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A REPRESENTATION THEOREM
FOR FUNCTION ALGEBRAS WITH APPLICATION
TO ALMOST PERIODIC FUNCTIONS

K. E. AUBERT

1. Introduction. The intimate connection between the almost periodic
functions! on an arbitrary group G and the continuous functions on a
corresponding compact group G was first established by Weil in [4]. He
showed that to any topological group G one may canonically associate a
compact group G containing as a dense subgroup a continuous and
homomorphic image ¢(G) of G such that the function f on ¢ is almost
periodic if and only if there exists a continuous function g on @ such that

f@) = g(p)) forall =zeQ.

Based on the Gelfand—Neumark theorem for commutative B*-algebras
Loomis in [3] was able to derive this connection within the scope of
general Banach algebra theory. The purpose of the present note is to
point out that Loomis’ treatment of almost periodic functions can also
be achieved by an alternative use of the maximal ideal method using
maximal convex lattice-closed subspaces in the real ordered vector space
AE(@) of all real-valued almost periodic functions on @ instead of the
usual maximal ideals in the Banach algebra 4¢(@) of all complex-valued
almost periodic functions on G. By this procedure—which is well known
from spectral theory—the Loomis approach to almost periodic functions
is freed from the use of the Gelfand-Neumark theorem and any other
Banach algebra theory, and is made to depend on simpler representation
theorems of Kadison [2]. In fact what we shall do is to give two direct
proofs of the Gelfand-Neumark theorem for a certain wide class of func-
tion algebras which includes the algebra AC(G) as a special case. The
first proof is based on one of the simpler representation theorems of
Kadison. The proof given by Kadison in [2] of the representation
theorem in question depends (apart from the unavoidable Stone-Weier-

Received March 1, 1959.
1 In the non-commutative case ‘“‘almost periodic’ should for instance be interpreted
as “‘left almost periodic’.
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strass theorem) on the Krein—-Milman theorem, but is nevertheless of a
simpler nature than the usual proof of the Gelfand—Neumark theorem.
Our second proof is perhaps of more interest since it also avoids the use
of the Krein—Milman theorem and only depends on an exceedingly simple
representation theorem for ordered vector spaces together with elemen-
tary topological arguments.

2. The Gelfand-Neumark theorem for F*-algebras. The first proof.
Let A denote a complex Banach algebra of complex-valued, bounded
and continuous functions on a topological space X. The operations are
pointwise and the norm is the uniform norm. We shall say that 4 is an
F*-algebra if A contains the constant functions and is closed under the
operations of taking conjugates f— f and absolute values f— |f|. The
family A® of all real-valued functions in A clearly forms a real lattice-
ordered vector space (or algebra). The family of maximal ideals of A4
will be denoted by I and the family of maximal convex subspaces of
AT which are lattice-closed by 2. Considering A% as an ordered algebra
we shall denote by ‘B the subset of 9t consisting of those subspaces which
are at the same time ideals. For all the definitions and notations (like the
f-notation) which have their background in general Banach algebra
theory we must refer the reader to [3]. With respect to ordered vector
spaces and algebras one can use [2] as a standard reference. We should,
however, like to remind the reader of a convention which is essential in
the following. Whereas there is a one-to-one correspondence between
maximal ideals and multiplicative functionals in Banach algebra theory
there is no one-to-one correspondence between maximal convex subspaces
and positive functionals in the ordered theory. One-to-one correspon-
dence is, however, restored if we adjust the positive functionals in such
a way that they all take the value 1 on the order unit.

