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SELF-ADJOINTNESS AND SPECTRA OF
STURM-LIOUVILLE OPERATORS

INGE BRINCK

1. Introduction. Let ¢ be a real locally integrable function, defined
on the real axis R, and consider the linear differential operator

L = —d?*da? + q(x), —0 < x < 00,

The set of (all equivalence classes of) functions square integrable
over R form a Hilbert space L? with the inner product

0o

(u,v) = \ u(z) @) de .

Let 2 be the set of all win L2 for which «’ =du/dz is absolutely continuous
(in every closed interval) and Lu= —u'' +qu is in L% It is a classical
fact that L with domain & gives rise to a closed, densely defined operator
A from L? to L? which is an extension of its adjoint 4*, which, in turn,
is the closure of the restriction of 4 to the elements in & with compact
supports. (See [1] and [12].)

There exist a number of criteria on ¢ for 4 to be self-adjoint in which
the negative part of ¢ is subject to pointwise or integral restrictions.
We shall in this paper establish the self-adjointness of 4 under conditions
on ¢ that allow large negative values of ¢ to be “compensated” by large
positive values in a neighbourhood. Our criteria will thus be applicable
to functions with arbitrarily large integral mean values of the negative
part. One of them is the following:

There exists a finite C so that for all intervals J of length <1 we have

(L.1) gq(x) dz 2 — C.

J
The principal tool enabling us to treat these general functions ¢ is a
lemma by Ganelius [3], cited below.
Further, we shall show that if (1.1) holds, then %' is in L2 for every
€2 and there exists a well-defined ‘‘potential energy”
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N

lim S (@) [u(z)? dz ,
DI’N—N’O—UM

even though the function g|u|?> may not be integrable.
Finally we shall prove that under the assumption (1.1) the operator A
has discrete spectrum if and only if

a+h

lim infS qx)de = +o©

|a]—>o00
a

for all 2> 0. — In the case when q is continuous and bounded from below,
this criterion for a discrete spectrum has been found by Moléanov [7],
and our result is thus an extension to general locally integrable functions
satisfying (1.1).

The subject of this paper was suggested by professor Lars Garding,
for whose interest and valuable advice the author wishes to express his
sincere gratitude. Thanks are also due to professor William F. Donoghue
for his valuable suggestions.

Noration. Throughout the paper the integrals for which no range of
integration is stated are taken over the whole axis. Norm and inner
product in L? will be denoted by ||| and (,) respectively, and for any
interval I we shall often write

uf; for Sm@de.
I

H1(I) will denote the class of absolutely continuous functions in L2(I)
with first derivative in L3(). In stead of 5#(R) we shall write 5.

2. Some preliminary results. In this section we shall study the real
and locally integrable functions q(x) which satisfy (1.1). If #, denotes
the characteristic function of the interval |z| <[, the condition (1.1) is
equivalent to the following: The convolutions

e+ 9)(w) = | =) q(t)

are bounded from below, uniformly for all  and /< 4. It is obvious that
if x is restricted to any compact set these convolutions are always uni-
formly bounded for any locally integrable ¢(x) and all [<}. Thus the
condition (1.1) is a global one only and involves no restriction on the
local behaviour of q.

There is clearly no loss of generality in assuming that C in (1.1)is =2
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and we shall always do so in the sequel. We should also remark that for
a q satisfying (1.1) the relation (n;*(¢+ M))(x)2 —C+¢ may not hold
uniformly for small / and arbitrarily small positive ¢, however large M
is chosen, as is illustrated by ¢(x)=a™ sina™+..

Our starting point is the following lemma, due to Ganelius:

LemMa 1. Let f=0 and g be functions of bounded variation on the closed
interval J. Then

Sfdg < [inff+varf] sup Sdg .
! J RN T
We shall also need the following simple
LemMa 2. Let J be a closed interval of length 1. Then, for all xeJ
and any f in H(J) we have

(2.1) A2 = 8IS 12 = f@)F 2 2072 + L (02
0<t

IIA

and
(2.2) i;lf f(@)® = FHiflL2

Proor. By applying Schwarz’ inequality to the identity

we get

@ S 2@ + 2le-yl {17 OF de.
Yy

Integrating in y over an interval containing x and of length ¢ =1 we get
the upper bound in (2.1), and integrating in x over J we get the lower
bound.—The estimate (2.2) is obvious.

