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SOME UNSOLVABLE PROBLEMS ABOUT ELEMENTS
AND SUBGROUPS OF GROUPS

GILBERT BAUMSLAG, W. W. BOONE, AND B. H. NEUMANN

1. Introduction. Many algebraic problems have in recent years been
shown to have no solution, in the sense that there exists no general and
effective method of solving them. One that is typical, and most impor-
tant, is the word problem, that is the problem whether two words in a
given algebraic system represent the same element of the system; and
the most interesting and difficult case is that of groups. The word
problem in groups was first shown insoluble by Novikov [9] [10]; he
exhibits a finitely presented group for which there is no general and
effective procedure for determining whether any word in the (given)
generators represents the unit element as a consequence of the (given)
defining relations. Adyan [1] [2] and Rabin [11] have, independently,
used this group to show that for a very extensive class of group theoretic
properties there does not exist any general and effective method of
deciding whether a given finite group presentation defines a group with
the property in question. (For a discussion of the word problem in
groups cf. Kuro§ [5, p. 271]=[6, vol. 2, p. 75].)

In this note we prove a number of similar insolubility results con-
cerning problems about elements and subgroups of groups. Our results
are mostly near-trivial, in the sense that they can be proved in a few
lines, using nothing deeper than the free product of groups and its known
properties; but they are, af course, based on Novikov’s very deep result
and make use of his group, or some other group with an undecidable
word problem. (Cf. e.g. Boone [3], Britton [4].)

REeMARK BY W. W. BoonNE. Novikov’s proof of the unsolvability of the
word problem for groups [9] is based upon Turing’s proof of the corre-
sponding result for cancellation semi-groups [Annals of Math. (2) 52
(1950), 491-505, with corrections same journal, 67 (1958), 195-202].
Boone’s research showing the unsolvability of the word problem for
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groups [Indagationes Mathematicae 16 (1954), 231-237, 492-497, and
17 (1955), 252-256, 571-577; 19 (1957), 22-27, 227-232], does not use the
Turing result and was carried out independently of Novikov’s work.
J. L. Britton’s proof [4] likewise does not depend on the Turing result.
(Britton announced a proof of the unsolvability of the word problem
for groups at the British Math. Colloquium, Nottingham, September,
1957.) An exceedingly interesting aspect of Britton’s group with un-
solvable word problem is this: it is the free product—with amalgamations
—of groups with solvable word problems.
The following theorems are typical of our results.

THEOREM 1. There is a finitely presented group Gy such that no effective
procedure exists to determine whether a word in given generators of G,
represents

1.1 an element of the centre of Gy;

1.2 an element permutable with a given element of G;

1.3 an n-th power, where n>1 is an integer;

1.4 an element whose class of conjugates is finite;

1.5 an element of a given subgroup of Q, (equivalently, what is known as
the “Magnus’ extended word problem’ is insoluble in the group):

1.6 a commutator;

1.7 an element of finite order > 1.

The list could be extended, and one is led to suspect that there is no
meaningful property of group elements that can be effectively decided.
This is, however, not the case; for, by contrast with 1.6 (and also, in a
way, 1.5), there is an effective procedure to decide, in every finitely
presented group G, whether a word represents an element in the com-
mutator subgroup G'; for one only has to decide whether the correspond-
ing word in G/G’ represents the unit element; and in the (finitely pre-
sented) abelian group G/G’ the word problem can (trivially) be solved.

THEOREM 2. Let P be an algebraic property of groups (i.e. one that is
shared by all wsomorphic copies of any group that has it), and assume (i)
that there is a finitely presented group that has P, and (ii) that there is an
integer n such that no free group F, of rank r=n has P; then there is a
finitely presented group Gp such that no effective procedure exists to deter-
mine whether the elements represented by a finite set of words in given
generators of Gp generate a subgroup with P.

This theorem may be compared with Rabin’s main theorems [11,
Theorems 1.1 and 2.1]; it is similarly general (and was indeed suggested
to us by Rabin’s paper), and it allows us to match most of the particular



UNSOLVABLE PROBLEMS ABOUT ELEMENTS AND SUBGROUPS OF GROUPS 193

applications that Rabin makes of his theorems. Thus we can deduce the
following special cases.

CoroLLARY 3. There are finitely presented groups G (depending on the
property considered) such that no effective procedure exists to determine
whether the elements represented by a finite set of words generate a subgroup
of G that is (i) trivial, (ii) finite, (iii) free, (iv) locally infinite, (v) cyclic,
(vi) abelian, (vii) nilpotent, (viii) soluble, (ix) simple, (x) directly inde-
composable, (xi) freely indecomposable, (xii) a group with soluble word
problem ; and so on ad nauseam.

Note that some of these properties are the non-P of Theorem 2.

