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ON EXTRAPOLATING A POSITIVE DEFINITE
FUNCTION FROM A FINITE INTERVAL

EDWIN J. AKUTOWICZ

1. Introduction. The datum of the problem studied in this paper is a
complex-valued, continuous function F(¢) on the finite interval (— A. d)
which is positive definite on this interval. That is,

0=t;, t,<A4  implies ' F(t;—t,) 2%,
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for arbitrary complex z’s. Under these conditions M. Krein [1] showed
in 1940 that F(¢{) can be extended to a positive definite function F,(t)
on —oo<t<oco. That is, according to Bochner’s theorem, there exists an
increasing bounded function o(4), o(—oc)=0, and normalized at its dis-
continuities, such that

(1.1) F(t) = \ ¢ith do(2) .

The extension F,(¢) will not be unique in general [7], and it is the purpose
of the present considerations to determine under what conditions there
is a unique extrapolation, and to classify all solutions in the indeterminate
case. The case of a unique extrapolation shall be referred to as the
determinate case, following the usual terminology of the moment problem.

There are at least two fairly distinct categories of results on this prob-
lem. In the first category are those facts that can be obtained by using
primarily aspects of the theory of Hilbert space. All of the results of the
present paper are included here. The important fact that is taken ad-
vantage of is the existence of a certain non-negative quadratic form in
infinitely many variables. This allows the construction of a Hilbert
space H which is naturally related to our problem. The vectors of H are
certain (equivalence classes of) functions of , — o <2 <co. An analogous
quadratic form is also given in the classical power moment problem, where
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the relevant Hilbert space is built up starting with polynomials. In the
present study, instead of polynomials, functions which are restrictions to
the real axis of certain entire functions are used to construct H. A neces-
sary and sufficient condition that the extrapolation be determinate is
that the operator of “multiplication by z’’ be self-adjoint in H (that is,
hypermaximal in H). The spectral analysis of a symmetric operator with
deficiency index (1, 1) leads to the “limit circle’’ classification of the
totality of extrapolations. This classification is of the same nature as
that obtained by R. Nevanlinna [2] [3] for the power moment problem.

The second category refers to sufficient conditions for unique extra-
polation. The methods here are much more function-theoretic. I hope
to take up this subject on another occasion.

2. The Hilbert Space H. Consider the class H, of all functions ¢(u)
that are of the form

p(u) = ei“‘d,u(l), —o < u < oo, a=34,

é‘/‘.\g

where u is an arbitrary complex-valued function of bounded variation.
Put, for such functions ¢, and ¢,,

oo

2.1) (91> @9) = \ 1) o) do(u) ,

—0Q

where o(u) defines an arbitrary extrapolation through (1.1). Then
(¢4, @2) depends only upon the datum of the problem, namely upon the
function F(t), — A <t< A, and not upon any particular ¢. For

]
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do(u \ ¢ dy (2,) \ e d 0 (7)

(P1: @2) =

8 émg
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\ du) | dins(hy \ ¢4 do(u)

D
a —00
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\ dis) d1es2) Fta =2 .

H, is a linear space in the obvious sense and we reduce H, modulo the
subspace of functions g, such that (¢,, ¢,)=0. That is, vectors are taken
not as individual functions ¢ but as classes of functions that coincide
except on a set of o-measure zero. The inner product (2.1) in H, can be
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transferred to the reduced space and the latter can be then completed to
a Hilbert space H. In H vectors corresponding to functions in H, con-
stitute a dense subset, and we shall regard H, itself as a dense subset of
H. 1t is seen that H is obtained in an unambiguous way from the given
positive definite function F(¢), —4 <t< 4.

3. The Operator T. In H consider the operator T, given by

Topo(u) = upe(u)
for those ¢, e H, such that
TopoeH,.

Such ¢, are dense in H and therefore in H. T is obviously Hermitian
(Ty<=T,*=adjoint of T;). Hence T * is defined on a dense domain in
H and hence there exists a minimal closed extension 7' of T, and T is
also Hermitian!.

