^{\delta-2} A_{n-\mu-p}^{-\delta} \, < \, A_p^{\delta-2} A_{n-\mu}^{-\delta} \, . \end{split}$$

so that

$$\sum_{p=0}^{\nu-\mu} A_p^{\delta-2} A_{n-\mu-p}^{-\delta} \, \leq \sum_{p=0}^{\nu-\mu} A_p^{\delta-2} A_{n-\mu}^{-\delta} \, = \, A_{\nu-\mu}^{\delta-1} A_{n-\mu}^{-\delta} \, \leq \, A_{\nu-P}^{\delta-1} A_{n-P}^{-\delta} \, .$$

Assuming again that $n \ge v > P$, we have

$$\frac{A_n^{-\delta}}{A_{n-P}^{-\delta}} = \frac{(n-\delta)(n-1-\delta)\dots(n-P+1-\delta)}{n(n-1)\dots(n-P+1)} > \left(1 - \frac{\delta}{n-P+1}\right)^P > (1-\delta)^P,$$

$$A_{n-P}^{-\delta} < (1-\delta)^{-P} A_n^{-\delta},$$

and hence

$$\sum_{p=0}^{\nu-\mu} A_p^{\delta-2} A_{n-\mu-p}^{-\delta} \, < \, (1-\delta)^{-P} A_{\nu-P}^{\delta-1} A_n^{-\delta} \, .$$

Thus, if k denotes a constant such that $|S_{\mu}^{-\delta}| < k$ for $0 \le \mu \le P$, it holds that

$$\sum_{\mu=0}^{P} |S_{\mu}^{-\delta}| \sum_{p=0}^{r-\mu} A_{p}^{\delta-2} A_{n-\mu-p}^{-\delta} < (P+1)k(1-\delta)^{-P} A_{\nu-P}^{\delta-1} A_{n}^{-\delta}$$

and, since for a fixed value of P

$$A_{\nu-P}^{\delta-1} \to 0 \quad \text{for} \quad \nu \to \infty$$

it follows that there exists a number $M = M(\varepsilon) > P$ such that

(5)
$$\sum_{\mu=0}^{P} |S_{\mu}^{-\delta}| \sum_{n=0}^{\nu-\mu} A_{p}^{\delta-2} A_{n-\mu-p}^{-\delta} < \frac{1}{4} \varepsilon A_{n}^{-\delta},$$

whenever $n \ge v > M$.

The results (4) and (5), combined with (3) holding for $n \ge \nu$, prove Lemma 1.

If $\sum_{\mu=0}^{\infty} u_{\mu}$ is summable $(C, -\delta)$ to the sum U, then the series $\sum_{\mu=0}^{\infty} u'_{\mu}$, where $u'_{0} = u_{0} - U$ and $u'_{\mu} = u_{\mu}$ for $\mu \ge 1$, is summable $(C, -\delta)$ to the sum 0. Since for $v \ge 1$

$$\sum_{\mu=\nu}^{n} u_{\mu} A_{n-\mu}^{-\delta} = \sum_{\mu=\nu}^{n} u'_{\mu} A_{n-\mu}^{-\delta} = \sum_{\mu=0}^{n} - \sum_{\mu=0}^{\nu-1},$$

we obtain, by application of Lemma 1, that

$$\left| \sum_{\mu=\nu}^{n} u_{\mu} A_{n-\mu}^{-\delta} \right| < \frac{1}{2} \varepsilon A_{n}^{-\delta} + \frac{1}{2} \varepsilon A_{n}^{-\delta} = \varepsilon A_{n}^{-\delta}$$

whenever $n \ge v > M + 1$, and this result is equivalent to (1*).

This completes the proof of the necessity part of Theorem 1, stating that the condition (1) is fulfilled if the series $\sum u_{\mu}$ is summable $(C, -\delta)$. If we take $n = \nu$, the condition (1) reduces to the well-known condition for summability $(C, -\delta)$

$$(6) u_{\nu} = o(\nu^{-\delta}) ,$$

corresponding to the condition $u_v = o(1)$ for convergence of $\sum u_v$.

Sufficiency. We begin by proving that the condition (1) implies the convergence of the series $\sum u_{\mu}$.