These results can be extended and modified in various ways; thus e.g.
in place of algebraic properties of groups one can use properties of group
presentations; or again, one can consider properties that relate the sub-
group to the whole group, such as the properties of being normal, or
of having finite index in the whole group. Theorems on such properties
will be stated and proved in Section 5. One of the miscellaneous theo-
rems proved in the final section requires a lemma to the effect that a
finitely presented group can possess subgroups that are finitely generated
but not finitely related. Though this fact is not surprising and almost
certainly well known, we know of no published proof and have, therefore,
included one in Section 4.

2. Proof of Theorem 1. Let U once and for all be a finitely presented
group with unsolvable word problem; to make a definite choice, we may
take the group of Boone [3], with two generators u,, u, and with 32
defining relations. There is then no effective procedure to decide, for
all words w(u,, u,) in the two generators, whether

w(uq, uy) = 1
is a consequence of the 32 defining relations; or, differently put, to every
alleged algorithm A that tells whether a word does or does not represent
the unit element, there is a word w 4(u,, u,) that defeats the algorithm 4.

We further provide ourselves with a group S, generated by two ele-
ments s, ¢ with the single defining relation
B3=1.

This is the free product of the infinite cycle generated by s and the
cycle of order 3 generated by ¢. Finally we put

Gy=8+«U,
the free product of S and U.

Math. Scand. 7. 13
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To prove Theorem 1, we show that an effective procedure that answers
one of the questions of the theorem will also solve the word problem
in U. More precisely, we specify a word

U = '”1('5', ¢, w(uy, ’“2))

in the generators of S and an arbitrary word in the generators of U
such that v, represents an element of the centre of G, if, and only if,
w(uy, u)=1 in U: thus an algorithm A4 that tells whether v, is in the
centre of G, or not, also tells whether w(u,, u,)=1 or not, and A4 is de-
feated by

”1(5'; o w (U, ’“2)) .

We follow the same pattern, mutatis mutandis, for the other six proper-
ties of an element listed in the theorem.

In fact, one and the same word will serve for the first five properties,
namely

'01 = [S, w(ulz u2)] ’

‘where brackets denote the commutator:
[z, y] = z7ly~toy;

and for 1.2 we take ¢ as the given element of G, for 1.5 we take S as
the given subgroup. (These choices are arbitrary; any element +1 of S
or of U will do for 1.2, and the trivial group, or U, will do equally well
for 1.5.) As the centre of a (non-trivial) free product is trivial, », is in
the centre of G if, and only if, v; =1, and thus if, and only if, w(u,, u,) = 1.
In fact v, is permutable with ¢ if, and only if, »;=1. Next v, is an n-th
power, with n> 1 if, and only if, v; =1; for if v; % 1, then the length of v,
(as an element of the free product S*U) is 4, and thus v, could at best
be the square of an element of G; but one immediately verifies that it is
no such square because s>3 1. Next we notice that the infinitely many
conjugates t~%v;t* are all distinct if v; +1. Again, as the length of v, is 4
unless v; =1, it lies in S if, and only if, it is trivial, that is if, and only if,
w(uy, ug)=1.
For 1.6 we put
vg = [8, tJw(uy, u,) .

If w(u,, u,)+1, then this has length 2, and thus cannot be a commuta-
tor; if w(u,, us)=1, then v, clearly equals a commutator. Hence v, re-
presents a commutator in G, if, and only if, w(u,, u,)=1.
Finally we put
vy = trw(uy, u,)
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and remark that this has length 2 and therefore infinite order if
w(uq, uy) =% 1; but v, equals ¢ and thus has order 3 if w(u,, u,)=1. Hence
v, has finite order >1 if, and only if, w(u,, u,)=1. This completes the
proof of Theorem 1.

3. Proof of Theorem 2. We are given the algebraic property P of
groups and a finitely presented group 7' that has P; and there is an
integer n such that the free groups F, of rank r >n do not have P. We
may assume that 7' is generated by at least n elements, say by
1, by, - - ., t, (r2m). Denote by G'p the free product of 7' and Gj—defined
as in Section 2; thus

Gp=T*xGy=T*xS*U.

We first note the following fact.
LeMMa 4. If w=w(uy, u,)+1 in U, then the commutators
(4.1) v, = [s, w], v, = [t, w]
are independent, that is to say, they freely generate a free group of rank 2.

This is an immediate consequence of Kuro§’s Subgroup Theorem (cf.
e.g. [5, p. 212], [6, vol. 2, p. 17]); if the group V generated by v,, v, were
not free, it would have to intersect a conjugate of S or of U non-trivially;
hence its map under the retractive homomorphism of G, onto S or onto
U would have to be non-trivial; but this is not so. If the rank of V were
only 1, then v;, v, would have to be powers of one and the same element;
as both have length 4, they would then have to be equal or inverse to
each other; and inspection shows that they are not.