Before entering the proper subject matter of the paper it is perhaps
worth while remarking that the Gelfand—Neumark theorem immediately
implies that I and N are homeomorphic if they are both equipped with
the Gelfand topology. Since this is equally simple to see for general
B*-algebras we suppose for the moment that 4 is a commutative B*-
algebra with an identity. By the Gelfand—Neumark theorem

A =~ OCM)

and this isomorphism has a restriction to the real ordered vector space
AR of self-adjoint elements of 4 and the ordered vector space C'*(M)
which is an order isomorphism

AR ~ ('R .
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In CE(N) there are no other maximal convex lattice-closed subspaces
than those corresponding to points in Ik, so that if N’ denotes the family
of maximal convex lattice-closed subspaces of CE(I) we shall have

CREOM) = CRW).

By the isomorphism AEx~CER) there is a one-to-one correspondence
between 9N and N’ such that if the Gelfand topology of M’ is transferred
by this correspondence to R it gives the Gelfand topology in M and

CRER) =~ CR(N) .

It is well-known by using the Stone topology that this order isomorphism
induces a homeomorphism between I and N.

The above remark shows already that we may equally well use N
instead of 9 as the compact group G in Weil’s theorem.

We shall now give the first proof of the following

THEOREM. Any F*-algebra A is isomorphic and isometric with the
algebra C(IM) of all complex-valued continuous functions on its maximal
wdeal space N equipped with the Gelfand topology.

REMARK. The reader will perhaps object that the Gelfand-Mazur
theorem is already implicit in the formulation of this theorem by the
very definition of the Gelfand topology,—and therefore contradicts our
promise to give proofs which are free from Banach algebra theory. It
will, however, be clear from the proof that this is not the case. In fact
the present proof also contains a direct proof of the Gelfand-Mazur
theorem for F*-algebras in the sense that for any maximal ideal m in 4
the algebra A/m will be isomorphic to the algebra of complex numbers.

Proor. The algebra A% is an archimedean lattice-ordered real algebra
with order unit e (= the function equal to 1 everywhere) which is complete
in the norm introduced by Kadison [2, p. 5], since this norm reduces to
the uniform norm in the case of a function algebra. We are therefore in
position to apply Kadison’s full representation theorem for ordered alge-
bras (Theorem 3.1 in [2]. This theorem is originally due to Stone). Thus
AZ ig isomorphic to CE(R) under an isomorphism which preserves the
algebra, order and hence the norm structure of 4%. Since an F*-algebra
is closed with respect to taking complex conjugates it follows that

f=h+if;ed ifandonlyif f,f,eAr.

Due to this the given isomorphism AZ~CZE(R) may be extended by
linearity to a complex algebra isomorphism A >~ C($B). That this extended
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ismorphism is norm-preserving can be seen as follows: Any point ae X
defines a unique m,e B by setting

m, = {f; fe AR & f(a) = 0}.

Denoting this mapping a — m, of X into P by ¢ we see that ¢(X) is
dense in 8. For otherwise there would exist a non-zero function in CE(B)
corresponding to the zero-function in A% by the given isomorphism
f— f from AR onto CE(B) and this is impossible. Moreover all the func-
tions f are continuous and f(a)= f(ma) according to the convention made
above. The preservation of the norm now easily follows from these two
facts together with the density of ¢(X) in 8. From this norm-preserving
algebra isomorphism 4 ~ C(B) we get a one-to-one mapping between the
corresponding families of maximal ideals I and M’'. It is further, since
B is compact, an elementary fact that there is one-to-one correspondence
between B and M’ and that this correspondence is a homeomorphism
when both spaces are equipped with the Gelfand topology. We may
therefore first replace B by I’ and afterwards M’ by M so as to arrive
at the desired conclusion 4 >~ C(IN).

We note that the above proof does not use the fact that an F*-algebra
is closed under the operation of taking absolute values. This will, how-
ever, be used in our second proof.

