ON SOME EXTENSIONS OF THEOREMS OF FEJÉR

FU CHENG HSIANG

1. Let $\Omega = (\omega_{n\nu}), \quad n = 0, 1, 2, ...; 0 \le \nu \le n$,

be a triangular Toeplitz matrix of real or complex numbers, i.e., it satisfies the following three conditions:

(i) $\omega_{nv} \to 0$ as $n \to \infty$

for every fixed ν ;

(ii)
$$\sum_{r=0}^{n} \omega_{nr} \to 1 \quad \text{as} \quad n \to \infty;$$

and

(iii)
$$\sum_{v=0}^{n} |\omega_{nv}| < M ,$$

where M is an absolute constant.

Given a sequence (s_n) or a series with partial sums s_n , we say that the sequence (s_n) or the series with partial sums s_n is summable (Ω) to the sum s, if

$$\sum_{v=0}^{n} \omega_{nv} s_{v} \to s \quad \text{as} \quad n \to \infty.$$

2. Suppose that f(x) is a Lebesgue integrable function and periodic with period 2π . Let

$$f(x) \sim \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

be its Fourier series, and

$$\sum_{n=1}^{\infty} n \left(b_n \cos nx - a_n \sin nx \right) = \sum_{n=1}^{\infty} B_n(x)$$

its derived series. Fejér [1] has established the following theorem.

THEOREM A. If f(x) is of bounded variation in $(0, 2\pi)$, then $(B_n(x))$ is summable (C, r) to $l(x) = \{f(x+0) - f(x-0)\}/\pi$ for every r > 0.

Received August 15, 1959.

In this note, we shall extend the above result to a class of triangular Toeplitz matrices, which contains the (C, r) matrix as a special case.

Theorem 1. Let (Ω) be a triangular Toeplitz matrix which satisfies, in addition, the condition

(iv)
$$\sum_{\nu=0}^{n} |\Delta^{2} \omega_{n\nu}| = o(1) \qquad (n \to \infty) ,$$

where

$$\Delta^2 \omega_{nv} = \Delta \omega_{nv} - \Delta \omega_{n(v+1)}, \qquad \Delta \omega_{nv} = \omega_{nv} - \omega_{n(v+1)}.$$

If f(x) is of bounded variation in $(0, 2\pi)$, then $(B_n(x))$ is summable (Ω) to the sum l(x).

There exists a large class of triangular Toeplitz matrices satisfying (iv); e.g., the regular Nörlund summability matrix $N(p_n)$, with $p_n \leq p_{n+1}$ or $p_n \geq p_{n+1}$ from a certain $n = n_0$ onwards, obviously satisfies (iv). If we take, for the Cesàro means of order α ,

$$p_n = A_n^{\alpha-1} = \Gamma(n+\alpha)/\Gamma(n+1)\Gamma(\alpha) \qquad (\alpha > 0)$$
,

which is known to be monotone for $\alpha > 0$, then we see that our theorem contains Fejér's result as a special case. Moreover, if we take $p_n = 1/(n+1)$ for the harmonic means, then it follows from a known result of M. Riesz [3], that a sequence which is summable by the harmonic means is also summable (C, r) for every r > 0, but not conversely. Thus the present theorem is better than Fejér's.

 $\psi_{x}(t) = f(x+t) - f(x-t) ,$

3. The proof of the theorem is straightforward. If we write

then

$$\begin{split} \sigma_{n}(x) &= \sum_{\nu=0}^{n} \omega_{n\nu} B_{\nu}(x) \\ &= \pi^{-1} \sum_{\nu=0}^{n} \omega_{n\nu} \int_{0}^{\pi} \psi_{x}(t) \ \nu \sin \nu t \ dt \\ &= l(x) \sum_{\nu=0}^{n} \omega_{n\nu} + \pi^{-1} \sum_{\nu=0}^{n} \omega_{n\nu} \int_{0}^{\pi} \cos \nu t \ d\psi_{x}(t) \\ &= l(x) + o(1) + \pi^{-1} \sum_{\nu=0}^{n} \omega_{n\nu} I_{\nu} \end{split}$$

by (ii). The function $\psi_x(t)$ is continuous at t=0 and of bounded variation in $(0, \pi)$. Hence, for a given $\varepsilon > 0$, we can choose a positive number $\delta = \delta(\varepsilon)$ such that

$$\int_{0}^{\delta} |d\psi_{x}(t)| < \varepsilon.$$

Thus splitting

$$I_{\nu} = \int\limits_{0}^{\delta} + \int\limits_{\delta}^{\pi} = I_{1
u} + I_{2
u}$$
,

we obtain

$$\left| \sum_{\nu=0}^{n} \omega_{n\nu} I_{1\nu} \right| \leq \sum_{\nu=0}^{n} |\omega_{n\nu}| \int_{0}^{\delta} |d\psi_{x}(t)| < M \varepsilon$$