LemMA 3. Let q be a real and locally integrable function satisfying (1.1).
If I is a finite interval of length I and f any function in (1)

@3 a@ r@rde 2 - cemm A2 + GmIf

1
where n s the integer determined by n—1<l<n and h is any number in
the interval 0 <h = 1.

Proor. There is no loss of generality in supposing that I=(0,1). We
first suppose =1 and invoke lemma 1. Thus
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- §q 2 < {ir}flfl2+v§:rlfl2} sup. I§q.

By (1.1) the last factor is majorized by C, and from lemma 2 we get
iI;fIf(ﬂc)l2 = 2 = 2L

for any % in the interval 0<h<1. We now write f(z)=f(x)+1 fy(x)
where f; and f, are real, and get

e | d
var /(@) = | |d—x I =\ onsy +2nsst < 2000001
I I

by Cauchy’s inequality, and hence
- S q1f1* = CRIFIR+ 2R f 1 ] = CR20f12 + 22117

1
which proves the lemma for I=1.
To prove the lemma for arbitrary [ we put Q(x)=In"1g(ln"1x). Then

l n k

\a@ if@)2 o = V@ iran0pae = 3\ Q) 1702 de.

) 0 k=1 .,
We now observe that the function @ satisfies a condition of the type
(1.1) with the same value of C for all intervals of length =n/l and hence
for all intervals of length <1. The proof above for intervals of unit
length therefore implies

k k k 9
S Q) If In-10)2dt = — C"Qk—l \f(ln-1t)2 dt + h § = () }
K1 K1 5

and hence, summing over £k,
n n

: d
2h- 15 \fn-10)2 dt + hg ~f @)
0

2

(o 1fan0par = - 0!
’ l
- 0[2h - ln @ d + hln-l\lf'<x>|2dx},

[}

0
which proves the lemma.

CorOLLARY. If the length of the interval I is =1

{ir@r+ec+oiEp d 2 o
I

Sfor any f in H#,(1).
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Proor., It follows from the definition of » in lemma 3 that
nflC < (1+1)/IC. Since C is always assumed 22 this implies n/IC <1 if
Iz 1, and so we can put h=n[IC in (2.3), and the corollary follows.

TaroREM 1. If q 15 a real and locally integrable function satisfying (1.1)
and f any function tn H°; with compact support,

(2.4) \a@ 1f@)ede 2 = Crrif e nif P

»

for all b in the interval 0 <h < 1.

Proor. We divide the real axis into a sum of disjoint intervals of
unit length. Then (2.3) holds in each of these intervals and a summation
gives (2.4)

ReMARK. If the support of fis not compact, theorem 1 still obviously
holds if q|f|>—possibly without being integrable—is such that

N
im \ g@) If(@)2 do
M, lV——)oo"Iu

exists. The integral in (2.4) must then of course be interpreted accord-
ingly.

If the real locally integrable function ¢ satisfies an upper estimate of
a type corresponding to (1.1), that is

(2.5) \ a@) dz < €,
J

for all intervals J of length =<1, the function —q satisfies (1.1) with C
replaced by C; and hence lemma 3 and theorem 1 give upper bounds for
\q|f2. For convenience we state these in a separate theorem.

THEOREM 2. Let q be a real locally integrable function satisfying (2.5).
If I is any finite interval of length 1 and f a function tn #°1(1)

SQ(x) If@)?dz = C1{2(Rl[n) 1N f 1% + (REn)IISI2Y 5
1

where n is determined by n—1<l=<n, for any h in the interval 0<h 1.
If f is in 5, and has compact support, then also

\'q(x) f@)Eda < CL{2R1|fI7 + RIIf|%
for any positive h < 1.

