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SUMMABILITY METHODS
AND UNBOUNDED SEQUENCES

G. M. PETERSEN

We wish to investigate the summability properties of regular matrices
for unbounded sequences. The properties for bounded sequences have
been described by Brudno [2] (see also [4] and [5]). The problem for un-
bounded sequences turns out to be markedly different. If a matrix
B=(b,,,) sums a bounded sequence {s’,} that is not summable by
A =(a,,,), then B sums a non-enumerable set of independent bounded
sequences that are not A summable. We shall see that if B sums an
unbounded sequence {s’,} that is not A summable, the sequences that
are B summable may all be of the form {Cs’, +¢,} where C is a constant
and {o,} is A summable.

A matrix 4=(a,,); m,n=1.2, ... is regular if the following condi-
tions are fulfilled :

1° 2. <H for every m;

o 3 .
2° lima,,,=0 for every n;
m—>o0

3° ap=2 0, —~ 1 asm — oco.

We shall consider regular matrices with finite rows, i.e. satisfying the
following additional condition

4 { G =0 when n > A(m),
G, 2emy F O

Lemma 1. If A is a regular matriz satisfying condition 4° and
Am)=m,
50

Cpn=0 for m<m-—1,
@, 1 B M Z K > 1 for mz2,

then every A summable sequence has the form

I

1 ’
e {8mf {OS mt Gm} ’
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where C is a constant, {s',,} a certain unbounded sequence and {o,} a con-
vergent sequence.

Proor. It will be convenient to use the notations

Ay = Qs A, =a05 ... 0a

b, =a

m m=1,2, ...
=@ m-1» Bp=0bgbg ... b,, m=23, ...

Note that conditions 3° and 5° imply that b,, is bounded away from
0; actually b,, >} from a certain m.
That the sequence s,, 85, ... is 4 summable means that the sequence

(1) by = 4181, by = by +p8y, f3 = bysy+agss,

converges to a limit s. If we replace s,, by s,,—s, £,, will be replaced by
tn— o,s; hence, we may assume that ¢, > 0. From (1) follows

8 = 4,7,

8y = — Ay By(ty— A, ByMy)

83 = A37'By(t;— A4, By 'ty + Ay By7lg)

and generally
Sm = (— l)m_lAm—le(tl -A1B2—1t2+ ceet ( - l)m_lAm—le—ltm)
= (= 1)"14,,71B,(t; — A, By 1ty + Ay By 1ty — .. ) —
- (bm 1 1= (W1 ™ omia st
+ (am+1bm+1_l)(am+2bm+2_l)bm+3—1tm+3- .. ) .

For the absolute value of the last term we have the upper bound

(I+K1+K-2+...)max[b,71¢t,],

u>m

and since b,~! is bounded, this tends to zero. We have thus finished the
proof of Lemma 1 with

s,m — (__ l)m—lAm—le ,
C =t,— By lty+ Ay By 1ty — Ay By Mty + . .. .
We remark that every sequence {s,,} which satisfies the condition
lsm—1_18m| = K >1

is A summable for some matrix 4 satisfying the conditions of Lemma 1.
In fact, if we choose

Ay = 1; Upym = —Sm-1 (sm—sm—l)_lr Apym-1 = Sm(sm'_sm—l)_l ’

the conditions of Lemma 1 are satisfied, and we get t,, =0, m=2,3,....
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DEerFiniTiON. Let A be a matrix. A matrix B is called stronger than A
if it sums all A summable sequences, and it is called strictly stronger
than A if it is stronger than A and sums a sequence which is not 4 sum-
mable.

THEOREM 1. To a regular matriz A satisfying 4° corresponds a regular
matriz B satisfying 4°, strictly stronger than A, so that every matrix which
18 stronger than A and sums a sequence which 1s B summable but not A
summable, is stronger than B.

Proor. The matrix 4 transforms a sequence {s,} into {t,} where
b = Q181 - o 3my Sagmy -

The effect of a permutation of the rows of 4 will be that the terms of
{t,.} are permuted in the same manner and this will not change the
convergence properties of {¢,,}. Therefore, we can assume that A(m) is
increasing, i.e. that

ML) = .. = Amy) < Amy+1) = ... = Almy) < Amy+1) = ... .

For convenience, we put my=0. Correspondingly, we have a division of
every transformed sequence {t,} in sections so that the terms

biy_a 415 =+ o5 b,
constitute the vth section.
We shall now construct a sequence s';, 'y, ... so that the transformed
sequence t'y, t'5, ... has the following property:
2) Ut 2 K > 1
h
when m,_,<ns=m, m<mzm., vzIl.