LeMMma 3.1. The deficiency index of T is either (0, 0) or (1, 1).

Proor. If the function that is identically 1 belongs to the range of
T — A1, Im A0, that is, if there exists ¢, belonging to 2(T')n H, such that

1= (=gl >0, n—>oco

then also
N — (u=2)p,(w)]|> 0, n— .
But since
pal) = {e=toe duls) = { etur a{—u(=51.

we see that ¢,(u) also belongs to 2(T)n H,. Hence 1 belongs also to the
range of 7 — 1.

Suppose now that ¢(u) is bounded for — oo <u < oo and is the restric-
tion to the real axis of an entire function of exponential type <a. Then
for any fixed non-real z,

p(w) — ¢(z) € L¥(— o0, 00) .
u—z

Hence, according to a well-known theorem of Paley and Wiener,

1 Included in the specifications for a Hermitian operator T' is the condition that its
domain 2(T) be dense in the relevant Hilbert space. 2(T) and %(T') denote the domain
and range of any operator T,
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-9 _ Seius X(s)ds, XeL¥—a,a).
That is,

o(u) = @(z) + (u—z)\'eius X(s) ds .

This implies that the closed linear span of the range of 7'—z/ and the
constant function 1 coincides with H. This fact, together with the
preceding paragraph, proves Lemma 3.1.

4. Self-adjoint extensions of T determine extrapolations. One of the
main results in the present theory is that every self-adjoint extension of 7',
including those obtained by enlarging the space H, determines a solution
through its spectrum. To establish this it is convenient to make use of
a theorem due essentially to M. S. Lifschitz [4] concerning the spectral
decomposition of certain Hermitian operators. This “spectral theorem”
employs a generalized (and in general non-unique) resolution of the ident-
ity, or spectral function, that is defined as follows.

DeriNtTION. A spectral function belonging to a closed Hermitian operator
S in any Hilbert space H is any one-parameter family of bounded self-
adjoint operators in H,

E(t), —oo <t < oo,
such that for every pe H:
L. (E(t)p, )y is non-decreasing for increasing t,
2. E(t—0)p = E(t)p,
3. Et)p—> 0ast— —ooand E(t)p > ¢ as t > + oo,
4. E(t) belongs to S in the sense that for pe D(S), yeH,

Se, v)g =\ td(EQ)p, ¥)u »

and

ISplly® =\ 2 d(Et)p, ¢)u -

émg ét/.ﬁ

THEOREM 4.1 (Lifschitz). If ¢,, @,, ¢ are elements of H such that
(4.1) @ —pr(®)e = (S—xl)yy 4, —00 < X < 00,

where @ (x) ts a continuous complex-valued function on —oo<x < oo and
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Yer €D(S) for —oc < < oo, k=12,
then

(P1; 92)m \‘Pl )@s(t) d(E(t)e, &)

where E(t) ts any spectral function belonging to S.

A sketch of the proof runs as follows. First, suppose § is self-adjoint
in H, in which case E(t) is a unique orthogonal family of projections such
that E(t;)E(t,) = E(min (4, t,)). Hence it follows for any interval 4 that

E(A)Swr=EA)StdE ve =\t dB(0)y,
a4

—o0

By (4.1), dropping the subscript i.
E(d)p — p(x)E(4)e =

Hence if xe4,
1E(A)g — @(x)E(d)e|| < length A-||E(A)y,] .