The following lemma will be used in section 5.
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LEMMA 4. Assume that I is an interval of length <1, that q satisfies

(1.1) and that o
\ d@)hiz) da
I

Sfor some h in (1), such that

0 < m = |h(x)]

IIA

¢

M

IIA

Jorall x in I. Then
g(z)de = O,

Ny

where C depends only on C, O, m, M and ||}']2.
Proor. We apply lemma 1 with f=|k|-2 and dg=q|h|?dx to obtain

26) \g(@)dz = \qipp2 < [inf|hr2+var|h;—2] sup Sq|h[2,
¢ ¥ I 1 tTJcI b4
and we shall exhibit a bound for each of the factors on the right.
For any J <1 the set I —.J consists of at most two intervals K and L,
of length k and [ respectively. From lemma 3 with =1 we find

\ bz 2 —Cl2k-1 Rl + k1P 2
k
Since ||h||g2 <k M? and k <1 this yields

\alhe 2 —creme ).
K
Because a similar estimate holds for the interval L it follows that

{ a2 —craarm
o
and hence
Vaine = {aine = {ane < 0 + craae+mp.
J T 1~y
Thus there exists a bound of the required type for the second factor in
(2.6).
On the other hand, inf |h|2<m~2 and

d

dx do = S 21h|~4[Re (h )|

< 2mt Rl W]y < 2m- MK,

var|h|

Ny

and so we have a bound of the desired type for {; g(x)dx.
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3. A criterion for self-adjointness. The operator A defined in section 1
has the property 4* < A, and the self-adjointness of A is therefore
established if we prove that 4 is symmetric, i.e. that

(3.1) A c A%,

Various criteria for (3.1) are already known. Usually they are ex-
pressed in the terms of “limit point’” and “limit circle”’, introduced by
H. Weyl in his fundamental paper [14], and then the property (3.1) is
equivalent to L being of the limit point type at —oc and +oco. Weyl
proves that (3.1) holds if ¢ is bounded from below. The first improvement
on Weyl’s condition was given by Hartman and Wintner [5] who found
that L is of the limit point type at + oo if

(3.2) ¢(t)dt = 0@%), 2o,

O 8

where q—(t)—_—max(-—q(t), 0). Since then, further improvements have
been published, one being the following by Hartman [4]:
L is of the limit point type at + oo if

2

(3.3) \'q—(t)dt < g1 (S M(t)dt) ,
0

0

where M(t) is monotonic for large ¢ and such that {* M(t)dt =co. See also
[21, [9], [11], and [13].

In the sequel we shall find another criterion for 4 = A*, which will be
an immediate consequence of two lemmas.

LemMMA 5 (¢f. [6]). Let w =0 be a locally square integrable function, such
that

oo 0
(3.4) \w=5w=+oo.
0 oo

Then A is symmetric if
(3.5) \ W [u'? < o
for all u in the domain 2 of A.

ProoF. Given any number N we can. according to (3.4), find a number
N*> N such that

N+ -N
Ay = \w(x) dx z 1 and By = \w(x) de =2 1.
N —N»

Math. Scand. 7. 15
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We define an absolutely continuous function u, by

1 , lx] =N,

syt S o) dt, N

lIA

r £ N*,

ﬁN—ISw(t) i, -N*<azs< N,
N

*

0 , x| = N* .,

It follows that uy(x) > 1 as N — oo and that the derivative uy’(z) exists
almost everywhere and satisfies

luy'(@)] = (@) .
Now, let » and v be any two elements in &. Then |u Av— Au 7| is inte-
grable, and as uy tends boundedly to 1

(u,Av) — (Au,w) = S(u Av—Auv) = lim S,uN(u Av—Au ).

N—>oo
Integrating by parts we obtain
|
= !S,uN’(u v —u' ?) ; < Swlu v —u' 9,
|

lS,uN(u Av— Au v)

where I =(N, N*) and J =(—N*, —N). But % and v are both in L2 and
so are wv’ and wu’ according to (3.5), and hence |wu 7’| and |wu’ B| are
both integrable. Therefore
N+
S wluv —u v = S (louw ¥'|+|wu' 7)) - 0
1 N

as N — oo, and similarly for the integral over J. Consequently

(u Av—Au ?) = lim S,uN(uZZ-Auﬁ) =0,

N—>oo
which proves the lemma.