In order to do this, we choose {s',} so that all terms are 0 except the
terms s’;,,,. We first choose §';,,,,#+ 0. Next, we choose s';,,, so that
the terms of the second section of {t',,} satisfy (2), and the construction
proceeds by induction.

The next step of the proof is the construction of a matrix D with the
property that the set of D summable sequences is identical with the set
of all sequences {Ct',, +u,} where C is a constant whereas {t',} is the
sequence introduced above and u,, is a convergent sequence.

The rows of the matrix D will be indexed by pairs (p,q) of numbers so
that p and ¢ correspond to adjacent sections, i.e.

m,_, <ps=m 1.

v m, < ¢q § mv+13 4

v

Thus, the rows of D fall in sections so that the »’th section contains
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(m,—m,_;)(m, , —m,) rows. The arrangement of the rows within the sec-

tions being of no importance for the summability properties, we may as-

sume that the rows are arranged lexicographically with respect to p and q.
Let (d,,,) = (d(,,9, ») be chosen as follows:

t', (', —t,)t forn =p,
d(p,q),n = —tlp(trq__t/p)—l for n = q,
0 forn + p,gq .

It follows from (2) that D satisfies 1°, and it is obvious that D satisfies
the conditions 2°, 3° and 4°. In particular D is regular so that every
convergent sequence is I summable. It is clear that also {¢',} is D
summable, and hence that every sequence {Ct',, +u,}, where C is con-
stant and {u,} convergent, is D summable.

Let {t,} denote an arbitrary D summable sequence. We shall prove
that {t,,} has the form {Ct',, +wu,}. We consider all possible sequences
Py <Py < ... of integers so that {t’p”} contains exactly one term from each
section of {¢',}. Let D, , ... denote the matrix consisting of the rows
of D with indices (py, ps), (Pas P3), - - - . The sequences {t’p”} and {tpﬂ} are
D, ,, - - . summable. Since this matrix satisfies the conditions of Lemma
1, all D, ,, ... summable sequences have the form {Ct", +u’, } where
C is constant and {u, } converges. It follows in particular that

’ _ % prt "
tp” = O%t pu T p,

where C*+0, as {t', } is unbounded. Hence

" _ k—1p/ (V=1
tp”—O tp” O*-1y”,

P

and we have proved that all D, ,,. ... summable sequences have the form
{eo*=1t'y + ('), —C* 1"y )} .

We have thus proved that each of the subsequences {f, } has the form
{Ot'pﬂ+u'p”}. The constant C is uniquely determined by the condition
that {t, —Ct', } is a bounded sequence. This implies that C' is indepen-
dent of the choice of p,, p, ..., since two subsequences with an infinity
of common terms must correspond to the same value of C. We can then
write ¢, =Ct',, +u, and {u,} has the property that each of the sub-
sequences {u, } converges, but this implies that {,,} converges.

We can now prove Theorem 1 with B=DA. Every sequence
{Cs', +v,} where {v,} is A summable is by 4 transformed into {Ct',, +u,,}
where {u,,} = A{v, } is convergent. The sequence {Ct',, + u,,} is D summable,
hence {Cs’,, +7,}is Bsummable. It follows that B is strictly stronger than
A. On the other hand, let {s,} be a B summable sequence. Then 4{s,} is
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D summable, hence A4{s,}={Ct,+wu,} where u, converges. We put
8,=Cs', +v,, and it follows that

A} = A{'gn}_CA{sln} = A{s,} —CO{t'n} = {un},
hence {v,} is A summable. Thus, if a matrix B’ sums every 4 summable

sequence and one sequence {Cs’, +»,} with C %0, then B’ sums {s, } and,
hence, every B summable sequence.

DeriniTiON. Two sequences {s',}, {s'’,} are called independent with
respect to @ matriz A if no linear combination

{C’'s',+C"s",} with (C’,C") * (0, 0)
is A summable.

Let A be a given matrix. Theorem 1 states that there exists a matrix
B strictly stronger than A4, so that a maximal system of B summable
sequences independent with respect to A contains only one sequence.
In this case the sequences which are B summable but not A summable
are unbounded. In fact, if a matrix B sums a bounded sequence which
is not 4 summable, there exists, according to Brudno ([2], see also
[5]), a matrix C strictly stronger than 4 so that B is strictly stronger
than C. The following theorem is interesting in this connection:

THEOREM 2. Let A be a regular matrixz satisfying 4°, and let B denote a
regular matrix stronger than A, so that there exist two B summable sequences
independent with respect to A. Then there exists a matriz C strictly stronger
than A so that B is strictly stronger than C.