Hence if x,, belongs to the point spectrum of S choose 4 as the half-open
interval xy < <x,+J and allow 0 - 0 to conclude that

(4.2) (B(xy+0)~ E(20))p = @(0)(H(xo+0)— E(x))e -

Hence if S has pure point spectrum the conclusion follows by addition
from (4.2) and the orthogonal character of E(t). Therefore assume that
S has only continuous spectrum. Let 4, be any fixed finite interval and
Ady=4,U...ud, a partition of 4,. Then, for ,e4,,

£y — \9tt) B

:é’j (B(4,)p—¢(&)E(A)e) + §(¢(§V)E(AV)E \ (t) dE(t)e)
- _’f, \ (¢ — &) dE(t)y,, + ):]1'\'(99( )dB

Math. Scand. 7. 11
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As
max length 4, — 0

the last two sums tend to 0 strongly in H. Hence

E(d)p = Sqo(t) dE(t)e

49

for any finite interval 4,. It follows by passing to the limit 4, — (— oo, )
that

00

v = o) aB:.

—00
This implies (by the orthogonal character of E(t)) that

oo

(P1- P2l = \ P1(t) o) d(E(t)E’ &g -

—00

Thus the theorem is proved if § is self-adjoint.

Second, according to a theorem of Neumark [6], for every spectral
function E(t) of § there exists a self-adjoint operator 8’ in a larger Hilbert
space H' > H such that

pePD(S) implies S'¢ = Sp,
and
B(t) = PaB'(), —oo<t<oo,

where Py is the projection in H' on H and E’(t) is the unique resolution
of the identity belonging to S’ in H’. By what has already been proved,

(4.3) (p1, @)y = S% @o(t) d(E' (e, €)qr »

—00

where the orthogonality of E’(t) is used. But by assumption ¢,, @,, &
belong to H. Therefore

(B'(t)e, €)gr = (E'(t)e, Py e)gr = (PrE'(t)e, €) g, = (E(b)e, &>
and this, by (4.3), completes the proof.

Now consider the Hermitian operator 7' acting in H.

THEOREM 4.2. If E(t) is any spectral function belonging to T then an
extrapolation is generated through (1.1) by o(t)=(E(t)1, 1)g.

Proor. Observe that functions g(u) of the form
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p(u) = \.eiusX(s) ds,
where X is of bounded total variation over (—a, a) and X(a)=X(-a)=0,
belong to 2(T'). For, by an integration by parts,

]

a

tuews X (s)ds = \.eiusd[iX(s)],

/‘-

up(u) = —1

so that T'p belongs to H.

Now consider the identity
. eitu __ pilx
(4.4) et — el — (y—x) —o
u—x

b

where x, t are real parameters, —a<t<a, —oco<x<oo. It is easy to

check the formula -

. eitu — eit.'x: .
\ = du = X,,(9),
o ou—x
—00
where
X, () = 0 if s lies not between 0 and ¢,
%t ett-9z  if s lies between 0 and ¢ .

After a Fourier inversion, according to the preceding paragraph,

itu_eil.z
¢ e UT).
uU—x
Put, for —co<u < oo,
p(u) = e, —a<t<a,
Pa(u) =
e(u) =
etlu_eitx
Y1,2(u) = a—z
Q/)2,30('“') =0.

In view of the identity (4.4) the conditions of Lifschitz’s theorem are
satisfied. It follows that

8

e1tu 1 \. eltud ()1, I)H ,

where E(u) is any spectral function of 7'. On the other hand,
(e, 1)y = F(t), —a<t<a.

11*
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Therefore o(u)=(E(u)l, 1) does indeed determine an extrapolation.
In section 6 we shall show that every solution is of this form.

5. A necessary and sufficient condition for determinacy. It is now
easy to state the principal result about the determinate case.

THEOREM 5.1. T'he extrapolation problem is determinate if and only of T
18 self-adjoint vn H.

Proor. Let it first be assumed that the determinate case occurs and
that 7' is not self-adjoint in H. Then the deficiency index of 7' must be
(1, 1) by Lemma 3.1, and there exist two different extensions of 7' to
self-adjoint operators 4, and A4, in H. (Actually such self-adjoint
extensions within H are in one-to-one correspondence with the points on
the periphery of the unit circle).