CorOLLARY 5.1. Under the conditions of the lemma, the elements

vy~ w,0,¢, 1=0,+1, +2, ...,
are tndependent.

Cf. e.g. [8, Corollary (4.4)].

CorOLLARY 5.2. There exists no effective procedure to decide whether
certatn words in the generators s, t, uy, u, of G, (the finitely presented group
of the proof of Theorem 1) represent independent elements.

The words are L .

R ORS 1=12,...,7,
where v,, v, are defined by (4.1) in terms of w=w(u,, u,); they are
independent if, and only if, w4 1.
To prove Theorem 2, we consider words #,*, t,*, ..., t,* defined by

13*
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* _ iy .t
¥ = v, ot

and the subgroup 7* of G, generated by the elements they represent.
They depend on the word w=w(u,, u,) that enters the definition of v,, v,.
If w=1, then v;=v,=1, and T*=7T has property P. If w1, then T*
is a free group of rank r, as is seen from Corollary 5.1, using the retractive
homomorphism of G onto G,; in this case then 7* has non-P. Hence
an effective procedure to decide whether a finitely generated subgroup
of Gp has P will also decide whether w=1 in U. There is no such effective
procedure, and Theorem 2 follows.

4. An example. Barely anything is known about groups that can be
embedded in finitely presented groups. In the present section we answer
one question, namely whether a finitely presented group can have a
subgroup that is finitely generated but not finitely related. An example
will show that the answer is in the affirmative. This is not in itself sur-
prising, and the example is simple enough; but the proof that it has the
stated properties is surprisingly long.

Let D be the group generated by two elements, a, b subject to the
defining relation

a~tha = b2.

In this group, b has a unique square root, namely
b* = abal,

and this in turn has a unique square root, and so on. The elements of D
can be written, uniquely, in the form
d = a*b?,

where « is an integer and § a dyadic fraction, that is a rational number
whose denominator is a power of 2.

Next we take a free group F of rank 2, generated by two elements
p, ¢, and we form the group of our example as the direct product of D
and F,

E=DxF.
This is generated by «, b, p, ¢, and defined by the relations
a~lba = b2,
[a, p] = [a,q] = [b,p] = [b, 9] =

thus it is evidently finitely presented. The subgroup to be studied is that
generated by b, p, and
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¢ = agq;

let us denote it by C. The subgroup of C generated by b and c is isomorphic
to D. In fact it is defined by the relation

ctbe = b2;

for clearly this relation is satisfied, so that the mapping ¢ generated by
ap=c, bp=">b is a homomorphism; and the retractive homomorphism of E
onto D induces the homomorphism y generated by cy=a, by=>b; as ¢
and p are evidently inverse to each other, they are isomorphisms.

The elements generated by b and ¢ can then be written uniquely in
the form

d' = c*b?,

where « is an integer and g a dyadic fraction. The (dyadic) fractional
powers of b lie in D and therefore permute with p. Thus in particular p
permutes with all transforms of b by powers of c.

LeMMA 6.1. The relations
(6.11) clhe = b?,
(6.12) [p, ctbc—?] = 1, 1=20,1,2, ...,
form a system of defining relations of C.

We have seen that these relations are satisfied in C; it only remains to
show that they suffice to define C. Now these relations suffice to reduce
every word in b, ¢, p to the form

flc, p)b°,

where f(c, p) is a word in ¢ and p, that is an element of the free group they
generate, and f is a dyadic fraction. Hence any further relation in C
could be reduced to the form

fle,p) b’ =1.
The retractive homomorphism of Z onto ¥ would lead from this to
flg;p) = 1;
thus f must be trivial, and the relation reduces to
b =1.

This is, however, only valid if =0. Thus any relation between b, ¢, p
that is valid in C reduces to the trivial relation, using the relations (6.11),
(6.12). These then suffice to define C, and the lemma follows.
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This set of relations is not irredundant; in fact no set of defining rela-
tions of C is irredundant; any one, or more, of the relations (6.12) can be
omitted, as long as infinitely many of them are retained.

LemMMA 6.2. No finite subset of the set of defining relations (6.11), (6.12)
suffices to define C.

Consider the group defined by some finite subset of the defining rela-
tions of C. After (possibly) restoring the relation (6.11) and some of the
relations (6.12), we obtain the group C*, say, defined by

clbe = b2
and
[p, ¢tbc—t] = 1, 1=0,1,...,N.
If we introduce
b* = ¢Vbe-N

then C* can also be generated by b*, ¢, p, and defined by the relations
c1b*c = b*2 |
[p, c-tb*ct] = 1, 1i=0,1,...,N.
Of these latter, only the first need be retained; for
c-ib*ci = b¥2' |

and
[p, b*] =1
implies .
[p, b**] = 1.
Thus C* is defined by the two relations
c~lh*c = b*2, [p,b*] = 1.