Writing

$$\sum_{\mu=\tau}^{n}u_{\mu}=\sum_{\mu=\tau}^{n}(u_{\mu}A_{n-\mu}^{-\delta})\frac{1}{A_{n-\mu}^{-\delta}},$$

we find, for every value of n greater than ν , by partial summation

(7)
$$\sum_{\mu=\nu}^{n} u_{\mu} = \sum_{\mu=\nu}^{n-1} \left(\sum_{p=\nu}^{\mu} u_{p} A_{n-p}^{-\delta} \right) \left(\frac{1}{A_{n-\mu}^{-\delta}} - \frac{1}{A_{n-\mu-1}^{-\delta}} \right) + \sum_{p=\nu}^{n} u_{p} A_{n-p}^{-\delta} .$$

Since the sums occurring in the main term of the transformation may be written

$$\sum_{p=\mathbf{v}}^{\mu} u_p A_{n-p}^{-\delta} = \sum_{p=\mathbf{v}}^{n} - \sum_{p=\mu+1}^{n},$$

they can be estimated by application of the assumption (1), whereby we get

$$\sum_{n=r}^{\mu} u_p A_{n-p}^{-\delta} = o_r(1) n^{-\delta} + o_{\mu}(1) n^{-\delta} = o_r(1) n^{-\delta} .$$

The differences in the main term are all positive since $A_{n-\mu-1}^{-\delta} > A_{n-\mu}^{-\delta}$. We therefore obtain from (7)

$$\begin{split} \sum_{\mu=\nu}^{n} u_{\mu} &= o_{\nu}(1) n^{-\delta} \left(\frac{1}{A_{n-\nu}^{-\delta}} - \frac{1}{A_{0}^{-\delta}} \right) + o_{\nu}(1) n^{-\delta} \\ &= o_{\nu}(1) O(1) \left(\frac{n-\nu}{n} \right)^{\delta} + o_{\nu}(1) n^{-\delta} \\ &= o_{\nu}(1) O(1) + o_{\nu}(1) = o_{\nu}(1) \; , \end{split}$$

 ν being less than n. For $n=\nu$ this result is trivially true (cf. (6)).

In proving that the condition (1) further implies the summability $(C, -\delta)$ of Σu_{μ} , we suppose, as we may, that the sum Σu_{ν} is zero. For

$$s_u = u_0 + u_1 + \ldots + u_u$$

we then have

341

$$|s_{\mu}| < k$$
 for all values of μ ,

where k is a suitable constant, and to a given $\varepsilon > 0$ there corresponds a number $Q = Q(\varepsilon)$ such that

We put

$$S_n^{-\delta}(u_\mu) \, = \! \sum_{\mu=0}^n u_\mu A_{n-\mu}^{-\delta} \, = \! \sum_{\mu=0}^m \, + \! \sum_{\mu=m+1}^n = \, \alpha_n + \beta_n \; , \label{eq:Sn}$$

where $m = [\frac{1}{2}n]$, and estimate each of the two sums separately.

For α_n we find, by partial summation,

$$\alpha_n = \sum_{\mu=0}^m u_{\mu} A_{n-\mu}^{-\delta} = \sum_{\mu=0}^{m-1} s_{\mu} A_{n-\mu}^{-\delta-1} + s_m A_{n-m}^{-\delta}$$

and hence

$$\begin{split} |\alpha_n| \, & \leq \, (Q+1) \, k \, |A_{n-Q}^{-\delta-1}| \, + \, \varepsilon (m-Q) \, |A_{n-m+1}^{-\delta-1}| \, + \, o_n(1) \, n^{-\delta} \\ & \leq \, o_n(1) \, n^{-\delta} \, + \, \varepsilon \, K \, n^{-\delta} \, + \, o_n(1) \, n^{-\delta} \, \, , \end{split}$$

where K is a suitable constant (depending only on δ). This shows that there exists a number N such that

$$|\alpha_n| \le \varepsilon (K+2) n^{-\delta}$$
 for $n > N$.

For β_n we find, by applying the assumption (1),

$$\beta_m \, = \! \sum_{\mu=m+1}^n \! u_\mu A_{n-\mu}^{-\delta} \, = \, o_m(1) \, n^{-\delta} \, = \, o(n^{-\delta}) \; .$$

From these results it appears that

$$S_n^{-\delta}(u_n) = o(n^{-\delta}) ,$$

and this completes the proof of Theorem 1.

3. With Theorem 1 at our disposal the following well-known theorem [1, p. 31] can be proved for $0 < \delta < 1$ in the same simple manner as for $\delta = 0$ (the case of convergence).

