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PARTTALLY ORDERED RECURSIVE ARITHMETICS

VLADETA VUCKOVIC

1. One of the chief assumptions of recursive number theory is that
every number has exactly one successor. Although very natural, this
assumption is not the only possible one. We can ask if it is also possible
to build up recursive arithmetics in which every number has more than
one Successor.

In this article we shall develop such arithmetics as formal equation
calculi, in which the only axioms are recursive function definitions and
the only rules of proof are substitution rules and the rule about the
uniqueness of a function defined by recursion. In general, such arith-
metics are not commutative. To make them obey the law of commuta-
tivity some new axioms are necessary. They bear on the successor func-
tions or on the initial equations in recursive definitions.

We hope that these new arithmetics will be useful as models in questions
of foundations. They may be interesting also in themselves, as illustra-
tions of the possibilities of recursive definitions.

2. We assume that the reader is familiar with the elements of the
recursive number theory.

In the arithmetic which we shall develop, every number x will have »
successors Sy, 8,2, Sy, ..., S, ;2. As it makes no serious difference to
our formalism we shall at the same time allow the possibility for » to be
countably infinite. Then every number x will have w successors S,z,
Sz, .

We denote numeral variables by z, y, 2, , ..., and definite numerals
by a,b,¢c,d, .... The numerals are 0, §,0, S;0, 8,0, ..., 88,0, 8, 8,0,
858,0, ..., 8,8;0, ..., and so on. In writing numerals other than zero
we shall omit zero. So, for instance, we write S, 8,8, for 8,5,8,0.

For the construction of our arithmetic we assume we have two explicit
functions: the zero-function Z(x)=0 and the identity-function Y (x)==x,
and also n (or w) successor functions 8,2, »=0,1,...,n—1 (or 0, 1,
2, ...) which replace the numeral « by the numeral S,x.
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306 VLADETA VUCKOVIG

From these functions we shall construct new functions by recursive
definitions:

DEerFintTION 2.1. 4 function F(z,y) 1s defined by simple recursion if
there are given n+1 (or w) equations

F(z, 0) = a(x)

(2.1)
F,8,y) = b(z,y, F(z,y), v=0,1, ...,

in which a(x) and bz, y, z) are functions previously defined.

To give an example let us define n (or w) linear operations o,,
y=0,1,...,n—=1(or 0,1, ...).
6,0 =
(2.2)
wavS/ly = Sy+v(xavy) 2
v, u=0,1,2, ..., (n—1) (or 0, 1, ...). The addition of indices v and u is
to be taken modulo n for finite n.

The most significant of these operations is ¢, which we call addition
and denote by +:
z+0 =2

(2.2)
z+8,y = S, (x+y).

As the simplest example S,+.8,=28;8, S;+8,=28,8; shows, addi-
tion i1s not commutative. To make it commutative we introduce new
axioms:

(2.3) 8,8,x=8,8x, wvu=01 ....
These axioms are equivalent to

(2.3") F(z, 8,8,y) = F(z, 8,8,y)

in the definition (2.1), or to

(2.3") b, (x, 8,y,b,(z,y, Flz, y))) =b, (x, 8,4, b,(2,y, F(x, y))) .

For every new function, defined by recursion, we must verify that
(2.3") or (2.3") are fulfilled.

To make clear what the axioms (2.3) mean for our arithmetic we
take the special case n=2. A model for partially ordered recursive
arithmetic with two successors without axioms (2.3) is given by the
tree (fig. 1) .

After the introduction of the axiom

(2.3") 8,8,z = 8,8,z
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80808, ¥8,8,8, 85858,

Fig. 1

to which axioms (2.3) reduce in this case, this tree reduces to a two-
dimensional lattice (fig. 2).

Similarly, for n=3 a tree reduces to the lattice of lattice-points of the
first octant and similarly in others cases. Generally, axioms (2.3) make
the order of successors S, irrelevant. We shall therefore write the numer-
als beginning with the successor of lowest index and then with higher
ones, in lexicographical order.

To avoid “pathological’’ models we introduce as an axiom that
(2.3"""") 8,88, oo 8y =8,8,8, ... 8,
withasb=sc=...2qand 'SV’ 2c's...2¢ ifand only if a=a’, b=V,
c=c¢,...,q=¢".