It follows that C* is the free product of the group generated by c, b*
(which is isomorphic to D) and the group generated by p, b* (which is
free abelian of rank 2), amalgamating the infinite cyclic group generated
by b*; and it then follows that in C* the square root cb*c—! of b* does not
permute with p. (Cf. the similar reasoning applied in [8, Section 21].)
But in C the square root of b* does commute with p; hence C' and C*
are not isomorphiec, and the lemma follows.

CoRrOLLARY 6.3. The finitely generated subgroup C of the finitely pre-
sented group E is not finitely related.

This follows from the known fact [7, Corollary 12] that if a group has
one finite set of generators in which it cannot be finitely defined, then it
cannot be finitely defined in any set of generators.
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5. Some further results. We finally collect some miscellaneous results
that are similar to Corollary 3 but not direct consequences of Theorem 2.

THEOREM 7. There are finitely presented groups G (depending on the
property considered) such that no effective procedure exists to determine
whether the elements represented by a finite set of words generate (1) a finitely
related subgroup of G'; (ii) a subgroup of finite index in G; (iii) a subgroup
with finitely many conjugates in G; (iv) a normal subgroup of G.

Proor. For (i) we use the method of proof of Theorem 2—in fact (i)
could be subsumed under a slightly more general form of Theorem 2,
using the groups G of Section 2 and £ of Section 4: We put

G=ExGy=E+xSxU
and consider the words

* p— y. =1y f J— -2 2
c* = cv,, b* = by, vy, p* = pu w2,

where v,, v, are again defined by (4.1) in terms of a word w=w(u,, u,).
The subgroup of @ generated by c*, b*, p* is free, and therefore (trivially)
finitely related, if w1, but isomorphic to C, and thus not finitely re-
lated, if w=1, by Corollary 6.3. Then (i) follows by the argument used
in Section 3.

For (ii), (iii), and (iv) we use the group G, of Section 2 and consider the
subgroup H generated by ¢, «,, u, and

s¥(w) = s~ w(uy, u,) 5% .

Clearly H depends on the element of U represented by the word
w=w(u,, ). If w=1, then s*=sand H=G0G,. If w+1, then we apply the
following lemma.

LemmaA 8. Let P be the free product of two groups V, W, and let @ be
the subgroup of P generated by W and the element

v* = pun’
where veV, v'eV, weW and
w' * 1, w=+1.
Then the normalizer of Q in P intersects V trivially only.

For the proof, see below. To apply it, we look upon G, as the free
product P of the group W, say, generated by ¢, u,, u,, and the infinite
cyclic group V, say, generated by s; we have w1, and we put v=s71,
v’ =82, so that s*=v* and H=Q. By the lemma, the normalizer of H
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in G, contains no power =+1 of s and therefore has infinite index in H.
It follows at once that H itself has infinite index in G, that H is not
normal in G,, but on the contrary has infinitely many conjugates in G,,.
Hence (ii), (iii), (iv) follows, and the proof of the theorem is completed.

Proor or LEMMA 8. The elements of @ can be written in the form

1 2 (3
H Dy ¥ Oy ¥ Oy

k>

(8.1) q = wy

where wg, wy, ..., w,€W, wy£1l, we+1, ..., w,_y+1, and n(l), n(2),
.., n(k) are non-zero integers. Now writing v*" in its normal form
(relative to the free decomposition P= VW), we see that its length is

Mv*") = 2|n|+1,

when 7 # 0. Introducing the normal forms of the powers of v* into (8.1),
we see that no cancellations or amalgamations occur, and the length
of q is
(8.2) Mg) = 22 |n(2)] + 2k—1 + Aw,) + Awy),
if k>0. Assume that v, is an element both of V and of the normalizer
of Q. Then
Qo = Vo 'wry € @,

and this must be of the form (8.1). If vy=+1, then A(q,) =3, and we see
from (8.2) that k=1, n(l)= £ 1, Jwy)=4A(w,)=0; but this would imply

o = vwv' or ¢, = v lwl?,

that is simultaneously v=v,"1, v'=v, (and possibly also w=w-1). This,
however, contradicts the assumption that vv’+1; it follows that v,=1,
and the lemma is proved.

To conclude, we state a fact, typical again of many, about automorph-
isms of finitely presented groups.

THEOREM 9. There is no effective procedure to decide whether a given
automorphism of the group G, of Section 2 is inner.
We consider the mapping « of G into itself generated by
oo =1, Ux = Uy, Upk = Uy,
s = [t, w(u,y, uy)ls .
This depends on the element of U represented by the word w(u,, u,). If
w(wy, uy)=1, then « is the identity automorphism, hence inner. If

w(%y, Uy) + 1, then « is an automorphism, but not inner. The verification
of these statements is easy, and we omit it.
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