Theorem 2. The series $\sum u_r$ is summable $(C, -\delta)$, $0 \le \delta < 1$, if $\sum |u_r|$ is summable $(C, -\delta)$.

To give an application of Theorem 1 leading to new results, we shall prove a theorem concerning the order of magnitude of the differences $\Delta^{-r}a_{\nu}$, where r < 1.

These differences are defined by

(8)
$$\Delta^{-r}a_{\nu} = \sum_{\mu=0}^{\infty} A_{\mu}^{r-1} a_{\nu+\mu}, \qquad \nu = 0, 1, 2, \dots,$$

whenever the series on the right converge. If one of these series,

(9)
$$\sum_{\mu=0}^{\infty} A_{\mu}^{r-1} a_{\mu}$$

for instance, is convergent, then all of the series are convergent. Thus, all of the differences (8) exist if but one of them exists.

It has been proved [4, p. 34] that the convergence of the series (9) implies that

and $\Delta^{-r}a_{\nu} = o(1), \qquad \text{if} \quad r \ge 1 \ ,$ $\Delta^{-r}a_{\nu} = o(\nu^{1-r}), \qquad \text{if} \quad 0 < r < 1 \ .$

Recently, Kuttner [7] has shown that the latter result remains true for all negative non-integral values of r and that, in these cases, no better result concerning the order of magnitude can be inferred from the mere existence of the differences.

It now turns out that for r < 1 the order of magnitude will be lowered if we change the requirement to the series (9) from convergence to summability of a negative order greater than -1. If r > 0, we obtain the same result as for $r \ge 1$ if we require that (9) should be summable of an order less than r-1. We confine ourselves to stating and proving the results for 0 < r < 1. For r < 0 no new significant feature does emerge.

THEOREM 3. If 0 < r < 1 and the series (9) is summable $(C, -\delta)$, where $0 < \delta < 1$, then

$$\varDelta^{-r}a_{_{r}} = \left\{ \begin{array}{ll} o(r^{1-r-\delta}) & for & 0 < \delta < 1-r \; , \\ o(\log r) & for & \delta = 1-r \; , \\ o(1) & for & 1-r < \delta < 1 \; . \end{array} \right.$$

To prove this theorem we use the following lemma, proved elsewhere ([3, Theorem Ib, p. 332-34]).

LEMMA 2. If $0 < \delta < 1$ and if

- 1) $\sum_{\mu=0}^{\infty} u_{\mu}$ is summable $(C, -\delta)$ to the sum U,
- 2) ε_{μ} is bounded below,
- 3) $\sum_{\mu=0}^{\infty} A_{\mu}^{-\delta} \Delta^{-\delta+1} \varepsilon_{\mu}$ is absolutely convergent to the sum e,

then the series $\sum u_{\mu} \epsilon_{\mu}$ is convergent and the sum is determined by the formula

(10)
$$\sum_{\mu=0}^{\infty} u_{\mu} \varepsilon_{\mu} = \sum_{\mu=0}^{\infty} S_{\mu}^{-\delta}(u_{p}) \Delta^{-\delta+1} \varepsilon_{\mu} + (\varepsilon_{0} - e) U.$$

The series

$$\Delta^{-r} a_{\nu} = \sum_{\mu=0}^{\infty} A_{\mu}^{r-1} a_{\nu+\mu}$$

may be obtained by multiplying the series

$$\sum_{\mu=0}^{\infty} u_{\mu} = \sum_{\mu=0}^{\infty} A_{\nu+\mu}^{r-1} a_{\nu+\mu}$$

term by term by the factors

(11)
$$\varepsilon_{\mu} = A_{\mu}^{r-1} / A_{\nu+\mu}^{r-1} .$$

For every fixed value of ν the series $\sum_{\mu=0}^{\infty} u_{\mu}$ is summable $(C, -\delta)$ to a sum which may be denoted by U_{ν} , and the factors ε_{μ} are positive for all values of μ . For $\nu \geq 1$ these factors are even decreasing to the limit 1. Obviously, we only need to consider large values of ν .