In the sequel we shall make use of sets of functions ¢(x) with compact
supports and uniformly bounded derivatives. To fix the ideas we define
¢ as follows:

. 1 for —-r=2x2 =R,
1 ¢@) = ¢l@rR) = lO for # < —r—1land z> R+1.
(3.6) ii. For every z, ¢(x) is increasing in r and R.
iii. The derivatives ¢'(x) and ¢''(x) are continuous and uniformly
bounded in z, r and R.
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From the definition follows that 0=Z¢(x)<1 and that ¢—> 1 as
nin (r,R) - oo.

LeEMMA 6. Let w be a bounded, twice continuously differentiable function
with bounded first and second derivatives. Then

(3.7) Sw(x) gx)de 2 —C
J

for all intervals J of length <1 implies

Sw2 |u']?2 < oo

for all w in 2.

Proor. Let ¢ be one of the functions introduced by (3.6) and put
p=¢@%w? If u is any function in & we get, by partial integration,

(3.8) S pyAuu = \‘w’ wu+ Szplu’|2 + Szpqlulz.

Now, let u be a real function in 2. Then the first integral on the right
can be integrated by parts, yielding

69 (vavz= -3y e+ (pr + (v

The functions y and '’ tend boundedly to w? and (w2)" respectively as
@ — 1, that is as min(r,R) - oo, and as |w? Au %| and |(w?)"| |»|*> are both
integrable, the first two integrals in (3.9) tend to the finite limits
(w?Au @ and {(w?)"" |u|? respectively, as ¢ — 1. Since the convergence of
v is also monotone, we conclude that {y|u’|> must tend to {w?|u’(?, al-
though this limit may not be finite, and therefore {yq|u|? must also have
a limit (possibly — o).

We put Q(z)=w(x)q(x). From (3.7) it then follows that @ satisfies a
condition of the type (1.1) and we apply lemma 1 as in the proof of
lemma 3 and theorem 1 to obtain

— watue = - { Q@) o) g2 [u(a)Pda)

lIA

C [2 Sqﬁw[ulz + va,rwqulu]z:l .
But var wg?|u|? is bounded by
(ol + 2 goig iz + 2 {ogriuwy,

which in turn is majorized by



228 INGE BRINCK

Mul® + 2] llpeow']| ,

where the coefficient M depends only on the bounds for w, o', and ¢'.
Hence from (3.9) , ,
lpou|> = 0(1) + 2ul| lpww'||,

and thus [lpwu’|? = S(pzwzfu’!zzswiu’[z must be bounded. Therefore
(3.10) Sw21u';2 < oo,

and the lemma is proved for real u in 2.

Since every u in & may be written u, +tu,, where %, and u, are real
and in 9, the proof for real u shows that {w?|u,'|? < oo and {w?|uy’|? < co.
Hence {w?|u’|? < oo for all u in 2, and the proof of the lemma is complete.

We observe that (¢ g|u|? has a finite limit for all » in &, and further
that |u' %| is integrable and hence that {y'u'% in (3.8) tends to {(w?)’ v’ %
for all  in 2.

As was stated above the operator 4 must be self-adjoint if it is sym-
metric, and so the two last lemmas yield

THEOREM 3. The operator A s self-adjoint if there exists a positive, twice
continuously differentiable function w(x) satisfying

(), o'(x) and o' (x) bounded
and

such that
g w(@)qx)dx =z —-C
J

for all intervals J of length < 1.

REMARK. If w satisfies the conditions of the last theorem and if there
s given a pointwise estimate

(3.11) o} (x)gqx) = —-C,

the last integral in (3.8) is immediately seen to be bounded from below,
which implies that {w?|u'|? is finite and hence that A is self-adjoint
according to lemma 5.

To conclude this section we shall compare our criterion (3.7) with the
previously known criteria (3.2) and (3.3). Obviously g(z)= —Ca? is a
special case of (3.2)—and also of (3.11) above—and by putting q(z) = «?
we see that (3.2) can hold without (3.7) being satisfied, so for some func-
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tions ¢ our new criterion is less general than those previously known.
On the other hand, the criterion (3.7) is for some oscillating ¢ con-
siderably more general than (3.2) and (3.3). To illustrate this, put
¢(z) =z sinz™+! for some integer n. Then

ﬂq(w)dx > —2m+1)12 —1

J

for all intervals J, and so (3.7) and even (1.1) is satisfied. But for large =

g-(t)dt = Ca

O R

for some positive constant C.—In general, it is easily seen that for func-
tions ¢ satisfying (3.7), the integral

can tend to infinity (as x — co) with arbitrary rapidity.