The necessity for this axiom was pointed out to the author by R.L.
Goodstein.

Definition (2.1) by single recursion is not the only one we shall assume.
Later we shall introduce also definition by double recursion.

We shall allow the construction of new functions by substitution, in
the known manner. Also, we take it as axiomatic that two functions
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with the same initial recursive equations (2.1) are identical, i.e. one and
the same function.

3. Now we are able to develop partially ordered recursive arithmetic
as a formal equation calculus. We prove first some theorems about the
linear operations g,.

(3.1) O+zx ==x.

Proor. (In proving equations by uniqueness we shall always denote
the left side by f and the right by ¢).

f(0) =0, f(S,x) =0+8,x=28,0+2) =8,f(x).
The same initial equations are fulfilled by Y (x)==.
(3.2) 00,8, =8,

We recall that the addition of indices » and y is to be taken modulo
n for finite n.

We write
(3.3) g,z for Ocx.
(3.4) 8,x)0,y = S, (xa,y) .

Proor. f(z, 0)=8,z; f(x,8.y)=(8,2)0,(8.9)=8,.f(2,9); ¢ 0)=
Su‘,v; (p(x’ Sr y) = Sy(x Gv Sry) = Su Sr+v(x va) = S'H-VS;L(x Gvy) = S‘H—v(p(x: y)‘

(3.5) ro,y = o Y+x.

Proor. f(z,0)=z; f(x, S,9)=8,.fy); o 0=z ¢ S,y)=
GvSuy + r= S,u-{-v(avy) + r= Sy+v(p(x’ y)’ by (3‘4)'

(3.6) (x+y)o,z = x+(yo,2),

i.e. addition is associative with all linear operations.

Proor. f(x,y,0)=x+y; f(x, 9, 8,2)=8,.f; o@y 0)=x+y;
(p(x3 ?/, sz) =x+Sy+v(vaz) =Sﬂ+v¢’

(3.7) (a0,2) 0,y = (a0,y)o.x .
Proor. (ao,x)0,y=0,y+(ac,2)=(0,y+a)o,x=(a0,y)o.x, by (3.5).
(3.8) ao,(bo,x) = (ac,b)o,(o,).

This is the associative law for our arithmetic.
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Proor. f(0)=aos,b; f(S,x)=ac,8S, (bo,x)=8,,.f; ¢0)=acb;
(p(S‘rx) = (a Gv b) (7”(0',, S‘rx) = (a Gvb) G;z Sr+v(0yx) = St+v+,u (P'

‘We need still one theorem:
(3.9) [ao,(bo,c)]o,x = (ac,b)o,(xo,c).

Proor. f(0)=ao,(bo,c); f(8,2)=8,,,f; 9(0)=(as,b)o,(o,c)=ac,ba,c),
by (3.8); ¢(S,2)=(aoc,b)o,(S,x0,c)=(ac,b)s,S (xo,c), by (3.4), so
<p(S,x)=S,+”(p.

4. Multiplication is defined by

z:0=0

4.1
(4.1) 28,9

i

(x-y)o,x, y=20,1,....

We have to verify the fulfillment of (2.3"). By double application of
(4.1) we have
) 28,8,y = (@)oo,

z-8,8,y = [(x-y)o,x]o,x .

By (3.7) (ao,2)0,2=(a0c,x)0,x, so the right hand sides of equations (4.2)
are equal.

We point out that it is possible (and, for the definition of exponentia-
tion, necessary) to introduce n (or ) multiplicative operations z}y by

x*¥0=0

(4.1)
x} 8,y =@}y,

the addition of indices u and » being taken modulo » for finite n. Multi-
plication z-y is the operation x§ y.

In this article we shall not need other multiplicative operations than
z-y, so we put the others aside.

(4.3) 02 =0.
(4.4) (8,2)y = (x-y)o.y .
Proor. f(z,0)=0; f(z,S,y)=8,28,y=[(8,2)ylo. S, z=f(x, y)o.8,2;

@@, 0)=0; g¢(x, 8,y)=(x-8,4)0,8,y=[(xy)o,2]0,8, y=8, {[(x y)o,x]
0,9y} =8,z ylo,y)o.x}=[(xy)o,yl0o, 8, 2=, y)o,8,z, by (3.7).