Since $\varepsilon_{\mu} \to 1$, we have $\varepsilon_{\mu} = O(1)$, and this implies that the difference transformation

$$\Delta^{-\delta+1}\varepsilon_{\mu} = \Delta^{-\delta}(\Delta^{1}\varepsilon_{\mu}) = \sum_{\lambda=0}^{\infty} A_{\lambda}^{\delta-1}\Delta^{1}\varepsilon_{\mu+\lambda}$$

is valid for all values of μ (see for instance [2, p. 20–21]), and hence that

(12)
$$\sum_{\mu=0}^{\infty} A_{\mu}^{-\delta} \Delta^{-\delta+1} \varepsilon_{\mu} = \sum_{\mu=0}^{\infty} A_{\mu}^{-\delta} \sum_{\lambda=0}^{\infty} A_{\lambda}^{\delta-1} \Delta^{1} \varepsilon_{\mu+\lambda}.$$

The differences $\Delta^1 \varepsilon_{\mu}$ being positive for all values of μ , we realize that the terms of the series (12), in both of its forms, are *positive*. By rearrangement of the terms of the repeated series we obtain

$$\sum_{\mu=0}^{\infty}A_{\mu}^{-\delta}\sum_{\lambda=0}^{\infty}A_{\lambda}^{\delta-1}\varDelta^{1}\varepsilon_{\mu+\lambda}=\sum_{\mu=0}^{\infty}\varDelta^{1}\varepsilon_{\mu}$$

and, since the resulting series is convergent, it follows that the series (12) is absolutely convergent to the sum

$$e_{\nu} = \sum_{\mu=0}^{\infty} \Delta^{1} \varepsilon_{\mu} = \varepsilon_{0} - 1 = \frac{1}{A_{\nu}^{r-1}} - 1 = O(\nu^{1-r})$$
.

On account of these results we can determine the value of $\Delta^{-r}a_r$ by the sum-formula (10) of Lemma 2. We obtain

(13)
$$\Delta^{-r}a_{\nu} = \sum_{\mu=0}^{\infty} S_{\mu}^{-\delta}(u_{p}) \Delta^{-\delta+1}\varepsilon_{\mu} + 1 \cdot U_{\nu}.$$

Because of the convergence of the series (9) we have

$$(14) U_{\nu} = \sum_{\mu=0}^{\infty} A_{\nu+\mu}^{r-1} a_{\nu+\mu} = \sum_{\mu=0}^{\infty} A_{\mu}^{r-1} a_{\mu} - \sum_{\mu=0}^{\nu-1} A_{\mu}^{r-1} a_{\mu} = o_{\nu}(1).$$

To estimate the sum

$$V_{\nu} = \sum_{\mu=0}^{\infty} S_{\mu}^{-\delta}(u_p) \Delta^{-\delta+1} \varepsilon_{\mu}$$

we first consider the Cesàro sums occurring in the series. We find

$$\begin{split} S_{\mu}^{-\delta}(u_p) &= \sum_{p=0}^{\mu} u_p A_{\mu-p}^{-\delta} = \sum_{p=0}^{\mu} (A_{\nu+p}^{r-1} a_{\nu+p}) A_{\mu-p}^{-\delta} \\ &= \sum_{p=\nu}^{\nu+\mu} (A_p^{r-1} a_p) A_{\nu+\mu-p}^{-\delta} \end{split}$$

and, using now that the series $\sum A_p^{r-1}a_p$ is summable $(C, -\delta)$, we obtain, by application of Theorem 1, that

$$S_{\mu}^{-\delta}(u_p) = o_{\nu}(1)(\nu + \mu)^{-\delta}$$
,

and this result gives

$$|V_{\nu}| \leq o_{\nu}(1) \sum_{\nu=0}^{\infty} (\nu + \mu)^{-\delta} \Delta^{-\delta+1} \varepsilon_{\mu} ,$$

the differences being positive for all values of μ .

Then, having only to estimate the sum of the series occurring in (15), we write

(16)
$$\sum_{\mu=0}^{\infty} (\nu + \mu)^{-\delta} \Delta^{-\delta+1} \varepsilon_{\mu} = \sum_{\mu=0}^{\nu} + \sum_{\mu=\nu+1}^{\infty} = \gamma_{\nu} + \delta_{\nu}$$

and consider each part of the sum separately.