4. A criterion for finite kinetic and potential energy. If the function ¢
is bounded from below it follows, as Wintner [15] has shown, that «’
is in L2 for every w in &. A weaker condition, (1.1) permits the same
conclusion in view of lemma 6, for with w(z)=1 we see from (3.8), (3.9)
and (3.10) that |ju'|]? is finite, that

lim\ @?qlul®  exists
g—>1¢
and that
(Auu) = SAu % = S ' + limS¢p2q|u12.

o—>1

This enables us to prove that the ‘“potential energy”

N
(4.1) Q) = lim |\ g() ju(@)? de
‘M’N_)w~.1\l

exists and is finite for every w in 2.
Let ¢, =¢%x,r,R) and ¢,=¢?*x,r—1,R—1) as defined by (3.6). Then
obviously

R —-r R;}-l
Vo = {gaiuz - { gagiut? - {@rgup
v * ——1 R

and
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I.Z —r+1 R
Vaue = {paauiz + § a-porge + 0 -paqie.
—.r ' —r R-1

In these two identities the four integrals over intervals of unit length can
each be one-sidedly estimated by the norms of u and %’ over the interval,
by lemma 3. Since u and #' are both in L2, those norms tend to 0 with

increasing r and E. Thus
R

Voagluz = o1) = (g2 = {pgiu + o),

and hence »

S qjul* - lim S P2qiul®
o o—>1

as min (r,R) - oc, and so the limit in (4.1) exists. It also follows that
(4.2) Q) = \ghul® = (dwa)— ')
for all » in &, which is equivalent to
(du) = § {2+ gy
We have thus proved the first half of the following

THEOREM 4. If q satisfies (1.1) the potential energy Q(u) defined by (4.1)
exists and is finite for any w in 2. Moreover, for any h in the interval
0<h=2C-1and every u in &

(4.3) (1-Ch)(uw'u') = 2Ch 1 (uu) + (Au,u)
and
(4.4) (1—=Ch).Q(u) =2 —2ChY(uu) — Ch(Au,u) .

Proor. For all h=<C-1(<1) and every u in &
Q) = {qiul? 2 —2Chjult — Chlw|?,

as is seen from theorem 1 and the remark following it. Then (4.3) and
(4.4) follow from (4.2).

We remark that although Q(w) is well defined for all % in &, the func-
tion g|u|? need not be integrable. A counterexample can be constructed
in the following way. Put

with q(x) = —2¢ex cos(x?) tgH(x)



SELF-ADJOINTNESS AND SPECTRA OF STURM-LIOUVILLE OPERATORS 231

B(x) = m/4 + ¢ S sin (2)dt
0

and ¢ sufficiently small. Put v(x)=2-1 cosf(x) and let ¢ be one of the
functions introduced by (3.6), so that 1 —¢ vanishes in some neighbour-
hood of the origin. Then the function u(x)=(1—¢)v(x) is in 2, but
glu|? is not integrable.

If we put A=C-1 in (4.3) we get the following
CoroLLARY. The operator A is bounded from below; more precisely

(4.5) (Au,u) =2 —2C%*(u,u) .

5. A necessary and sufficient condition for discrete spectrum. Under
the assumption (1.1) the operator 4 is self-adjoint, as has been shown in
the preceding sections, and we shall now investigate the spectrum of 4.

H. Weyl [14] proved that the spectrum of 4 is discrete if

liminfq(x) = +o0.
|| —>o00
Later, Mol¢anov has studied potentials ¢ that are continuous and bounded
from below and proved that for such potentials
ath
(5.1) lim inf Sq(x) dz = +o0o, allh >0,
|al—o0

is a necessary and sufficient condition for discrete spectrum. The results
of the preceding sections will enable us to follow Mol¢anov’s approach

for general locally integrable ¢ satisfying (1.1) and prove that the spec-
trum is discrete if and only if (5.1) holds.