Let it be recalled how such extensions are constructed (von Neumann).
Suppose S denotes any closed Hermitian operator in H and V its Cayley

transform, V= —z)(S—2*)"!, Imz>0,

where the asterisk indicates the complex conjugate. The domain and
the range of V are given by

D(V) = BS—2*I) and RB(V) = RS —z2I),

respectively. Self-adjoint extensions of S exist in H if and only if the
dimensions of the deficiency subspaces coincide:

dim(H O R(S —2*I) = dim(H OA(S —=2I) .
Assuming this, let
V: HORS —z*I)—> HOR(S —2I)

be an isometric correspondence. Then V' extends V to a unitary operator
Vo in H. The Cayley transform of V is a self-adjoint operator S, in H,

Sy = @*Vo—2)(Vo—-1)1,

and S, is an extension of §. All self-adjoint extensions of § in H are
obtainable in this way.

Returning to the operator 7', it follows from the proof of Lemma 3.1
that the constant 1€H "has non-zero projections 1, and 1, in
HORT —2*I) and HOA(T —=zI), respectively, and these two projec-
tions span the two one-dimensional deficiency subspaces. Writing
Nox= lz*/le*”’
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V,=(4,—2I)(A,—2*I)1, Vy = (Ay—zI)(Ay—2*I)1,

we must have

Vlnz‘ = ﬂv2nz‘7 !5' =1, 13 + 1.
Also

H = (H@.%(T—z*]))@%(T——z*])
implies

1 = (1, 7,4)n,« + 0, 0e BT —z*I).

Since V,0=V,0, it follows that

Vll - V21 = (1, nz*)( Vlnz‘_ Vzﬂz')

= (I, ’72-)(/3— I)Vzﬁz' .
Now the resolvents R,=(4,—2*I)"! and R,=(d4,—2*I)"! satisfy

Ry — Ry, = (2*—z) (V= V).
Hence
(R11> 1)"(R21: 1) = (Z*-—Z)_l(l, 7]2*)(13_ 1)(V2772'= 1) :%: O .

Hence (E,(u)1, 1) and (Ey(u)1, 1), where E,(u) and E,(u) are the spectral
functions of 4; and 4,, must be different functions of u. By theorem 4.2
these functions would then determine different extrapolations, which is
a contradiction. Therefore if the determinate case occurs, 7' is necessarily
self-adjoint in H.

Conversely, assume 7' is self-adjoint in H. Then there will exist
¢, €2(T,) such that

lim \ 11— (u—2)p,(w)?do(u) = 0, Imz &+ 0.
But )
Vlw=27" = gz dow) = max ju—z2{ 1 = w=2)gp,() dofu)
o —00 < U< 00 o

Hence (u —2z)~1 belongs to H as a function of 4. By the spectral form of
the resolvent of 7,

(e=2y 1)y = § (u=2) d(B)L, 1)
and by the definition of ( , ), for any solution o,

(w—2)"1, 1)y = \ (w—z)"1do(u).

.
—00
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Here E(u) is the unique orthogonal spectral family of 7. Hence by
Stieltjes’ inversion formula,

= (Bu)1, 1)y .

As E(u) is constructed entirely within H, this means that ¢ is unique.
Q. E.D.

6. The classification of the totality of extrapolations. In the indeter-
minate case the set of all solutions possesses a classification which is
substantially identical with that obtained by R. Nevanlinna in 1922 in
the indeterminate case of the power moment problem. Nevanlinna solves
the latter problem by determining all holomorphic functions of a cer-
tain class possessing the same asymptotic expansion that is defined in
terms of the given moments. The present classification is effected by
using the known form of all self-adjoint extensions of Hermitian opera-
tors with deficiency index (1, 1). These self-adjoint extensions include
those where the extended operator acts in a larger Hilbert space contain-
ing the given Hilbert space?.