Beginning with δ_{ν} , we find

$$\delta_{\mathbf{v}} = \sum_{\mu=\nu+1}^{\infty} (\nu+\mu)^{-\delta} \varDelta^{-\delta+1} \varepsilon_{\mu} = \sum_{\mu=\nu+1}^{\infty} (1+\nu\,\mu^{-1})^{-\delta} \mu^{-\delta} \varDelta^{-\delta+1} \varepsilon_{\mu}$$

and, observing that, for all values of $\mu > \nu$,

$$2^{-\delta} < (1 + \nu \mu^{-1})^{-\delta} < 1$$

we get

$$0 \, < \, \delta_{\nu} \, < \, K \sum_{\mu=\nu+1}^{\infty} A_{\mu}^{-\delta} \varDelta^{-\delta+1} \varepsilon_{\mu} \, ,$$

where K is a suitable constant (depending only on δ). By an evaluation similar to that of the series (12) we obtain

$$\begin{split} \sum_{\mu=r+1}^{\infty} A_{\mu}^{-\delta} \varDelta^{-\delta+1} \varepsilon_{\mu} \, &< \sum_{\mu=0}^{\infty} A_{\mu}^{-\delta} \varDelta^{-\delta+1} \varepsilon_{r+1+\mu} \, = \sum_{\mu=0}^{\infty} \varDelta^{1} \varepsilon_{r+1+\mu} \\ &= \varepsilon_{r+1} - 1 \, = \frac{A_{r+1}^{r-1}}{A_{2p+1}^{r-1}} - 1 \, &< \frac{A_{r+1}^{r-1}}{A_{2p+1}^{r-1}} \, . \end{split}$$

The sequence $A_{\nu+1}^{r-1}/A_{2\nu+1}^{r-1}$ being decreasing for $\nu \ge 1$, we further find for all values of $\nu > 1$

 $rac{A_{
u+1}^{r-1}}{A_{2
u+1}^{r-1}} < rac{A_{2}^{r-1}}{A_{3}^{r-1}} = rac{3}{r+2}$,

and it follows that

(17)
$$0 < \delta_{r} < \frac{3K}{r+2}.$$

To estimate the term γ_r we first notice that the partial sums belonging to the series

$$\sum_{q=0}^{\infty} A_q^{\delta-2} \varepsilon_{\mu+q}$$

are *positive*, whatever the value of μ may be. This appears from the facts that the partial sums are decreasing, because $\varepsilon_{\lambda} > 0$ for all values of λ and $A_q^{\delta-2} < 0$ for $q \ge 1$, and that the series, which represents the difference $\Delta^{-\delta+1}\varepsilon_{\mu}$, has a positive sum.

We then put

$$\gamma_{\nu} = \gamma_{\nu}' + \gamma_{\nu}'',$$

where

$$\gamma_{\nu}' = \sum_{\mu=0}^{\nu} (\nu + \mu)^{-\delta} \sum_{q=0}^{\nu-\mu} A_q^{\delta-2} \varepsilon_{\mu+q}$$

and

$$\gamma_{_{\mathbf{v}}}^{\prime\prime} = \sum_{\mu=0}^{_{\mathbf{v}}} \left(\mathbf{v} + \mu \right)^{-\delta} \sum_{q=v-\mu+1}^{\infty} A_{q}^{\delta-2} \varepsilon_{\mu+q} \; . \label{eq:gamma_varphi}$$

Since for $0 \le \mu \le \nu$

$$2^{-\delta} \le (1 + \mu v^{-1})^{-\delta} \le 1$$

and, accordingly,

$$(\nu + \mu)^{-\delta} = \nu^{-\delta} (1 + \mu \nu^{-1})^{-\delta} \le \nu^{-\delta}$$
 ,

we obtain

$$0 < \gamma'_{\nu} < \nu^{-\delta} \sum_{\mu=0}^{\nu} \sum_{q=0}^{\nu-\mu} A_q^{\delta-2} \varepsilon_{\mu+q}$$

and

$$|\gamma_{\scriptscriptstyle \nu}^{\prime\prime}| \, \leqq \, \nu^{-\delta} \sum_{\mu=0}^{\scriptscriptstyle \nu} \, \sum_{q=\nu-\mu+1}^{\infty} |A_q^{\delta-2}| \, \varepsilon_{\mu+q} \, .$$