3. The second proof of the theorem. We shall now offer a second and
entirely elementary proof of the Gelfand-Neumark theorem for F*-alge-
bras. This proof relies only on the bare rudiments of Kadison’s theory.
In fact we need only an analogue of the representation theorem announced
in [2] as Lemma 2.5. (Even in the self-contained exposition of Kadison
containing all definitions and preparations the proof of this lemma is
completed within three pages.) This result which is stated below as
Lemma 1 is not a full representation theorem and thus less favourable
as a starting point for a proof than the full representation theorem used
in our first proof. In fact the lack of a full representation (i.e. by all the
functions in CF(RN)) causes some difficulty in proving that ¢(X) is dense
in M in the Gelfand topology. And this fact is even more essential to us
here as we start only with an ordered vector space representation and
have to introduce the multiplication in 4 by an extension by continuity.
But this difficulty can be overcome by using the fact that the definition
of the Gelfand topology in i in case of F*-algebras can be given a differ-
ent formulation where the density of ¢(X) in R can be easily seen. We
proceed to fill in the details and start by announcing the relevant repre-
sentation theorem
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LeMMA 1. Any archimedean lattice-ordered vector space E over the reals
with an order unit can be represented isomorphically, isometrically, and with
preservation of order as a vector space of real-valued continuous functions on
the compact space of all maximal convex lattice-closed subspaces of E
equipped with the Gelfand topology.

For definitions and proof we refer the reader to [2]. We remark that
the above lemma is slightly different from Kadison’s Lemma 2.5 inas-
much as he uses general (not necessarily lattice-closed) convex subspaces.
It is, however, easy to verify that his proof goes through also with our
additional restriction on the convex subspaces. Let us only indicate
briefly the necessary changes in Kadison’s proof. Instead of his Lemma
2.2 we may refer the reader to [1, p. 239] where it is remarked that R
is the only real lattice-ordered vector space without proper convex lat-
tice-closed subspaces (1-ideals in the terminology of [1]). Lemma 2.3
where Kadison’s norm is introduced carries over without change. As to
Lemma 2.4 we only need to verify that the set [, is also lattice-closed—
and this is immediate. In fact if y, and y, can be used for b; and b,
respectively then y,+y, can be used for b,ub,. That finally P (now
meaning the set of all positive normed linear functionals preserving
union) is w*-closed (i.e. closed in the Gelfand topology) is obvious.

We now introduce a closure operation into the famly R of all maximal
convex lattice-closed subspaces of the lattice-ordered vector space AE of
all real-valued functions in the F*-algebra 4. If A <N we define the
closure A of A by

A={n; neslUn
ngeA
where the bar on the right denotes closure in A% with respect to the
uniform norm topology. The key lemma in order to establish the essen-
tial properties of the operation ¥ — U, in particular to prove that it
defines a topology, is the following

LEMMA 2. A necessary and sufficient condition that nye is that

inf|f(n)| = 0
for all fen,. el

Proor. Suppose that n,e, that is, n,< U,;can;. This means that
to any fen, we can find a function g belonging to a suitable n;, e such
that

If—gllo < &

for any £> 0 given in advance. By the isometry of Lemma 1 this gives
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If =gl < &
which implies |f(n,)| < because of g(i; )=0. Thus
inf | f(n)| = 0.

ned
Suppose conversely that

inf|f(n)] = 0 forall fen,.

ned

Given fen, this implies the existence of a sequence {n,}< ¥ such that

f(nn)=o¢n—>0 as m-—> oo,
Therefore

(1) f= lim (f—(x"€)

n —> o0
where e denotes the identity element of A (e is also the order unit of
A®). Since PN
(f—oze)n,) =0 or f—ux,e€em,
this implies that
(2) f-oee Un, forall =n.

nieN

(1) and (2) now give the desired conclusion.

LemMA 3. The operation A — A defines a topology in N such that all

A A\ .
the functions fe AE are continuous in this topology.