(4.5) Ty =yYx

i.e. multiplication is commutative.
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Proor. f(xz,0)=0; f(z,8,y)=f(z,y)o,2; ¢(x,0)=0; ¢(z, 8,y)=8,y-x
=(y-x)o,x=9(z, y)o,x, by (4.4).
(4.6) (o,y) 2 = (x-2)0,(y"2),
i.e. multiplication is distributive in regard to all linear operations.
Proor. f(z,y,0)=0; [f(z,¥,8.2)=fo(xo,y); @0)=0; ¢(S.2)=

(2-8,2)0,(y8,2) = (2-20,2) 0,(y-20,) = {(z-2) 0, [(y-2) 0,91} 0,2 = [(2-2) o,
(y-2)]ox0,y)=@o.(xo,y), by (3.7) and (3.9).

5. We now introduce n (or w) predecessors P,(x), v=0, 1, ..., by:
P0=0,
(5.1) P,S”x _ { x for v=u,
S,Px for v+ pu
We have
S,x for v=pu
PS8, S.x = * ’
i S,P,8,x for v+ p
S.x for v =4,
= S,z for v =1,
S”S,P,x for v+ pand v + 7,
and similarly
S,z for v=u,
PS8 .8, = S,z for »=17,
S8, 8,Px for v+ puand»+ 7.
So
(5.2) P,S,8x=PS.8,x,

which proves (2.3") for predecessor functions.
(5.3) PP,x = P,Px.

ProoF¥. Both sides satisfy the initial equations

F0)=0
P(x) for p=r,
FS,xz) =} P,x) for »=17,
S, F(x) for v+ rvand u+ 7.

With predecessor functions we now introduce the difference z -~y by
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(5.4) ve0=a,
x=8,y = P(x=y).
From (5.3) follows the fulfillment of (2.3") for the function x ~y.
The following equations can be proved without difficulty by uniqueness.

(5.5) z=y =8z=8y, »=0,...,n—1 (orw).
(5.6) rz=x=0.
(5.7) 0=~z =0
(5.8) (@+y)~y ==.
(5.9) r=(y+z) = (x~y)=2
Easy consequences are
(5.10) (x~y)~2z = (x=2)~y.
(5.11) (a+zx)=(b+x) = a=-b.

We point out that multiplication is not distributive with regard to
difference.

6. At this stage we can introduce definition by double recursion. In
our case it does take a different and somewhat more curious form than
in ordinary recursive number theory.

DerFiNtTION 6.1. A function F(z,y) is said to be defined by double
recurston if there are given n+ 1 (or w) equations

F(x, 0) = a(x)

6.1
( ) F(x’ Sﬂ’y) = b)'(x7 y’ ‘F(val y))’ V.= O’ 17 A

where P, is the v-th predecessor function and a(x), b,(z, y, z) are functions
previously defined to satisfy

(6.2) b,(x, 8.y, b,(P,,x, y, F(P.P,x, y)))
= b,(x, 8,y, b,(P.x,y, F(P,P.x, y))) ,
Jorv, u=0,1,....

Naturally, (6.2) are conditions imposed by axioms (2.3).
We point out that the conditions (6.2) are always satisfied if
(6.3) b,(x, 8., b(P,, ¥, 2)) = by(, 8y, b(P.2, ¥, 2)) -

In the applications all the functions b,(x, y, z) which we shall employ
will satisfy (6.3).
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The definition (6.1) will serve us to prove the fundamental relation
T+ (y=2) = y+(@=y).
First, we need some auxiliary formulae.
(6.4) Forp+v, Pb+(8,~x)=Pb+(S,~2)}.
Proor. f(0)=P,b+8,=8,P,b,
f(8,x) = P,b+(S,~8,x)
P for t=v,
Pb+[S,~(x+8,)] for 7 +v,
Pb for 7=v,
P,b+[(S,~8,)~x] for v,
P for tv=v,
P,b+(S,~x) for T4,
Pb for 7=,
f(x) for =z % v, because, for v % v,
S,~8,=P,S,0=8P.0=280.
@(0) = P,8,b = 8,P,b, becauser + u;
9(8,2) = P,{b+(8,+8,2))
Pb for 7=v,
TP+ (S=a)} for T+,
_{P“b for =17,

p(x) for T £w.
(6.5) S,a~z = (a+~P,x)+(8,~x) .