TaEOREM 5. If q satisfies (1.1) the spectrum of A is discrete if and only if

a+h
(5.2) lim inf gq(x) dr = +oo

lal—>o0

for all h> 0.
Proor. Consider the operator
B=A4 + (2C2+1)I,

I =identity operator, with domain 2. According to (4.5) Bis =1 and
therefore B! is a self-adjoint operator =I. Further, B! has discrete
spectrum if and only if B and hence also 4 has discrete spectrum. Now,
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Rellich [8] has proved that the spectrum of B! is discrete if and only if
the set of all » in the domain of B? satisfying

1B ul®+ Jful* = 1

is precompact (i.e. every infinite sequence contains a Cauchy-sequence).
But

(5.3) ||BYu|2 = (Bu,u) = (uw,u)

for all # in 2, and it is well known that & is a dense subset of the domain
of Bt in the topology of the graph. Therefore 4 has discrete spectrum
if and only if the set

M = {uecP; (Buu) £ 1}
is precompact.

The elements of .# have uniformly bounded norms, according to (5.3),
and with an appropriate choice of % in (4.3) we see that |ju'||? is also
uniformly bounded in .#. Thus.# is an equicontinuous family of func-
tions in L2 in the sense that

llu( + b) — u()|?

tends uniformly to 0 as & tends to 0. A compactness theorem of M. Riesz
[10] can now be applied: The set .4 is precompact if and only if

(5.4) lim (sup S |u[2) =0,
n—>00 uejx>n

We shall now first prove that (5.2) is a sufficient condition for discrete
spectrum, and to do this we suppose that (5.4) is not fulfilled. This
means that we assume the existence of a sequence of functions u, in
A for which

(5.5) \. lu,(@)2dx 2 71 > 0

L]
2| >n

for some 7 independent of n. Now
(Bug,) = { (w1 + @+207+ Dju, 2} < 1,

according to (4.2), and if n>1

n
\ flua1? + (g+202+ Dy} 2 0,

-Nn

as is seen from the corollary to lemma 3, and therefore, in view of (5.5),
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Ve + @204 D3 <1 2y (e
r>n
We break up the intervals |z| >n into a sum of disjoint intervals J, of
equal length I<1. (This number ! shall be the same for all n. It will
be clear below how [ is most suitably chosen, depending on the numbers
C and 7 only.) Then

(5.6) X S{lun’l2 + (g+2024+1)'u,?} < 5. N g |, |2 .
k jk k jk

It follows that there exists at least one interval 7, =1 among the J,, for
which

(5.7) ol + 202+ 2 + g, < 2

1
Lemma 3 and (5.7) yield

(L=CDlw, I + (202 +1 =200 [, [l = miluy[l? -

Let v, be a multiple of u, so determined that |jv,|;>=! and let I<1/C;

then
. 12 £ (1=Cl~Y(n+2C-1—2C2—-1).1,

and

U, Il2 £ 1(1=Ch)Y (gl +2C -1(2C%+ 1)) .
Here the expression on the right tends to 0 as ! tends to 0, and thus
there exists a number /;(n,C), depending only on # and C, such that
11, implies I|jv,||2< 4. Letting the intervals in (5.6) have precisely the
length I, we conclude from lemma 2 that

(5.8) 1/4 < |v,(x)2 < 9/4

for all # in 7. Finally we obtain from (5.7), which also holds for v, by
homogenity,

5.9 {g@ @) o
I

IIA

loall?(n—2C2=1) — i,/ |I;?
lyn—2C2—1) = K .

IIA

In view of (5.8) and (5.9), the hypotheses of lemma 4 are satisfied and
hence
g q(x) do
;
where C, depends only on |v,'|;2, C and K; that is on »n and C only.
Accordingly, if .# is not precompact we can find a sequence of inter-
vals I, of equal length I, and with I, outside the interval |x|<n, such
that S,”q(x)dw is uniformly bounded. Then (5.2) cannot be true, and

IIA

Co,
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hence .# must be precompact if (5.2) holds. This proves the sufficiency
half of theorem 5.

It remains to prove that our condition for discrete spectrum is neces-
sary, and to do this we suppose that the condition is not satisfied. This
is equivalent to assuming the existence of an infinite sequence {4,},*
of disjoint intervals, all of equal length » > 0, in which

(5.10) Sq(x) de = O,
dy

for all ». Obviously there is no loss of generality in supposing x <1, for
if »>1 we can find a sequence of intervals contained in the A4, of length
=<1 in which (5.10) holds.