Proor. According to the conditions of the theorem there exist two B
summable sequences {s’,} and {s"’,} independent with respect to 4, and
we may even suppose that both sequences are B summable with sum 0.
The matrix 4 transforms {s’,} into {t',,} and {s”,} into {t"’,,}. No sequence
{¢'¢,,+C"t",}, (C', C")%(0, 0), is convergent. Our proof will depend
on the nature of the sequences {t',.}, {t'’,}, but we shall start with some
remarks which will be useful in all the particular cases.

We are going to choose certain subsequences {t', } and {t", } of {t',,}
and {t"’,,}. These subsequences are the transforms of {s’,} and {s”',} by
the matrix A*={a, ,} consisting of some of the rows of 4.

Next, we choose a regular matrix D, which transforms one of the
sequences {t', }, {t', } into a sequence which does not converge to zero,
while D transforms a certain linear combination {C't', +C"t", },
(C’, C")=* (0, 0), into a sequence converging to zero. Then {C's’, +C"s",}
is DA* summable with sum zero while {s',,} or {s"’,} lacks this property.
Since the matrix D is regular every 4 summable sequence is DA* sum-
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mable. Finally we form a matrix C, which consists of all rows of B and all
rows of DA*. All summable sequences and the sequence {C's’, +C"' 8"}
are C summable, hence C is strictly stronger than 4. On the other hand,
every C summable sequence is B summable, and one of the sequences
{s',}, {s",} is B summable, but not C' summable, hence B is strictly
stronger than C.

The proof of Theorem 2 will be finished when we have chosen 4* and
D with the properties stated in the preceding section. We shall first
assume that one of the sequences {t',}, {t"',.}, say {t',,} contains a sub-
sequence {t’, } convergent to a limit +0. We can choose this sub-
sequence so that ¢, tends to a finite limit or to infinity. We shall
consider the two cases separately.

(i) Ift¢', —wu=+0andt”, —v,thesequence {us”,—wvs',}is A*¥ summable
with sum 0, while &', is A* summable with sum +0. We may then
choose D as the unit matrix and the conditions will be satisfied.

(i) If ¢, —wu=+0 and [t”, | - co, we may assume that

lt’l I > 2\tll

Hm+1 l"m‘ *

According to the remark following Lemma 1, we can choose D so that
{t",.} is D summable with sum 0 while {#’, } is D summable with sum
w=0. With this choice the conditions will be satisfied.

In the remaining case we know that every convergent subsequence
of {t',,} and {t"’,,} has limit 0. Assume first that we can choose {u,} so
that one subsequence, say {t', } converges to 0, while {t”, } diverges.
We may then take D as the unit matrix and the conditions will be
satisfied. We shall now assume that it is impossible to choose {u,,} in
this way. We know that no sequence {C't',, +C''t"",,} converges. This
property will be preserved if we delete all terms with |¢',,| <1, |t",|< 1.
When these terms are deleted, the absolute values of the terms of both
sequences will tend to co. We can then choose {u,,} so that {t', } satisfies
the condition

(3) 1 psal > 218, -

If {'t',, +t",,} does not converge for any C’, we can construct D so
that {t', } is D summable to 0 while {t’, } is not D summable. If
{c't, +t”, } converges to ¢t for some C’, then we consider the sequence
{C't',,+¢",}. By the independence of {s’,,} and {s"',} with respect to 4,
there exists an ¢>0 and a sequence {v,} such that

c't,, +t,.,—tl >¢ foral m.

We then choose a subsequence {t, } of {t,,} satisfying (3) and containing
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an infinite number of terms from each of the sequences {t', } and {t', }.
Then, finally, we can construct a matrix D which sums {t’, } to 0 but
does not sum {t”, }.

This completes the proof of the theorem.

We remark that any sequence {s,}, for which s,=0(n!) and is zero
everywhere save for a subsequence {n,} so that the counting function of
{n,} is o(n?), is (C, 1) summable (see Lorentz [3]). It follows that the
iteration of (C, 1) with itself sums a non-enumerable set of unbounded
sequences that are not (C, 1) summable though the set of bounded
sequences is the same. In this case there exists a non-enumerable set
of matrices of the type described in Theorem 2.
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