Considering at first γ''_{ν} , we find

$$\begin{split} \sum_{q=\nu-\mu+1}^{\infty} |A_q^{\delta-2}| \ \varepsilon_{\mu+q} &= \sum_{q=\nu-\mu+1}^{\infty} (-A_q^{\delta-2}) \varepsilon_{\mu+q} < \varepsilon_{\nu+1} \sum_{q=\nu-\mu+1}^{\infty} (-A_q^{\delta-2}) \\ &= \varepsilon_{\nu+1} \left(-\sum_{q=0}^{\infty} A_q^{\delta-2} + \sum_{q=0}^{\nu-\mu} A_q^{\delta-2} \right) = \varepsilon_{\nu+1} A_{\nu-\mu}^{\delta-1} \end{split}$$

and hence

(19)
$$|\gamma_{\nu}^{"}| < \nu^{-\delta} \varepsilon_{\nu+1} \sum_{\mu=0}^{\nu} A_{\nu-\mu}^{\delta-1} = \nu^{-\delta} A_{\nu}^{\delta} \frac{A_{\nu+1}^{r-1}}{A_{\nu+1}^{r-1}} = O(1).$$

Concerning γ'_{ν} , we first notice that

$$\begin{split} \sum_{\mu=0}^{\mathbf{r}} \sum_{q=0}^{\mathbf{r}-\mu} A_{q}^{\delta-2} \varepsilon_{\mu+q} &= \sum_{\mu=0}^{\mathbf{r}} A_{\mu}^{\delta-1} \varepsilon_{\mu} = \sum_{\mu=0}^{\mathbf{r}} A_{\mu}^{\delta-1} \frac{A_{\mu}^{\mathbf{r}-1}}{A_{\nu+\mu}^{\mathbf{r}-1}} \\ &< k_{1} \nu^{1-\mathbf{r}} \sum_{\mu=0}^{\mathbf{r}} A_{\mu}^{\delta-1} A_{\mu}^{\mathbf{r}-1} < k_{1} k_{2} \nu^{1-\mathbf{r}} \sum_{\mu=0}^{\mathbf{r}} (\mu+1)^{\mathbf{r}+\delta-2} \;, \end{split}$$

where k_1 and k_2 are constants depending only on r and δ . It follows that

$$\gamma'_{"} < k_1 k_2 v^{1-r-\delta} \sum_{\mu=0}^{"} (\mu+1)^{r+\delta-2},$$

and it now appears that

$$\begin{array}{lll} (20) & \left\{ \begin{array}{lll} \gamma_{v}^{\prime} = O(v^{1-r-\delta}) \, O(1) & = O(v^{1-r-\delta}) & \text{ for } & 0 < \delta < 1-r \; , \\ \gamma_{v}^{\prime} = O(v^{1-r-\delta}) \, O(\log v) & = O(\log v) & \text{ for } & \delta = 1-r \; , \\ \gamma_{v}^{\prime} = O(v^{1-r-\delta}) \, O(v^{r+\delta-1}) & = O(1) & \text{ for } & 1-r < \delta < 1 \; . \end{array} \right.$$

Considering (13), (15), (16) and (18), Theorem 3 is proved by the results (14), (17), (19) and (20).

There are reasons for supposing that the result obtained in the limit case $\delta = 1 - r$, viz. $\Delta^{-r}a_{\nu} = o(\log \nu)$, can be improved to the result $\Delta^{-r}a_{\nu} = o(1)$ holding in the cases $1 - r < \delta < 1$. However, in order to obtain this result, it seems necessary to elaborate a method of proof which utilizes more effectively the special character of series representing differences.

REFERENCES

- A. F. Andersen, Sur la multiplication de séries absolument convergentes par des séries sommables par la méthode de Cesàro, Mat.-Fys. Medd. Danske Vid. Selsk. 1, nr. 4 (1918), 39 pp.
- 2. A. F. Andersen, Studier over Cesàro's Summabilitetsmetode, København, 1921.
- A. F. Andersen, Über die Anwendung von Differenzen nicht ganzer Ordnung in der Reihentheorie, C. R. 8^{ième} Congr. Mathém. Scand. Stockholm 1934, 326-348.
- 4. A. F. Andersen, Summation of ikke hel Orden, Mat. Tidsskr. B 1946, 33-52.
- A. F. Andersen, On the extensions within the theory of Cesàro summability of a classical convergence theorem of Dedekind, Proc. London Math. Soc. (3) 8 (1958), 1-52.
- 6. A. L. Cauchy, Cours d'Analyse, 1re partie, Paris 1821.
- B. Kuttner, On differences of fractional order, Proc. London Math. Soc. (3) 7 (1957), 453-66.

THE TECHNICAL UNIVERSITY OF DENMARK, COPENHAGEN