Proor. f(0)=S,a;
f(8,2) = S,a=8,x
a=-x for =
- P.fx) for =
@(0) = a+8, = S,a,
(8,2) = (a=P,8,2)+(S,~8,2),
a~x for T=uv,
- Pla=-P,x)+(S,~x) for 7T+,
a-=x for ©=v,
T \P,gx) for 749w, by (6.4)

(6.6) z+(S,~z) = S,+(x=8,) .

=’)J,

V.

+#
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Proor. f(0)=28,;
f(8.x) = Sz +(8,~8,x)
S,z for T=v,
- {S,x+(S,—'—x) for T+
S,x for =1,
- {S,f(x) for T+ v;

9(0) = 8,,
¢(S,2) = 8,+(8,2=8,)

S,+x for 7=,

“18,+P,S.x for T+,
S,z for 7=,

- S,+8,Px for 7T+,
S,x for 7=,

- S,px) for T F»

(6.7) r+(y-x) =y+@=y).

Proor. By double recursion. f(z, 0)=xz; f(z, S,y)=x+(S,y~x)=
z+(y=P,x)+(S,~z), by (6.5). So, f(x, S,y)=z+(S,~x)+ (y~P,x)=
S,+(x~=8,)+(y=P,x) by (6.6). At last, f(x, S,y)=8S,+P,x+(y=~P,x)=
S,f(P,x, y).

p(x, 0)==x; p(x, 8,y) =8,y +(@-8,y) =8,y + (P, ~y)=8,¢(P,z, y).

So f and ¢ fulfill the same initial equations f(x, 0)==, f(x, S,y)=
S,F(P,z, y) for double recursion, and (6.3) are trivially satisfied.

7. We can introduce a partial ordering in our arithmetic by exactly
the same equation which serves in ordinary recursive number theory for
the definition of the ‘“less than’ relation:

(7.1) a < b is written for a = b-(b=+a).
Exactly in the same manner as there we can prove:

(7.2) From a < b follows a~b = 0 and b = a+(b=-a).

(7.3) From a £ b and b = ¢ follows a £ c.
(7.4) asatx.
(7.5) From a £ b follows a+x < b+x.
We emphasize that “From ... follows” is to be read: “If there is a

proof of the first equation then one can also prove the second equation”.
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8. With the formalism we have introduced we are now able to build
up our arithmetic along lines close to those of ordinary recursive number
theory. Naturally, our arithmetic is poorer than recursive number
theory. Many equations of recursive number theory do not hold in our
arithmetic. In particular we do not have the relation z- (1 ~x) =0 which
is decisive for classical recursive number theory, as exposed by R. L.
Goodstein in [1]. But we shall find a way to replace this relation.

We introduce now the first proof schemata. Their sense is so well
known that further explanations are unnecessary.

r+y =0.
(8.1) —

x=0
Proor. By (5.8).

To make our formulae like the formulae of ordinary recursive number
theory we shall write 1 for the numeral S;0. We recall that z-1=
lex=ux.

0.

Il

{x+(1=2)}y
y=0

(8.2)

Proor. By (6.7) we have 2+ (1 ~2x)=1+(z=1), so the first equation
is {l1+(x=1)}y=0, that is, y + (= 1)y=0. By (8.1) it follows that y=0.

zy=20
(8.3) (1-y)-2=0
z2=0.

Proor. The same as in Goodstein [1, Ex. 2.36].

(1=x)y=0
(8.4) : (1=y)-z2=0
(l=x):2=0.

Proor. By (8.3).

(8.5) Let |z, y| = (x~y)+ (y —x). Then the proof schemata

|z, y| = 0 z =1y
—_— and I
r=Yy |x’ yl =0
both hold.

Proor. The second schema is obvious. We prove the first one. From
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(x=y)+ (y=2x)=0 we have by (8.1) x~y=0 and y ~2=0. Putting these
two equations into (6.7) we get x=y.

J(0) = 9(0)
(8.6) f(8,2) = ¢g(8,2)
fle) = g(x) .

9. We introduce now the function «(x) by
«(0) = 0,
a(S,x) = 1.

(2.3"") are trivially fulfilled.
We quote some relations involving «(z).

(9.1)

(9.2) [1=a(@)]-[1=a@)] = 1=x(z).