There are two steps to be taken in the classification problem:

(i) Every solution ¢(f) must be shown to arise from a spectral function

belonging to 7' in the form o(¢) = (E(¢)1, 1)y

(ii) The totality of spectral functions must be described.

d (i). Suppose o(¢) is any solution. Consider the particular Hilbert
space H+ (=H"(0)) consisting of all (equivalence classes of) Borel func-
tions ¢(¢), — oo <t < oo, for which

§|<pt>|2dot><oc,

and for which
(Pr: ®hre = \ 71 (1) 7ald) do(t)

Then H* > H. For every t, — oo <t < o0, the quantity
12

Biw #a) = | o1 (0) gl do(u)

—00

defines a bilinear form in H* and therefore a projection G(f) in H*:

2 A theory of extensions of Hermitian operators was developed during the 1940’s by
M. Krein and M. A. Neumark, and a useful exposition of part of their results can be found
in the excellent book [6] of N. Achieser and M. A. Glasmann. We refer the reader partic-
ularly to Supplement I of this book.
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By(p1, @2) = (G()g1, @2) -

Of course G(t) depends upon o. This family of projections G(¢),
—oo<t<oo, is a resolution of the identity in H* in the ordinary sense
belonging to the self-adjoint operator of multiplication by the indepen-
dent variable. Putting

E(t) = PxG(1), —00 < < o0,

where Py is the projection in H* on H, we obtain a spectral function
in H. This spectral function belongs to 7', for if pe 2(T) and yeH, then

I

(Tp, v)g = \ to(t)p(t) do(t)

¢
td\q) u)do u)

td(G(t)p, ¥)u -

td(Q(t)p. Pyy)m.

I
ée/‘.g ée./‘.S ét_/a8 é_/:g émg

t d(E@), ) »

and similarly

o0

1Toln = \ # d(EOy. o)
Now it is easy to show that o(t) = (¥(f)1, 1);. For the resolvent R, of the
self-adjoint operator of multiplication by the independent variable in H*
satisfies

¢
(Rzl, 1)11+ = S :u_;—: d(G(u)l, ]')H*'

and also

(R,1, 1), = S L o)

U—z

for every non-real z. Hence o(t)=(G(t)1, 1)z, =(E(t)1, 1)g. This estab-
lishes (i).
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ad (ii). There is a one-to-one correspondence between the class of all
spectral functions belonging to the closed Hermitian operator 7" and the
class of all generalized resolvents of the same operator. Such a corres-
pondence is implemented by the relation

(R, ) = 5 -2 d(Et)p,y), Imz+0, ¢,yeH,

between a generalized resolvent K, and a spectral function Z(¢) belonging
to T'. Thus it suffices for our purposes to describe the totality of genera-
lized resolvents of 7. As 7 has deficiency index (1, 1) this can be done
explicitly as follows [6]. All inner products are in H.

Every generalized resolvent R, of 7' is of the form

(6'1) Rz = R’z - ('! nz)(f(z)'I'QO(z))_lnz‘ ’

where the vectors 7,., 7, have their previous meaning (section 5), ¢,(2)
is a certain fixed function of z in the upper half-plane, and f(z) is holo-
morphic in the upper half-plane with non-negative imaginary part there.
R’, is any fixed generalized resolvent of 7. As f varies subject to the
conditions stated, R, varies over all generalized resolvents of 7'.

This classification can be given a familiar geometrical form by ap-
plying (6.1) to 1€ H and forming the inner product with 1:

(6.2) (Rzl’ 1) = (R,zla 1) - (1, 77z 772" (f +q0 )
= (P1(2)f(2) + Po(2))(f (2) + qo(2))

where p,, P;, ¢ are certain fixed functions of non-real z. Choosing
f(z)=t=real constant, identically in 2, it follows by (6.2) that the com-
plex number

(1, 1)

for fixed z varies over a circle I'(z) in the upper half-plane as ¢ varies over
all real values. These peripheral points in 1-1 correspondence with the
totality of self-adjoint extensions of the first kind; that is, extensions
within H as described in section 5. As the set of all extensions is clearly
convex, these facts imply that as

(R.1, 1)

runs over the disk bounded by I'(z), R, runs over all generalized resolvents
of T.
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