by (iii). On summing $\sum_{\nu=0}^{n} \omega_{n\nu} I_{2\nu}$ by parts twice, we see that

$$\begin{split} \left| \sum_{\nu=0}^{n} \omega_{n\nu} I_{2\nu} \right| &= \left| \int_{\delta}^{\pi} \left\{ \sum_{\nu=0}^{n} \Delta \omega_{n\nu} \frac{\sin(\nu + \frac{1}{2})t}{2\sin(t/2)} + \frac{1}{2}\omega_{n0} \right\} d\psi_{x}(t) \right| \\ &= 2 \left| \int_{\delta}^{\pi} \left\{ \sum_{\nu=0}^{n} \Delta^{2} \omega_{n\nu} \left(\frac{\sin\left((\nu + 1)t/2\right)}{2\sin(t/2)} \right)^{2} + \frac{1}{4}\omega_{n0} \right\} d\psi_{x}(t) \right| \\ &\leq 2 \sum_{\nu=0}^{n} \left| \Delta^{2} \omega_{n\nu} \right| \int_{\delta}^{\pi} \left(\frac{\sin\left((\nu + 1)t/2\right)}{2\sin(t/2)} \right)^{2} \left| d\psi_{x}(t) \right| + \frac{1}{2} |\omega_{n0}| \int_{\delta}^{\pi} |d\psi_{x}(t)| \\ &< \frac{V}{2\sin^{2}(\delta/2)} \sum_{\nu=0}^{n} \left| \Delta^{2} \omega_{n\nu} \right| + \frac{1}{2} V \varepsilon \end{split}$$

for $n \ge n^*(\varepsilon)$, where V is the total variation of $\psi_x(t)$ in $(0, \pi)$, since by (i), $|\omega_{n0}| < \varepsilon$ eventually. It follows from (iv) that

$$\sum_{\nu=0}^{n} \omega_{n\nu} I_{2\nu} = o(1)$$

as $n \to \infty$. This proves Theorem 1.

We remark that, if we would apply summation by parts only once in the above proof, then

(iv')
$$\sum_{v=0}^{n} |\Delta \omega_{nv}| = o(1) \qquad (n \to \infty)$$

would give the same conclusion for summability (Ω) of the sequence $(B_n(x))$. But, in view of the relation

$$\sum_{\mathbf{r}=0}^{n} |\varDelta^2 \omega_{n\mathbf{r}}| \, = \sum_{\mathbf{r}=0}^{n} |\varDelta \omega_{n\mathbf{r}} - \varDelta \omega_{n\mathbf{r}+1}| \, \leqq \, 2 \sum_{\mathbf{r}=0}^{n} |\varDelta \omega_{n\mathbf{r}}| \; ,$$

(iv) is plainly a weaker condition than (iv').

4. The following theorem is also due to Fejér [3].

THEOREM B. If l(x) exists and is finite at x, then $(B_n(x))$ is summable (C, r) to l(x) for every r > 1.

This theorem can be extended to Borel's method of summation. A sequence (s_n) , or a series with partial sums s_n , is said to be summable by Borel's method of summation, or summable (B) to the sum s if

$$e^{-x} \sum_{\nu=0}^{\infty} \frac{x^{\nu}}{\nu!} s_{\nu} \to s$$
 as $x \to \infty$.

We establish

THEOREM 2. If l(x) exists and is finite at x, then $(B_n(x))$ is summable (B) to l(x).

This theorem can be derived from Theorem B and the following well-known theorem due to Hardy and Littlewood [2, pp. 2–3, especially Theorem 5], which is stated in the following form:

LEMMA. A sequence (S_n) , or a series with partial sums s_n , for which $s_n = o(n^{k-(r-1)/2})$, cannot be summable (B) unless it is summable (C, k+r), k and r being non-negative integers.

Since f(x) is integrable, $B_n(x) = o(n)$ by Riemann–Lebesgue's theorem. Moreover, from Theorem B, $(B_n(x))$ is summable (C, 2). Thus, by taking k,r=1 in Hardy–Littlewood's theorem, we establish Theorem 2.

REFERENCES

- L. Fejér, Über die Bestimmung des Sprunges der Funktion aus ihrer Fourierreihe, J. reine angew. Math. 142 (1913), 165–188.
- G. H. Hardy and J. E. Littlewood, The relations between Borel's and Cesàro's methods of summation, Proc. London Math. Soc. (2) 11 (1913), 1-16.
- M. Riesz, Sur l'équivalence de certaines méthodes de sommation, Proc. London Math. Soc. (2) 22 (1924), 412-419.

NATIONAL TAIWAN UNIVERSITY AND ACADEMIA SINICA, FORMOSA