(9.3) [1+a@)x(y)] x(x) «(y) = 0.

(9.4) x(xy) = x(x) «(y) .

(9.5) 1=u(o,y) = {1+-a(@)}{1-ay)}.
(9.6) 1=[o(2) +x(y)] = [1-a(@)]-[1+a(y)] .
(9.7) {1-a@=y)}-{1+alx, y))} = 1=a(=, yl) .

Proor. By double recursion, using the fact that

lz, Syl = (x=8,y)+(S,y~2)
= (P,z-y)+(S,y~x)
= (Px~y)+(@y=P,x)+(S,~x), by (6.5).

{1=[1=a@) o]} {[1 = a@)]+[1=x(@)]}+

o +{1=[(1+a@)+ (1@} { - a@)aly)} = 0.
(9-9) 1+ (1= (@) = «(x) .

(9.10) 1= {a(x) +o(x)x(y)} = 1-a(x)

(9.11) {1 = [x(@) + a(y) (2)]Hx(@) + x ()} - {x(@) + a(2)} +

+ {1+ [x(@) + x(y)] [(2) + x(2)]} - {x(@) + (y) (2)} = O
(9.12) {1=a(lz, y)}-a[f(@)] = {1 =alle, y))} *[f ()] -

Proor. A slight modification of the proof of the equation 2.63 in
Goodstein [1].
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(9.13) (1= a(jz, y)} - (1= &[S (@)} £Lf )] = 0.
a[f(0)] = 0

(9.14) {l—'—(x[f(x)]}'oc[f(S”x)] = 0, w=01 ...
«[f@)] = 0.

The proofs of (9.13) and (9.14) can be obtained also by known proofs
(Goodstein [1, formula 2.68 and the proof in section 2.8]) by suitable
generalisations.

10. The introduction of logical constants has to be carried out in a
way slighty different from the one which is customary in ordinary
recursive number theory. The difference is due to the fact that the
equation x-(1+x)=0 does not hold in our arithmetic.

Therefore, we call the equation a=b a frue proposition if and only if
the equation «(|a, b|)=0 is a provable equation. (The sense of ‘“prov-
able” is the same as in recursive number theory.) If x(|a, b|)=1 we call
the equation a="b a false proposition. Then every true proposition is a
provable equation and conversely, and every proposition is true or false.

As is customary, propositions are denoted by p,q, 7, ..., and their
negations by 9, 4,7, ... .

Let p be the proposition a=5b and ¢ the proposition c=d. Then

p&q s «a, b)) +alcd) =0,
pvag s alla,b)-ale d) = 0,

p—>gqg I8 {l=afla b} e d]) =0,

p<>q is  {l=«(la, b])}-x(lc, d]) + {1 = «(lc, d|)} - x(|a, b]) = O,
P is 1-«(ja,b]) =0,

p&q is  1={xa(la, b)) +a(le,d])} = 0,

pvyq is  1=«la, b])-«(lc,d]) = 0,

p->q is 1=-{1+u(la, b])}-«(lc,d|) = 0,
p—gq is  1={[1=afa, b))]-a(lc, d]) +[1 = «(lc, d])]x(la, b)} = 0.

w

From (9.6) it follows that p&q and pvg are the same proposition.
From {1+ «(|a, b|)}-x(la, b]) =0 it follows that p <— p, so

&q<—>Dpv

=
A

From (9.8) we have

Vg« &

=
S

b
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and from (9.9) follows _
p <> p .

By the distributivity of multiplication we have

pv(@&r)<—(pvq) &(pvr)
and by (9.11)
p&gvr)<—(p&qvip&r).

We shall not develop all the details of the introduction of logical
symbols, because one can now, using the formulae of section 9, proceed
very nearly as in ordinary recursive number theory. Thus, without loss
of generality we can suppose any proposition to have the form «(c)=0.

Allowing @, b, ¢, d, ... to be functions of z, that is a=a(x), b =>b(x),
..., we introduce propositional functions p(z), ¢(z), ... .

By (9.13) we have

(10.1) (@ = y) > {p(*) >~ p¥)} ,
and by (9.14) the schema of induction:
p(0)
p(x) > p(S,x), w=0,1,...
p() .