We first observe that (5.10) implies the existance of an upper bound
for the corresponding integral over any subinterval J contained in 4,,
for in view of (1.1)

(5.11) gq(x) dx = Sq(x) dx — S qgx)dx = C,+2C = K.

o
4, Ay—J

Let ¢, (%0) be a twice continuously differentiable function with sup-
port contained in 4, and let ¢, be the translate of ¢, to the interval 4,.
Applying theorem 2 we then get

(5.12) S (lp/12+(g+2C2+ Dig,?) < (1+K)llp,I* + (202 + 1+ 2Kx7) [, |2
= (1+ Kax)|lp/[* + (202 + 1+ 2Kx ™) |lpy |2
for all ». Since the functions ¢, have disjoint supports, it follows that
lp;—@ul® = 2llgal® > 0 when j + £,

and hence a set containing the functions ¢, cannot be precompact.

Now, the functions g, need not be in 2, for ¢ is only assumed locally
integrable and therefore —¢,"”" +¢g, is not necessarily in L2. We shall
presently prove, however, that they are in the domain of B} and that
(Btg,, Btg,) is given by the integral on the left in (5.12). Supposing ¢,
so normed that the right hand side in (5.12) is <4, say, and using the
fact that B*>1, we then conclude that the set

M = {ue D(B); |Brul®+ul® = 1}

contains the sequence {g,};”. Therefore .#" is not precompact, and so
the spectrum of 4 cannot be discrete. Thus the assumption (5.10) must
be false if A has a discrete spectrum and consequently (5.2) is a necessary
condition. The proof of theorem 5 is thereby complete, although we have
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yet to show that smooth functions with compact supports are in the
domain of the operator Bt.

6. The domain of the operator Bt. We recall that the operator B was
defined as A4+ (2C%+1)I, where I is the identity operator, and that
under the condition (1.1) it is a self-adjoint operator = I. In this section
we shall give a characterisation of the elements in the domain of the
operator B}. This domain will be denoted by 2(B?).

Define %, as the set of all absolutely continuous functions with first
derivatives in L? and with compact supports, and define for arbitrary f
and g in %,

(6.1 G =\¢7 +pfa),

where p(z) =q(x)+2C?+ 1. Then, in view of theorem 1,

x)
(6.2) (ff) = g(lf'l2 + plf1?) 2 A=Ch)IIf'I? + (202 + 1-2Ch7Y) | fI2,
for all positive & <1, and therefore with proper choice of 4

(6.3) Ly z CLlF IR+ IFIP)

for some positive constant C,. Closing #, in the norm (6.2) we get a
Hilbert space Z.

Lemma 7. Every element in the Hilbert space X is an absolutely continu-
ous function in L* with first derivative in L2 For any h in %, and an
arbitrary f in X the inner product in X is given by

(6.4 =\ eph.

Proor: The first assertion of the lemma follows immediately from
(6.3). To prove the second one, let f be defined by a sequence {f,},* of
elements in %,. Then

(6.5) oty =\ W+ 10

by definition. But f, and f, converge in L? to f’ and f, and hence f,
tends uniformly to f on the support of &, and so the integral in (6.5) tends
to the integral in (6.4), which proves the lemma.

LevMMA 8. The set of all elements in D with compact supports is (R-)dense
m A.

Proor. Denote the set of all functions in & with compact supports
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with Z,, and suppose that (f, u)=0 for all » in &, and some f in %.
Integrating by parts we then obtain, according to lemma 7,

0=ty =\ 7w+ pfu) = {(—1w’ + psw) = (1.Bu).
But B(2,) is dense in L2, hence f=0 and the lemma follows.
THEOREM 6. The domain of the operator B¥ coincides with X.

Proor. We first note that 9, is dense in & in the topology of the
graph, for as we remarked in section 1, 4 is the closure of its restriction
to Z,. Using well-known functional calculus for operators we then
conclude that &, is also dense in the domain of B! in the corresponding
graph-topology. Since

(Btu, Btu) = (Bu,u) = {u,u)

for all u in 9, it follows that the domain of B? is obtained by closing 2,

in the norm of #, and thus
9B} < X%.