Proor. The verification of A<, A=A, A<V b_ﬁ =% and AuB
cAu B is immediate. Assume therefore that ny,¢ AU B, thus
inf|fn)) >0 and  inflj(n)] > 0
ned ned
for suitable f, gen,. Since n, is lattice-closed fen, implies |f|en, There-
fore
. /\ .
inf (If|+|g)n) >0  with  |f[+]glen,
neAuB
proving that S
g n ¢ AU .
In order to prove that f is continuous on N in the above topology—
which we shall call the F*-topology—we first remark that any set of the

form D ={; |fm) <}

is open in the F*-topology for any fixed feA and «>0. In fact if
1€ we have f(n,)=p with || <«x. Now
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N
f—Peen, and inf |[(f—pBe)(n)] > O

neN-9

proving that 1n,¢ N — O and O is open. The continuity of f at n, then
follows immediately from the fact that the set ‘

. a P
{n; ((f(mo)-e=fm)| < &} = {n; |f(ng)=f ()| < ¢}
is open in the F*-topology.
LeMMA 4. The F*-topology in N coincides with the Gelfand topology.

Proor. Since the Gelfand topology in 0 is characterized as the coarsest
topology which makes all the functions f with fe A% continuous it follows
from Lemma 3 that the F*-topology is finer than the Gelfand topology.
Let therefore U be a closed subset of 9 in the F'*-topology, i.e.

A={n; ncUn

n;eA
To any 1,¢ A we can therefore find an fen, such that

f¢U“t

n;eA

inf|fm) =a >0 and f(ny) = 0.
neA

This gives

The function |f] being continuous in the Gelfand topology the set
{n; Iflm) = o} will be a closed set in the Gelfand topology which con-
tains 9 and excludes 1, This shows that 9 as an intersection of closed
sets is also closed in the Gelfand topology.

LemmA 5. The set o(X) is dense in N in the Gelfand topology.

Proor. According to Lemma 4 it suffices to show the density of
p(X) = {na; n, = {f’ fedR & f(a) = 0}}
in N in the F*-topology, i.e. that

(3) X)) ={n; ne U n,
ngep(X)

is all of . Now, the right hand side of (3) consists exactly of those
Je AR such that

inf|f(x)] = 0.
reX

So if
nog; U ua

rgeg(X)
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this means that n, contains an f, with

inf|fy(z)] =« > 0.
xeX

Then also nfyen, for any integer » >0 and ny= A~ by the convexity of 1,

and the boundedness of the functions in 4£. This proves the lemma.
With these preparations we can easily finish the second proof of the

theorem. By Lemma 1 we have a one-to-one mapping of the ordered

P
vector space AX onto AE< (%) which preserves all structure. The

PO
inverse mapping of A¥ onto A is essentially the restriction of the func-
tions to a dense subset. This makes it possible to extend the isomor-

N
phism AF — AE to an algebra-isomorphism in an obvious way. Since

AR ig complete and the mapping is norm-preserving it follows that 2\"’
is a complete algebra of real-valued continuous functions on the compact
Hausdorff space % which separates points. According to the Stone-
Weierstrass theorem we therefore have the algebra-isomorphism

AF ~ CRON)

and we can now argue with N just as we did with B in the first proof
in order to complete our second proof.

REMARKS. It is possible that the topological part of our second proof
can be simplified further. One could either try to reason directly with
the Gelfand topology in its original form or to use the Stone topology
(called the hull-kernel topology in [3]). In the Stone topology the density
of ¢(X) in M is obvious and as the Stone topology in N is known to be
coarser than the Gelfand topology it would be sufficient to establish
that the Stone topology in N is Hausdorff. Since 9 is a 7';-space in the
Stone topology it would therefore also be sufficient to verify that it is
possible to introduce a group-operation into % such that 9t is a topological
group with respect to the Stone topology.

4. Added in proof. We have recently observed that there already
exists a quite simple proof of the Gelfand-Neumark theorem in the case
of function algebras. (See: Dunford and Schwartz: Linear operators, pp.
274-75.) But this proof is different from the two proofs given above,
besides that the F*-topology for ordered vector spaces may have an in-
dependent interest. This topology has already been used occasionally
in the case of Banach algebras.

Math. Scand. 7. 14
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