As an exemple we note the proposition
(#y=0)—>@=0v(y=0),
i.e. the equation
{1=«(|z-y, O))}-a(|x, 0])-a(ly, O]) = O,

which is the proved equation (9.3).
The following exemples are due to R. L. Goodstein.
By 10.1 we have

P(l-x) =1+x—P,P(l+x) = P(l=2x).
But
P,P(1+x) = P,P(1-x) = P,(1=-8,x),

P(lex)=1-8,xz,

and hence, writing p(x) for P (l-x)=1+x when x>0, we have
p(x) - p(8,x). Also p(0) holds, because, for u+0, P,(1-0)=PF,(1)=1-0.
So, by the schema of induction, p(x) holds, i.e. the equation

(10.2) P(lez)=1+x for u>0

is a proved equation.
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We prove now
(10.3) (1=z)(1-2) = 1=z
Proor. f(0)=1, f(Syx)=0, and for x>0 by (10.2)
f8,2) = (1=8,2) (1=8,a) = [P(1=2)] = f(@);
(0)=1, p(Syx)=0, and for 4> 0 ¢(S,x)=P (1 =z)=1-2=0p().
We can now prove the equation
(10.4) (l=z)[1=(1=z)] = 0,

which is a substitute for the equation z-(1+2z)=0 of simple recursive
number theory.

Proor.
F(0)=0, f(Soz) = (Sg=8o%)[Sg~(So=8,2)] = 0,

and for x>0
fS,x) = P(1=+x)-{1=P,(1+2)}
= (1=2){1=-(1=2)} = f(x), by 10.2.
11. Another approach to the logical constants is also possible and,
perhaps, more interesting.

As is well known, Heyting’s propositional calculus is based upon eleven
axioms (compare Heyting [2]):

Al POPAD,

A2, PAQG DO qgAD,

As3. (P>9 2 (par) 2 (gar),
Ad. (p=29ag=>2m)>@>r),
A.5. g=>(@®=>9,

A.6. (pra(p=9) >4,

A7, p>(pvy),

A.8. (pveg) > (gvop),

A.9. (p=2nal@g=>n)>(pve) =1,
A.10. ~p>2(@=>49),

A1l (2pa@=>~q)>~p,

and upon modus ponens and the rule of substitution.
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Let us call the weak Heyting calculus the calculus in which all the
above axioms and rules are valid, except axiom A.l1l.

We note that it is possible to prove equations (10.2), (10.3) and (10.4)
directly, without using the technique of section 10.

Let us now say that an equation a=> is a true proposition if and only
if the equation |a, b| =0 is provable, and a false proposition if and only
if the equation 1+|a, b|=0 is provable. Then a proposition may be
neither true nor false (if, for instance, |a, b|=3S,).

Let p be the proposition a =56 and ¢ the proposition c=d. Define

PAQ tobe |a,bl+|c,d| =0,
pvg to be |a,b|-lc,d| =0,
p>q tobe [1-«fla,b])]"|c,d] =0,
~ P tobe 1=|a,b =0,
~(pag) tobe 1-={la,b|+|c,d[} =0,
~ (pvqg) tobe 1-=la,b|-|c,d =0,
~(p>q) tobe 1=[1-«(|a,d])]lcdl =0,
and so on.
Then, because z-(1-x)=0 does not hold, the law pv ~p of excluded
middle does not hold, but the law ~pv ~ ~p does hold (by (10.4)).
Also the implication p> ~ ~p does hold, but not ~ ~p>p.
We can show that all the propositions A.1-A.10. are true propositions,
but not A.11. Also modus ponens holds.

So, we have: the logical calculus introduced by this interpretation is

the weak Heyting logical calculus (more exactly, a larger calculus without
A.11).

We shall develop this approach in more detail in another article.

12. The preceding account will perhaps suffice to give a picture of
partially ordered recursive arithmetics. They are a direct generalisation
of recursive number theory.

Naturally, many questions remain open. For instance, we are not able
to define analogues of the functions Zf(x) and ]]f(x) and so lack the
limited quantifiers A7(f(x)=0) and Ej(f(z)=0) (in the notation of
Goodstein [1]). So we can form only propositions with free variables.

We note that it is possible to develop an effective algorithm for cal-
culation in our arithmetics, the number n of successors being finite.

The author expresses his acknowledgment to R. L. Goodstein for help-
ful criticism.
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