But lemma 8 shows that 2(B*) cannot be a proper subset of Z, for then
some f in # would be orthogonal (#) to all A in Z(B!) and hence a for-
tiori to all » in &,, which is possible only for f=0. Thus

P(BY) = %,
and the theorem is proved.

It is clear that lemma 7 and theorem 6 contain the left-out parts of
the proof of theorem 5 in the preceding section.—We should also remark
that we have not given any explicit form for the inner product {f,g)
between two arbitrary elements in %, and we have needed no such
knowledge in the proofs.

It may be of interest to note, however, that an integral expression
corresponding to (6.1) does in fact give the inner product {f,g) for ar-
bitrary f and g in #. This has been shown to the author by professor
William F. Donoghue, who communicated the following proof.

LemMMA 9. The inner product in % is given by

N
(6.6) (fgy = lim 5 F'F+pfd-
M,N—)oo__M

Proor. It is sufficient to prove that for all f in #
N

(f 12+ pIf1%)

-M

(6.7) ff) = lim

M,N—>oo

L
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for then
4[> = f+9.f+ 9 —{f—9.f - +i{f+ig.f+ig) —i{(f—ig,f —ig)
o
- 1im 4+ {(r7+p s
M,N->o0 M
We define

n

Gbm = e epise

n—1

for any f in # and infer from the corollary to lemma 3 that the number
{f.f>, is non-negative for all n. We proceed to prove that the series

(6.8) P(f) = 3 fifoa

always converges to the sum {f,f).

For any k in %, the series in (6.8) is finite and P(h)=(h,h). Now, let f
be an arbitrary element in £, defined by a Cauchy-sequence {f,},” of
elements in Z%,. Then, as we have seen, f,’ converges in L? to f’ and f,
converges uniformly to f on compacts. Thus the individual terms

{f,.J.>n converge to {f,f>, for every n. But {f,.f,) converges to {f,f>,
and hence Fatou’s lemma shows that

PU) = 3 {ffon = 3 Wm(fofdn < lim 37 (fofda = imP(f)

= lim{f,.f,) = <ff) -

Thus the series P(f) certainly converges, for each term is non-negative,

and P(f) = {f.f).
To obtain the opposite inequality, we define (f,h), for fin # and &

in #, by
(fE+pfh.

1

by = 3 Fhyas

<frh’>n =

n

| s 3

Lemma 7 shows that

the series in fact being finite, and since {f,f), is positive definite we
get by Schwarz’ inequality

[<FOnl® = (o o Kb

and hence
IR = }2 Utal € 3 hofon 3 bha = PU) b
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As %, is dense in Z this proves that P(f)={f,f) and therefore, in view
of the inequality obtained above, P(f)=<{f.f).

We have thus proved that the integral in (6.7) converges to (f,f)
when M and N tend to infinity through integral values. But f and f’
are both in L2, and for arbitrary M and N we can therefore apply lemma
3 as in the proof of theorem 4 to obtain

[N]+1 N
(F'12+pIf1D) + o(1) 2 S(lf’12+plfl2)
—[M1]-1 -M
[1Y]
= \aperalrm - o),
73

[N] denoting the greatest integer < N. But we have just proved that the
expressions on the left and on the right both tend to {f,f), and hence
the lemma is proved.

In the following concluding theorem we shall leave out the details of
the proof.

THEOREM 7. The domain of the operator B consists of precisely those f
tn L* which are absolutely continuous, for which f' is tn L? and for which
the potential energy Q(u) in (4.1) ts well-defined and finite.

Proor. We have just shown that the limit in (6.7) exists and is finite
for all fin #. Since f and f’ are in L? it follows that the potential energy
exists and is finite.

Conversely, if f is a function satisfying the conditions of the theorem,
the formula

N
F(g) = lim g(g'f’ﬂogf)
M,N——)oo_']u

is seen to define a continuous functional on #. This functional is realised
by some element & in # and it is not difficult to prove that the function
f—h must then be an L2-solution to the equation Bu=0. Since B is
positive this implies f=#h, hence f is in R and the theorem is proved.
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